Commit 027491f4 authored by FUJITA Tomonori's avatar FUJITA Tomonori Committed by Linus Torvalds

dma-mapping: frv: remove the obsolete and unnecessary DMA API comments

pci_dma_sync_single was obsoleted long ago.

All the comments are generic, not architecture specific, simply describes
some of the DMA-API (and frv has the same comments in three files).
Documentation/DMA-API.txt have more detailed descriptions.

This removes the above obsolete and unnecessary DMA API comments.  Let's
describe the DMA API in only Documentation/DMA-API.txt.
Signed-off-by: default avatarFUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: David Howells <dhowells@redhat.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 0acedc12
...@@ -7,6 +7,11 @@ ...@@ -7,6 +7,11 @@
#include <asm/scatterlist.h> #include <asm/scatterlist.h>
#include <asm/io.h> #include <asm/io.h>
/*
* See Documentation/DMA-API.txt for the description of how the
* following DMA API should work.
*/
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f) #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h) #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
...@@ -16,24 +21,9 @@ extern unsigned long __nongprelbss dma_coherent_mem_end; ...@@ -16,24 +21,9 @@ extern unsigned long __nongprelbss dma_coherent_mem_end;
void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp); void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp);
void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle); void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle);
/*
* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single is performed.
*/
extern dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, extern dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction); enum dma_data_direction direction);
/*
* Unmap a single streaming mode DMA translation. The dma_addr and size
* must match what was provided for in a previous pci_map_single call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guarenteed to see
* whatever the device wrote there.
*/
static inline static inline
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction) enum dma_data_direction direction)
...@@ -41,30 +31,9 @@ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, ...@@ -41,30 +31,9 @@ void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
BUG_ON(direction == DMA_NONE); BUG_ON(direction == DMA_NONE);
} }
/*
* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
extern int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, extern int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction); enum dma_data_direction direction);
/*
* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
static inline static inline
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
enum dma_data_direction direction) enum dma_data_direction direction)
......
...@@ -106,13 +106,6 @@ void dma_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_ ...@@ -106,13 +106,6 @@ void dma_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_
EXPORT_SYMBOL(dma_free_coherent); EXPORT_SYMBOL(dma_free_coherent);
/*
* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either dma_unmap_single or pci_dma_sync_single is performed.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction) enum dma_data_direction direction)
{ {
...@@ -125,22 +118,6 @@ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, ...@@ -125,22 +118,6 @@ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
EXPORT_SYMBOL(dma_map_single); EXPORT_SYMBOL(dma_map_single);
/*
* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
* above dma_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for dma_map_single are
* the same here.
*/
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction) enum dma_data_direction direction)
{ {
...@@ -157,13 +134,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, ...@@ -157,13 +134,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
EXPORT_SYMBOL(dma_map_sg); EXPORT_SYMBOL(dma_map_sg);
/*
* Map a single page of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Device ownership issues as mentioned above for dma_map_single are
* the same here.
*/
dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction) size_t size, enum dma_data_direction direction)
{ {
......
...@@ -38,13 +38,6 @@ void dma_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_ ...@@ -38,13 +38,6 @@ void dma_free_coherent(struct device *hwdev, size_t size, void *vaddr, dma_addr_
EXPORT_SYMBOL(dma_free_coherent); EXPORT_SYMBOL(dma_free_coherent);
/*
* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single is performed.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction) enum dma_data_direction direction)
{ {
...@@ -57,22 +50,6 @@ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, ...@@ -57,22 +50,6 @@ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
EXPORT_SYMBOL(dma_map_single); EXPORT_SYMBOL(dma_map_single);
/*
* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
* above dma_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for dma_map_single are
* the same here.
*/
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction) enum dma_data_direction direction)
{ {
...@@ -103,13 +80,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, ...@@ -103,13 +80,6 @@ int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
EXPORT_SYMBOL(dma_map_sg); EXPORT_SYMBOL(dma_map_sg);
/*
* Map a single page of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Device ownership issues as mentioned above for dma_map_single are
* the same here.
*/
dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction) size_t size, enum dma_data_direction direction)
{ {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment