Commit 143490cd authored by Pablo Neira Ayuso's avatar Pablo Neira Ayuso Committed by David S. Miller

docs: nf_flowtable: update documentation with enhancements

This patch updates the flowtable documentation to describe recent
enhancements:

- Offload action is available after the first packets go through the
  classic forwarding path.
- IPv4 and IPv6 are supported. Only TCP and UDP layer 4 are supported at
  this stage.
- Tuple has been augmented to track VLAN id and PPPoE session id.
- Bridge and IP forwarding integration, including bridge VLAN filtering
  support.
- Hardware offload support.
- Describe the [OFFLOAD] and [HW_OFFLOAD] tags in the conntrack table
  listing.
- Replace 'flow offload' by 'flow add' in example rulesets (preferred
  syntax).
- Describe existing cache limitations.
Signed-off-by: default avatarPablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 502e84e2
......@@ -4,35 +4,38 @@
Netfilter's flowtable infrastructure
====================================
This documentation describes the software flowtable infrastructure available in
Netfilter since Linux kernel 4.16.
This documentation describes the Netfilter flowtable infrastructure which allows
you to define a fastpath through the flowtable datapath. This infrastructure
also provides hardware offload support. The flowtable supports for the layer 3
IPv4 and IPv6 and the layer 4 TCP and UDP protocols.
Overview
--------
Initial packets follow the classic forwarding path, once the flow enters the
established state according to the conntrack semantics (ie. we have seen traffic
in both directions), then you can decide to offload the flow to the flowtable
from the forward chain via the 'flow offload' action available in nftables.
Once the first packet of the flow successfully goes through the IP forwarding
path, from the second packet on, you might decide to offload the flow to the
flowtable through your ruleset. The flowtable infrastructure provides a rule
action that allows you to specify when to add a flow to the flowtable.
Packets that find an entry in the flowtable (ie. flowtable hit) are sent to the
output netdevice via neigh_xmit(), hence, they bypass the classic forwarding
path (the visible effect is that you do not see these packets from any of the
netfilter hooks coming after the ingress). In case of flowtable miss, the packet
follows the classic forward path.
A packet that finds a matching entry in the flowtable (ie. flowtable hit) is
transmitted to the output netdevice via neigh_xmit(), hence, packets bypass the
classic IP forwarding path (the visible effect is that you do not see these
packets from any of the Netfilter hooks coming after ingress). In case that
there is no matching entry in the flowtable (ie. flowtable miss), the packet
follows the classic IP forwarding path.
The flowtable uses a resizable hashtable, lookups are based on the following
7-tuple selectors: source, destination, layer 3 and layer 4 protocols, source
and destination ports and the input interface (useful in case there are several
conntrack zones in place).
The flowtable uses a resizable hashtable. Lookups are based on the following
n-tuple selectors: layer 2 protocol encapsulation (VLAN and PPPoE), layer 3
source and destination, layer 4 source and destination ports and the input
interface (useful in case there are several conntrack zones in place).
Flowtables are populated via the 'flow offload' nftables action, so the user can
selectively specify what flows are placed into the flow table. Hence, packets
follow the classic forwarding path unless the user explicitly instruct packets
to use this new alternative forwarding path via nftables policy.
The 'flow add' action allows you to populate the flowtable, the user selectively
specifies what flows are placed into the flowtable. Hence, packets follow the
classic IP forwarding path unless the user explicitly instruct flows to use this
new alternative forwarding path via policy.
This is represented in Fig.1, which describes the classic forwarding path
including the Netfilter hooks and the flowtable fastpath bypass.
The flowtable datapath is represented in Fig.1, which describes the classic IP
forwarding path including the Netfilter hooks and the flowtable fastpath bypass.
::
......@@ -67,11 +70,13 @@ including the Netfilter hooks and the flowtable fastpath bypass.
Fig.1 Netfilter hooks and flowtable interactions
The flowtable entry also stores the NAT configuration, so all packets are
mangled according to the NAT policy that matches the initial packets that went
through the classic forwarding path. The TTL is decremented before calling
neigh_xmit(). Fragmented traffic is passed up to follow the classic forwarding
path given that the transport selectors are missing, therefore flowtable lookup
is not possible.
mangled according to the NAT policy that is specified from the classic IP
forwarding path. The TTL is decremented before calling neigh_xmit(). Fragmented
traffic is passed up to follow the classic IP forwarding path given that the
transport header is missing, in this case, flowtable lookups are not possible.
TCP RST and FIN packets are also passed up to the classic IP forwarding path to
release the flow gracefully. Packets that exceed the MTU are also passed up to
the classic forwarding path to report packet-too-big ICMP errors to the sender.
Example configuration
---------------------
......@@ -85,7 +90,7 @@ flowtable and add one rule to your forward chain::
}
chain y {
type filter hook forward priority 0; policy accept;
ip protocol tcp flow offload @f
ip protocol tcp flow add @f
counter packets 0 bytes 0
}
}
......@@ -103,6 +108,117 @@ flow is offloaded, you will observe that the counter rule in the example above
does not get updated for the packets that are being forwarded through the
forwarding bypass.
You can identify offloaded flows through the [OFFLOAD] tag when listing your
connection tracking table.
::
# conntrack -L
tcp 6 src=10.141.10.2 dst=192.168.10.2 sport=52728 dport=5201 src=192.168.10.2 dst=192.168.10.1 sport=5201 dport=52728 [OFFLOAD] mark=0 use=2
Layer 2 encapsulation
---------------------
Since Linux kernel 5.13, the flowtable infrastructure discovers the real
netdevice behind VLAN and PPPoE netdevices. The flowtable software datapath
parses the VLAN and PPPoE layer 2 headers to extract the ethertype and the
VLAN ID / PPPoE session ID which are used for the flowtable lookups. The
flowtable datapath also deals with layer 2 decapsulation.
You do not need to add the PPPoE and the VLAN devices to your flowtable,
instead the real device is sufficient for the flowtable to track your flows.
Bridge and IP forwarding
------------------------
Since Linux kernel 5.13, you can add bridge ports to the flowtable. The
flowtable infrastructure discovers the topology behind the bridge device. This
allows the flowtable to define a fastpath bypass between the bridge ports
(represented as eth1 and eth2 in the example figure below) and the gateway
device (represented as eth0) in your switch/router.
::
fastpath bypass
.-------------------------.
/ \
| IP forwarding |
| / \ \/
| br0 eth0 ..... eth0
. / \ *host B*
-> eth1 eth2
. *switch/router*
.
.
eth0
*host A*
The flowtable infrastructure also supports for bridge VLAN filtering actions
such as PVID and untagged. You can also stack a classic VLAN device on top of
your bridge port.
If you would like that your flowtable defines a fastpath between your bridge
ports and your IP forwarding path, you have to add your bridge ports (as
represented by the real netdevice) to your flowtable definition.
Counters
--------
The flowtable can synchronize packet and byte counters with the existing
connection tracking entry by specifying the counter statement in your flowtable
definition, e.g.
::
table inet x {
flowtable f {
hook ingress priority 0; devices = { eth0, eth1 };
counter
}
...
}
Counter support is available since Linux kernel 5.7.
Hardware offload
----------------
If your network device provides hardware offload support, you can turn it on by
means of the 'offload' flag in your flowtable definition, e.g.
::
table inet x {
flowtable f {
hook ingress priority 0; devices = { eth0, eth1 };
flags offload;
}
...
}
There is a workqueue that adds the flows to the hardware. Note that a few
packets might still run over the flowtable software path until the workqueue has
a chance to offload the flow to the network device.
You can identify hardware offloaded flows through the [HW_OFFLOAD] tag when
listing your connection tracking table. Please, note that the [OFFLOAD] tag
refers to the software offload mode, so there is a distinction between [OFFLOAD]
which refers to the software flowtable fastpath and [HW_OFFLOAD] which refers
to the hardware offload datapath being used by the flow.
The flowtable hardware offload infrastructure also supports for the DSA
(Distributed Switch Architecture).
Limitations
-----------
The flowtable behaves like a cache. The flowtable entries might get stale if
either the destination MAC address or the egress netdevice that is used for
transmission changes.
This might be a problem if:
- You run the flowtable in software mode and you combine bridge and IP
forwarding in your setup.
- Hardware offload is enabled.
More reading
------------
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment