Commit 0577d1ab authored by Sean Christopherson's avatar Sean Christopherson Committed by Paolo Bonzini

KVM: Terminate memslot walks via used_slots

Refactor memslot handling to treat the number of used slots as the de
facto size of the memslot array, e.g. return NULL from id_to_memslot()
when an invalid index is provided instead of relying on npages==0 to
detect an invalid memslot.  Rework the sorting and walking of memslots
in advance of dynamically sizing memslots to aid bisection and debug,
e.g. with luck, a bug in the refactoring will bisect here and/or hit a
WARN instead of randomly corrupting memory.

Alternatively, a global null/invalid memslot could be returned, i.e. so
callers of id_to_memslot() don't have to explicitly check for a NULL
memslot, but that approach runs the risk of introducing difficult-to-
debug issues, e.g. if the global null slot is modified.  Constifying
the return from id_to_memslot() to combat such issues is possible, but
would require a massive refactoring of arch specific code and would
still be susceptible to casting shenanigans.

Add function comments to update_memslots() and search_memslots() to
explicitly (and loudly) state how memslots are sorted.

Opportunistically stuff @hva with a non-canonical value when deleting a
private memslot on x86 to detect bogus usage of the freed slot.

No functional change intended.
Tested-by: default avatarChristoffer Dall <christoffer.dall@arm.com>
Tested-by: default avatarMarc Zyngier <maz@kernel.org>
Signed-off-by: default avatarSean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
parent 2a49f61d
......@@ -4400,7 +4400,7 @@ static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
slots = kvm_memslots(kvm);
memslot = id_to_memslot(slots, log->slot);
r = -ENOENT;
if (!memslot->dirty_bitmap)
if (!memslot || !memslot->dirty_bitmap)
goto out;
/*
......
......@@ -9715,9 +9715,9 @@ void kvm_arch_sync_events(struct kvm *kvm)
int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
{
int i, r;
unsigned long hva;
unsigned long hva, uninitialized_var(old_npages);
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *slot, old;
struct kvm_memory_slot *slot;
/* Called with kvm->slots_lock held. */
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
......@@ -9725,7 +9725,7 @@ int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
slot = id_to_memslot(slots, id);
if (size) {
if (slot->npages)
if (slot && slot->npages)
return -EEXIST;
/*
......@@ -9737,13 +9737,14 @@ int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
if (IS_ERR((void *)hva))
return PTR_ERR((void *)hva);
} else {
if (!slot->npages)
if (!slot || !slot->npages)
return 0;
hva = 0;
/* Stuff a non-canonical value to catch use-after-delete. */
hva = 0xdeadull << 48;
old_npages = slot->npages;
}
old = *slot;
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
struct kvm_userspace_memory_region m;
......@@ -9758,7 +9759,7 @@ int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
}
if (!size)
vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
vm_munmap(hva, old_npages * PAGE_SIZE);
return 0;
}
......
......@@ -572,10 +572,11 @@ static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
return vcpu->vcpu_idx;
}
#define kvm_for_each_memslot(memslot, slots) \
for (memslot = &slots->memslots[0]; \
memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
memslot++)
#define kvm_for_each_memslot(memslot, slots) \
for (memslot = &slots->memslots[0]; \
memslot < slots->memslots + slots->used_slots; memslot++) \
if (WARN_ON_ONCE(!memslot->npages)) { \
} else
void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
......@@ -635,12 +636,15 @@ static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
return __kvm_memslots(vcpu->kvm, as_id);
}
static inline struct kvm_memory_slot *
id_to_memslot(struct kvm_memslots *slots, int id)
static inline
struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
{
int index = slots->id_to_index[id];
struct kvm_memory_slot *slot;
if (index < 0)
return NULL;
slot = &slots->memslots[index];
WARN_ON(slot->id != id);
......@@ -1012,6 +1016,8 @@ bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
* used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
* gfn_to_memslot() itself isn't here as an inline because that would
* bloat other code too much.
*
* IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
*/
static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots *slots, gfn_t gfn)
......
......@@ -1534,8 +1534,13 @@ void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
phys_addr_t start, end;
if (WARN_ON_ONCE(!memslot))
return;
start = memslot->base_gfn << PAGE_SHIFT;
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end);
......
......@@ -566,7 +566,7 @@ static struct kvm_memslots *kvm_alloc_memslots(void)
return NULL;
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
slots->id_to_index[i] = slots->memslots[i].id = i;
slots->id_to_index[i] = slots->memslots[i].id = -1;
return slots;
}
......@@ -870,63 +870,162 @@ static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
}
/*
* Insert memslot and re-sort memslots based on their GFN,
* so binary search could be used to lookup GFN.
* Sorting algorithm takes advantage of having initially
* sorted array and known changed memslot position.
* Delete a memslot by decrementing the number of used slots and shifting all
* other entries in the array forward one spot.
*/
static void update_memslots(struct kvm_memslots *slots,
struct kvm_memory_slot *new,
enum kvm_mr_change change)
static inline void kvm_memslot_delete(struct kvm_memslots *slots,
struct kvm_memory_slot *memslot)
{
int id = new->id;
int i = slots->id_to_index[id];
struct kvm_memory_slot *mslots = slots->memslots;
int i;
WARN_ON(mslots[i].id != id);
switch (change) {
case KVM_MR_CREATE:
slots->used_slots++;
WARN_ON(mslots[i].npages || !new->npages);
break;
case KVM_MR_DELETE:
slots->used_slots--;
WARN_ON(new->npages || !mslots[i].npages);
break;
default:
break;
}
if (WARN_ON(slots->id_to_index[memslot->id] == -1))
return;
while (i < KVM_MEM_SLOTS_NUM - 1 &&
new->base_gfn <= mslots[i + 1].base_gfn) {
if (!mslots[i + 1].npages)
break;
slots->used_slots--;
for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
mslots[i] = mslots[i + 1];
slots->id_to_index[mslots[i].id] = i;
i++;
}
mslots[i] = *memslot;
slots->id_to_index[memslot->id] = -1;
}
/*
* "Insert" a new memslot by incrementing the number of used slots. Returns
* the new slot's initial index into the memslots array.
*/
static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
{
return slots->used_slots++;
}
/*
* Move a changed memslot backwards in the array by shifting existing slots
* with a higher GFN toward the front of the array. Note, the changed memslot
* itself is not preserved in the array, i.e. not swapped at this time, only
* its new index into the array is tracked. Returns the changed memslot's
* current index into the memslots array.
*/
static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
struct kvm_memory_slot *memslot)
{
struct kvm_memory_slot *mslots = slots->memslots;
int i;
if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
WARN_ON_ONCE(!slots->used_slots))
return -1;
/*
* The ">=" is needed when creating a slot with base_gfn == 0,
* so that it moves before all those with base_gfn == npages == 0.
*
* On the other hand, if new->npages is zero, the above loop has
* already left i pointing to the beginning of the empty part of
* mslots, and the ">=" would move the hole backwards in this
* case---which is wrong. So skip the loop when deleting a slot.
* Move the target memslot backward in the array by shifting existing
* memslots with a higher GFN (than the target memslot) towards the
* front of the array.
*/
if (new->npages) {
while (i > 0 &&
new->base_gfn >= mslots[i - 1].base_gfn) {
mslots[i] = mslots[i - 1];
slots->id_to_index[mslots[i].id] = i;
i--;
}
} else
WARN_ON_ONCE(i != slots->used_slots);
for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
if (memslot->base_gfn > mslots[i + 1].base_gfn)
break;
WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
/* Shift the next memslot forward one and update its index. */
mslots[i] = mslots[i + 1];
slots->id_to_index[mslots[i].id] = i;
}
return i;
}
/*
* Move a changed memslot forwards in the array by shifting existing slots with
* a lower GFN toward the back of the array. Note, the changed memslot itself
* is not preserved in the array, i.e. not swapped at this time, only its new
* index into the array is tracked. Returns the changed memslot's final index
* into the memslots array.
*/
static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
struct kvm_memory_slot *memslot,
int start)
{
struct kvm_memory_slot *mslots = slots->memslots;
int i;
for (i = start; i > 0; i--) {
if (memslot->base_gfn < mslots[i - 1].base_gfn)
break;
WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
mslots[i] = *new;
slots->id_to_index[mslots[i].id] = i;
/* Shift the next memslot back one and update its index. */
mslots[i] = mslots[i - 1];
slots->id_to_index[mslots[i].id] = i;
}
return i;
}
/*
* Re-sort memslots based on their GFN to account for an added, deleted, or
* moved memslot. Sorting memslots by GFN allows using a binary search during
* memslot lookup.
*
* IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
* at memslots[0] has the highest GFN.
*
* The sorting algorithm takes advantage of having initially sorted memslots
* and knowing the position of the changed memslot. Sorting is also optimized
* by not swapping the updated memslot and instead only shifting other memslots
* and tracking the new index for the update memslot. Only once its final
* index is known is the updated memslot copied into its position in the array.
*
* - When deleting a memslot, the deleted memslot simply needs to be moved to
* the end of the array.
*
* - When creating a memslot, the algorithm "inserts" the new memslot at the
* end of the array and then it forward to its correct location.
*
* - When moving a memslot, the algorithm first moves the updated memslot
* backward to handle the scenario where the memslot's GFN was changed to a
* lower value. update_memslots() then falls through and runs the same flow
* as creating a memslot to move the memslot forward to handle the scenario
* where its GFN was changed to a higher value.
*
* Note, slots are sorted from highest->lowest instead of lowest->highest for
* historical reasons. Originally, invalid memslots where denoted by having
* GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
* to the end of the array. The current algorithm uses dedicated logic to
* delete a memslot and thus does not rely on invalid memslots having GFN=0.
*
* The other historical motiviation for highest->lowest was to improve the
* performance of memslot lookup. KVM originally used a linear search starting
* at memslots[0]. On x86, the largest memslot usually has one of the highest,
* if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
* single memslot above the 4gb boundary. As the largest memslot is also the
* most likely to be referenced, sorting it to the front of the array was
* advantageous. The current binary search starts from the middle of the array
* and uses an LRU pointer to improve performance for all memslots and GFNs.
*/
static void update_memslots(struct kvm_memslots *slots,
struct kvm_memory_slot *memslot,
enum kvm_mr_change change)
{
int i;
if (change == KVM_MR_DELETE) {
kvm_memslot_delete(slots, memslot);
} else {
if (change == KVM_MR_CREATE)
i = kvm_memslot_insert_back(slots);
else
i = kvm_memslot_move_backward(slots, memslot);
i = kvm_memslot_move_forward(slots, memslot, i);
/*
* Copy the memslot to its new position in memslots and update
* its index accordingly.
*/
slots->memslots[i] = *memslot;
slots->id_to_index[memslot->id] = i;
}
}
static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
......@@ -1106,7 +1205,14 @@ int __kvm_set_memory_region(struct kvm *kvm,
* memslot needs to be referenced after calling update_memslots(), e.g.
* to free its resources and for arch specific behavior.
*/
old = *id_to_memslot(__kvm_memslots(kvm, as_id), id);
tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
if (tmp) {
old = *tmp;
tmp = NULL;
} else {
memset(&old, 0, sizeof(old));
old.id = id;
}
if (!mem->memory_size)
return kvm_delete_memslot(kvm, mem, &old, as_id);
......@@ -1224,7 +1330,7 @@ int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
slots = __kvm_memslots(kvm, as_id);
*memslot = id_to_memslot(slots, id);
if (!(*memslot)->dirty_bitmap)
if (!(*memslot) || !(*memslot)->dirty_bitmap)
return -ENOENT;
kvm_arch_sync_dirty_log(kvm, *memslot);
......@@ -1282,10 +1388,10 @@ static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
slots = __kvm_memslots(kvm, as_id);
memslot = id_to_memslot(slots, id);
if (!memslot || !memslot->dirty_bitmap)
return -ENOENT;
dirty_bitmap = memslot->dirty_bitmap;
if (!dirty_bitmap)
return -ENOENT;
kvm_arch_sync_dirty_log(kvm, memslot);
......@@ -1393,10 +1499,10 @@ static int kvm_clear_dirty_log_protect(struct kvm *kvm,
slots = __kvm_memslots(kvm, as_id);
memslot = id_to_memslot(slots, id);
if (!memslot || !memslot->dirty_bitmap)
return -ENOENT;
dirty_bitmap = memslot->dirty_bitmap;
if (!dirty_bitmap)
return -ENOENT;
n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment