Commit 133d04b1 authored by Donet Tom's avatar Donet Tom Committed by Andrew Morton

mm/numa_balancing: allow migrate on protnone reference with MPOL_PREFERRED_MANY policy

commit bda420b9 ("numa balancing: migrate on fault among multiple
bound nodes") added support for migrate on protnone reference with
MPOL_BIND memory policy.  This allowed numa fault migration when the
executing node is part of the policy mask for MPOL_BIND.  This patch
extends migration support to MPOL_PREFERRED_MANY policy.

Currently, we cannot specify MPOL_PREFERRED_MANY with the mempolicy flag
MPOL_F_NUMA_BALANCING.  This causes issues when we want to use
NUMA_BALANCING_MEMORY_TIERING.  To effectively use the slow memory tier,
the kernel should not allocate pages from the slower memory tier via
allocation control zonelist fallback.  Instead, we should move cold pages
from the faster memory node via memory demotion.  For a page allocation,
kswapd is only woken up after we try to allocate pages from all nodes in
the allocation zone list.  This implies that, without using memory
policies, we will end up allocating hot pages in the slower memory tier.

MPOL_PREFERRED_MANY was added by commit b27abacc ("mm/mempolicy: add
MPOL_PREFERRED_MANY for multiple preferred nodes") to allow better
allocation control when we have memory tiers in the system.  With
MPOL_PREFERRED_MANY, the user can use a policy node mask consisting only
of faster memory nodes.  When we fail to allocate pages from the faster
memory node, kswapd would be woken up, allowing demotion of cold pages to
slower memory nodes.

With the current kernel, such usage of memory policies implies we can't do
page promotion from a slower memory tier to a faster memory tier using
numa fault.  This patch fixes this issue.

For MPOL_PREFERRED_MANY, if the executing node is in the policy node mask,
we allow numa migration to the executing nodes.  If the executing node is
not in the policy node mask, we do not allow numa migration.

Example:
On a 2-sockets system, NUMA node N0, N1 and N2 are in socket 0,
N3 in socket 1. N0, N1 and N3 have fast memory and CPU, while
N2 has slow memory and no CPU.  For a workload, we may use
MPOL_PREFERRED_MANY with nodemask N0 and N1 set because the workload
runs on CPUs of socket 0 at most times. Then, even if the workload
runs on CPUs of N3 occasionally, we will not try to migrate the workload
pages from N2 to N3 because users may want to avoid cross-socket access
as much as possible in the long term.

In below table, Process is the Process executing node and
Curr Loc Pgs is the numa node where page present(folio node)
===========================================================
Process  Policy  Curr Loc Pgs     Observation
-----------------------------------------------------------
N0       N0 N1      N1         Pages Migrated from N1 to N0
N0       N0 N1      N2         Pages Migrated from N2 to N0
N0       N0 N1      N3	       Pages Migrated from N3 to N0

N3       N0 N1      N0         Pages NOT Migrated  to N3
N3       N0 N1      N1         Pages NOT Migrated  to N3
N3       N0 N1      N2	       Pages NOT Migrated  to N3
------------------------------------------------------------

Link: https://lkml.kernel.org/r/158acc57319129aa46d50fd64c9330f3e7c7b4bf.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/369d6a58758396335fd1176d97bbca4e7730d75a.1709909210.git.donettom@linux.ibm.comSigned-off-by: default avatarAneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Signed-off-by: default avatarDonet Tom <donettom@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
parent f8fd525b
......@@ -1504,9 +1504,10 @@ static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
return -EINVAL;
if (*flags & MPOL_F_NUMA_BALANCING) {
if (*mode != MPOL_BIND)
if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
*flags |= (MPOL_F_MOF | MPOL_F_MORON);
else
return -EINVAL;
*flags |= (MPOL_F_MOF | MPOL_F_MORON);
}
return 0;
}
......@@ -2770,15 +2771,26 @@ int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
break;
case MPOL_BIND:
/* Optimize placement among multiple nodes via NUMA balancing */
case MPOL_PREFERRED_MANY:
/*
* Even though MPOL_PREFERRED_MANY can allocate pages outside
* policy nodemask we don't allow numa migration to nodes
* outside policy nodemask for now. This is done so that if we
* want demotion to slow memory to happen, before allocating
* from some DRAM node say 'x', we will end up using a
* MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
* we should not promote to node 'x' from slow memory node.
*/
if (pol->flags & MPOL_F_MORON) {
/*
* Optimize placement among multiple nodes
* via NUMA balancing
*/
if (node_isset(thisnid, pol->nodes))
break;
goto out;
}
fallthrough;
case MPOL_PREFERRED_MANY:
/*
* use current page if in policy nodemask,
* else select nearest allowed node, if any.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment