Commit 0ed02bda authored by Ard Biesheuvel's avatar Ard Biesheuvel

efi/libstub: Move efi_random_alloc() into separate source file

efi_random_alloc() is only used on arm64, but as it shares a source
file with efi_random_get_seed(), the latter will pull in the former
on other architectures as well.

Let's take advantage of the fact that libstub is a static library,
and so the linker will only incorporate objects that are needed to
satisfy dependencies in other objects. This means we can move the
random alloc code to a separate source file that gets built
unconditionally, but only used when needed.
Signed-off-by: default avatarArd Biesheuvel <ardb@kernel.org>
parent 1e45bf73
...@@ -40,7 +40,7 @@ OBJECT_FILES_NON_STANDARD := y ...@@ -40,7 +40,7 @@ OBJECT_FILES_NON_STANDARD := y
KCOV_INSTRUMENT := n KCOV_INSTRUMENT := n
lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \ lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \
mem.o random.o pci.o mem.o random.o randomalloc.o pci.o
# include the stub's generic dependencies from lib/ when building for ARM/arm64 # include the stub's generic dependencies from lib/ when building for ARM/arm64
arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
......
...@@ -4,7 +4,6 @@ ...@@ -4,7 +4,6 @@
*/ */
#include <linux/efi.h> #include <linux/efi.h>
#include <linux/log2.h>
#include <asm/efi.h> #include <asm/efi.h>
#include "efistub.h" #include "efistub.h"
...@@ -39,119 +38,6 @@ efi_status_t efi_get_random_bytes(unsigned long size, u8 *out) ...@@ -39,119 +38,6 @@ efi_status_t efi_get_random_bytes(unsigned long size, u8 *out)
return efi_call_proto(rng, get_rng, NULL, size, out); return efi_call_proto(rng, get_rng, NULL, size, out);
} }
/*
* Return the number of slots covered by this entry, i.e., the number of
* addresses it covers that are suitably aligned and supply enough room
* for the allocation.
*/
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
unsigned long size,
unsigned long align_shift)
{
unsigned long align = 1UL << align_shift;
u64 first_slot, last_slot, region_end;
if (md->type != EFI_CONVENTIONAL_MEMORY)
return 0;
if (efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
return 0;
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
first_slot = round_up(md->phys_addr, align);
last_slot = round_down(region_end - size + 1, align);
if (first_slot > last_slot)
return 0;
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
}
/*
* The UEFI memory descriptors have a virtual address field that is only used
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
* is unused here, we can reuse it to keep track of each descriptor's slot
* count.
*/
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
efi_status_t efi_random_alloc(unsigned long size,
unsigned long align,
unsigned long *addr,
unsigned long random_seed)
{
unsigned long map_size, desc_size, total_slots = 0, target_slot;
unsigned long buff_size;
efi_status_t status;
efi_memory_desc_t *memory_map;
int map_offset;
struct efi_boot_memmap map;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS)
return status;
if (align < EFI_ALLOC_ALIGN)
align = EFI_ALLOC_ALIGN;
/* count the suitable slots in each memory map entry */
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align));
MD_NUM_SLOTS(md) = slots;
total_slots += slots;
}
/* find a random number between 0 and total_slots */
target_slot = (total_slots * (u16)random_seed) >> 16;
/*
* target_slot is now a value in the range [0, total_slots), and so
* it corresponds with exactly one of the suitable slots we recorded
* when iterating over the memory map the first time around.
*
* So iterate over the memory map again, subtracting the number of
* slots of each entry at each iteration, until we have found the entry
* that covers our chosen slot. Use the residual value of target_slot
* to calculate the randomly chosen address, and allocate it directly
* using EFI_ALLOCATE_ADDRESS.
*/
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
efi_physical_addr_t target;
unsigned long pages;
if (target_slot >= MD_NUM_SLOTS(md)) {
target_slot -= MD_NUM_SLOTS(md);
continue;
}
target = round_up(md->phys_addr, align) + target_slot * align;
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA, pages, &target);
if (status == EFI_SUCCESS)
*addr = target;
break;
}
efi_bs_call(free_pool, memory_map);
return status;
}
efi_status_t efi_random_get_seed(void) efi_status_t efi_random_get_seed(void)
{ {
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
*/
#include <linux/efi.h>
#include <linux/log2.h>
#include <asm/efi.h>
#include "efistub.h"
/*
* Return the number of slots covered by this entry, i.e., the number of
* addresses it covers that are suitably aligned and supply enough room
* for the allocation.
*/
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
unsigned long size,
unsigned long align_shift)
{
unsigned long align = 1UL << align_shift;
u64 first_slot, last_slot, region_end;
if (md->type != EFI_CONVENTIONAL_MEMORY)
return 0;
if (efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
return 0;
region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1,
(u64)ULONG_MAX);
first_slot = round_up(md->phys_addr, align);
last_slot = round_down(region_end - size + 1, align);
if (first_slot > last_slot)
return 0;
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
}
/*
* The UEFI memory descriptors have a virtual address field that is only used
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
* is unused here, we can reuse it to keep track of each descriptor's slot
* count.
*/
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
efi_status_t efi_random_alloc(unsigned long size,
unsigned long align,
unsigned long *addr,
unsigned long random_seed)
{
unsigned long map_size, desc_size, total_slots = 0, target_slot;
unsigned long buff_size;
efi_status_t status;
efi_memory_desc_t *memory_map;
int map_offset;
struct efi_boot_memmap map;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS)
return status;
if (align < EFI_ALLOC_ALIGN)
align = EFI_ALLOC_ALIGN;
/* count the suitable slots in each memory map entry */
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align));
MD_NUM_SLOTS(md) = slots;
total_slots += slots;
}
/* find a random number between 0 and total_slots */
target_slot = (total_slots * (u16)random_seed) >> 16;
/*
* target_slot is now a value in the range [0, total_slots), and so
* it corresponds with exactly one of the suitable slots we recorded
* when iterating over the memory map the first time around.
*
* So iterate over the memory map again, subtracting the number of
* slots of each entry at each iteration, until we have found the entry
* that covers our chosen slot. Use the residual value of target_slot
* to calculate the randomly chosen address, and allocate it directly
* using EFI_ALLOCATE_ADDRESS.
*/
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
efi_physical_addr_t target;
unsigned long pages;
if (target_slot >= MD_NUM_SLOTS(md)) {
target_slot -= MD_NUM_SLOTS(md);
continue;
}
target = round_up(md->phys_addr, align) + target_slot * align;
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA, pages, &target);
if (status == EFI_SUCCESS)
*addr = target;
break;
}
efi_bs_call(free_pool, memory_map);
return status;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment