Commit 15a5b0a4 authored by Pekka Enberg's avatar Pekka Enberg

Merge branches 'topic/slob/cleanups', 'topic/slob/fixes', 'topic/slub/core',...

Merge branches 'topic/slob/cleanups', 'topic/slob/fixes', 'topic/slub/core', 'topic/slub/cleanups' and 'topic/slub/perf' into for-linus
...@@ -46,7 +46,6 @@ struct kmem_cache_cpu { ...@@ -46,7 +46,6 @@ struct kmem_cache_cpu {
struct kmem_cache_node { struct kmem_cache_node {
spinlock_t list_lock; /* Protect partial list and nr_partial */ spinlock_t list_lock; /* Protect partial list and nr_partial */
unsigned long nr_partial; unsigned long nr_partial;
unsigned long min_partial;
struct list_head partial; struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs; atomic_long_t nr_slabs;
...@@ -89,6 +88,7 @@ struct kmem_cache { ...@@ -89,6 +88,7 @@ struct kmem_cache {
void (*ctor)(void *); void (*ctor)(void *);
int inuse; /* Offset to metadata */ int inuse; /* Offset to metadata */
int align; /* Alignment */ int align; /* Alignment */
unsigned long min_partial;
const char *name; /* Name (only for display!) */ const char *name; /* Name (only for display!) */
struct list_head list; /* List of slab caches */ struct list_head list; /* List of slab caches */
#ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG
...@@ -120,11 +120,24 @@ struct kmem_cache { ...@@ -120,11 +120,24 @@ struct kmem_cache {
#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
/*
* Maximum kmalloc object size handled by SLUB. Larger object allocations
* are passed through to the page allocator. The page allocator "fastpath"
* is relatively slow so we need this value sufficiently high so that
* performance critical objects are allocated through the SLUB fastpath.
*
* This should be dropped to PAGE_SIZE / 2 once the page allocator
* "fastpath" becomes competitive with the slab allocator fastpaths.
*/
#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
/* /*
* We keep the general caches in an array of slab caches that are used for * We keep the general caches in an array of slab caches that are used for
* 2^x bytes of allocations. * 2^x bytes of allocations.
*/ */
extern struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1]; extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
/* /*
* Sorry that the following has to be that ugly but some versions of GCC * Sorry that the following has to be that ugly but some versions of GCC
...@@ -212,7 +225,7 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags) ...@@ -212,7 +225,7 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
static __always_inline void *kmalloc(size_t size, gfp_t flags) static __always_inline void *kmalloc(size_t size, gfp_t flags)
{ {
if (__builtin_constant_p(size)) { if (__builtin_constant_p(size)) {
if (size > PAGE_SIZE) if (size > SLUB_MAX_SIZE)
return kmalloc_large(size, flags); return kmalloc_large(size, flags);
if (!(flags & SLUB_DMA)) { if (!(flags & SLUB_DMA)) {
...@@ -234,7 +247,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); ...@@ -234,7 +247,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{ {
if (__builtin_constant_p(size) && if (__builtin_constant_p(size) &&
size <= PAGE_SIZE && !(flags & SLUB_DMA)) { size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
struct kmem_cache *s = kmalloc_slab(size); struct kmem_cache *s = kmalloc_slab(size);
if (!s) if (!s)
......
...@@ -126,9 +126,9 @@ static LIST_HEAD(free_slob_medium); ...@@ -126,9 +126,9 @@ static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large); static LIST_HEAD(free_slob_large);
/* /*
* slob_page: True for all slob pages (false for bigblock pages) * is_slob_page: True for all slob pages (false for bigblock pages)
*/ */
static inline int slob_page(struct slob_page *sp) static inline int is_slob_page(struct slob_page *sp)
{ {
return PageSlobPage((struct page *)sp); return PageSlobPage((struct page *)sp);
} }
...@@ -143,6 +143,11 @@ static inline void clear_slob_page(struct slob_page *sp) ...@@ -143,6 +143,11 @@ static inline void clear_slob_page(struct slob_page *sp)
__ClearPageSlobPage((struct page *)sp); __ClearPageSlobPage((struct page *)sp);
} }
static inline struct slob_page *slob_page(const void *addr)
{
return (struct slob_page *)virt_to_page(addr);
}
/* /*
* slob_page_free: true for pages on free_slob_pages list. * slob_page_free: true for pages on free_slob_pages list.
*/ */
...@@ -230,7 +235,7 @@ static int slob_last(slob_t *s) ...@@ -230,7 +235,7 @@ static int slob_last(slob_t *s)
return !((unsigned long)slob_next(s) & ~PAGE_MASK); return !((unsigned long)slob_next(s) & ~PAGE_MASK);
} }
static void *slob_new_page(gfp_t gfp, int order, int node) static void *slob_new_pages(gfp_t gfp, int order, int node)
{ {
void *page; void *page;
...@@ -247,12 +252,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node) ...@@ -247,12 +252,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node)
return page_address(page); return page_address(page);
} }
static void slob_free_pages(void *b, int order)
{
free_pages((unsigned long)b, order);
}
/* /*
* Allocate a slob block within a given slob_page sp. * Allocate a slob block within a given slob_page sp.
*/ */
static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
{ {
slob_t *prev, *cur, *aligned = 0; slob_t *prev, *cur, *aligned = NULL;
int delta = 0, units = SLOB_UNITS(size); int delta = 0, units = SLOB_UNITS(size);
for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
...@@ -349,10 +359,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) ...@@ -349,10 +359,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
/* Not enough space: must allocate a new page */ /* Not enough space: must allocate a new page */
if (!b) { if (!b) {
b = slob_new_page(gfp & ~__GFP_ZERO, 0, node); b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
if (!b) if (!b)
return 0; return NULL;
sp = (struct slob_page *)virt_to_page(b); sp = slob_page(b);
set_slob_page(sp); set_slob_page(sp);
spin_lock_irqsave(&slob_lock, flags); spin_lock_irqsave(&slob_lock, flags);
...@@ -384,7 +394,7 @@ static void slob_free(void *block, int size) ...@@ -384,7 +394,7 @@ static void slob_free(void *block, int size)
return; return;
BUG_ON(!size); BUG_ON(!size);
sp = (struct slob_page *)virt_to_page(block); sp = slob_page(block);
units = SLOB_UNITS(size); units = SLOB_UNITS(size);
spin_lock_irqsave(&slob_lock, flags); spin_lock_irqsave(&slob_lock, flags);
...@@ -393,10 +403,11 @@ static void slob_free(void *block, int size) ...@@ -393,10 +403,11 @@ static void slob_free(void *block, int size)
/* Go directly to page allocator. Do not pass slob allocator */ /* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp)) if (slob_page_free(sp))
clear_slob_page_free(sp); clear_slob_page_free(sp);
spin_unlock_irqrestore(&slob_lock, flags);
clear_slob_page(sp); clear_slob_page(sp);
free_slob_page(sp); free_slob_page(sp);
free_page((unsigned long)b); free_page((unsigned long)b);
goto out; return;
} }
if (!slob_page_free(sp)) { if (!slob_page_free(sp)) {
...@@ -476,7 +487,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node) ...@@ -476,7 +487,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
} else { } else {
void *ret; void *ret;
ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node); ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
if (ret) { if (ret) {
struct page *page; struct page *page;
page = virt_to_page(ret); page = virt_to_page(ret);
...@@ -494,8 +505,8 @@ void kfree(const void *block) ...@@ -494,8 +505,8 @@ void kfree(const void *block)
if (unlikely(ZERO_OR_NULL_PTR(block))) if (unlikely(ZERO_OR_NULL_PTR(block)))
return; return;
sp = (struct slob_page *)virt_to_page(block); sp = slob_page(block);
if (slob_page(sp)) { if (is_slob_page(sp)) {
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align); unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align); slob_free(m, *m + align);
...@@ -513,8 +524,8 @@ size_t ksize(const void *block) ...@@ -513,8 +524,8 @@ size_t ksize(const void *block)
if (unlikely(block == ZERO_SIZE_PTR)) if (unlikely(block == ZERO_SIZE_PTR))
return 0; return 0;
sp = (struct slob_page *)virt_to_page(block); sp = slob_page(block);
if (slob_page(sp)) { if (is_slob_page(sp)) {
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align); unsigned int *m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT; return SLOB_UNITS(*m) * SLOB_UNIT;
...@@ -573,7 +584,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) ...@@ -573,7 +584,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
if (c->size < PAGE_SIZE) if (c->size < PAGE_SIZE)
b = slob_alloc(c->size, flags, c->align, node); b = slob_alloc(c->size, flags, c->align, node);
else else
b = slob_new_page(flags, get_order(c->size), node); b = slob_new_pages(flags, get_order(c->size), node);
if (c->ctor) if (c->ctor)
c->ctor(b); c->ctor(b);
...@@ -587,7 +598,7 @@ static void __kmem_cache_free(void *b, int size) ...@@ -587,7 +598,7 @@ static void __kmem_cache_free(void *b, int size)
if (size < PAGE_SIZE) if (size < PAGE_SIZE)
slob_free(b, size); slob_free(b, size);
else else
free_pages((unsigned long)b, get_order(size)); slob_free_pages(b, get_order(size));
} }
static void kmem_rcu_free(struct rcu_head *head) static void kmem_rcu_free(struct rcu_head *head)
......
...@@ -374,14 +374,8 @@ static struct track *get_track(struct kmem_cache *s, void *object, ...@@ -374,14 +374,8 @@ static struct track *get_track(struct kmem_cache *s, void *object,
static void set_track(struct kmem_cache *s, void *object, static void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr) enum track_item alloc, unsigned long addr)
{ {
struct track *p; struct track *p = get_track(s, object, alloc);
if (s->offset)
p = object + s->offset + sizeof(void *);
else
p = object + s->inuse;
p += alloc;
if (addr) { if (addr) {
p->addr = addr; p->addr = addr;
p->cpu = smp_processor_id(); p->cpu = smp_processor_id();
...@@ -1335,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) ...@@ -1335,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
n = get_node(s, zone_to_nid(zone)); n = get_node(s, zone_to_nid(zone));
if (n && cpuset_zone_allowed_hardwall(zone, flags) && if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
n->nr_partial > n->min_partial) { n->nr_partial > s->min_partial) {
page = get_partial_node(n); page = get_partial_node(n);
if (page) if (page)
return page; return page;
...@@ -1387,7 +1381,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) ...@@ -1387,7 +1381,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
slab_unlock(page); slab_unlock(page);
} else { } else {
stat(c, DEACTIVATE_EMPTY); stat(c, DEACTIVATE_EMPTY);
if (n->nr_partial < n->min_partial) { if (n->nr_partial < s->min_partial) {
/* /*
* Adding an empty slab to the partial slabs in order * Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This slab needs * to avoid page allocator overhead. This slab needs
...@@ -1724,7 +1718,7 @@ static __always_inline void slab_free(struct kmem_cache *s, ...@@ -1724,7 +1718,7 @@ static __always_inline void slab_free(struct kmem_cache *s,
c = get_cpu_slab(s, smp_processor_id()); c = get_cpu_slab(s, smp_processor_id());
debug_check_no_locks_freed(object, c->objsize); debug_check_no_locks_freed(object, c->objsize);
if (!(s->flags & SLAB_DEBUG_OBJECTS)) if (!(s->flags & SLAB_DEBUG_OBJECTS))
debug_check_no_obj_freed(object, s->objsize); debug_check_no_obj_freed(object, c->objsize);
if (likely(page == c->page && c->node >= 0)) { if (likely(page == c->page && c->node >= 0)) {
object[c->offset] = c->freelist; object[c->offset] = c->freelist;
c->freelist = object; c->freelist = object;
...@@ -1844,6 +1838,7 @@ static inline int calculate_order(int size) ...@@ -1844,6 +1838,7 @@ static inline int calculate_order(int size)
int order; int order;
int min_objects; int min_objects;
int fraction; int fraction;
int max_objects;
/* /*
* Attempt to find best configuration for a slab. This * Attempt to find best configuration for a slab. This
...@@ -1856,6 +1851,9 @@ static inline int calculate_order(int size) ...@@ -1856,6 +1851,9 @@ static inline int calculate_order(int size)
min_objects = slub_min_objects; min_objects = slub_min_objects;
if (!min_objects) if (!min_objects)
min_objects = 4 * (fls(nr_cpu_ids) + 1); min_objects = 4 * (fls(nr_cpu_ids) + 1);
max_objects = (PAGE_SIZE << slub_max_order)/size;
min_objects = min(min_objects, max_objects);
while (min_objects > 1) { while (min_objects > 1) {
fraction = 16; fraction = 16;
while (fraction >= 4) { while (fraction >= 4) {
...@@ -1865,7 +1863,7 @@ static inline int calculate_order(int size) ...@@ -1865,7 +1863,7 @@ static inline int calculate_order(int size)
return order; return order;
fraction /= 2; fraction /= 2;
} }
min_objects /= 2; min_objects --;
} }
/* /*
...@@ -1928,17 +1926,6 @@ static void ...@@ -1928,17 +1926,6 @@ static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
{ {
n->nr_partial = 0; n->nr_partial = 0;
/*
* The larger the object size is, the more pages we want on the partial
* list to avoid pounding the page allocator excessively.
*/
n->min_partial = ilog2(s->size);
if (n->min_partial < MIN_PARTIAL)
n->min_partial = MIN_PARTIAL;
else if (n->min_partial > MAX_PARTIAL)
n->min_partial = MAX_PARTIAL;
spin_lock_init(&n->list_lock); spin_lock_init(&n->list_lock);
INIT_LIST_HEAD(&n->partial); INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG
...@@ -2181,6 +2168,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) ...@@ -2181,6 +2168,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
} }
#endif #endif
static void set_min_partial(struct kmem_cache *s, unsigned long min)
{
if (min < MIN_PARTIAL)
min = MIN_PARTIAL;
else if (min > MAX_PARTIAL)
min = MAX_PARTIAL;
s->min_partial = min;
}
/* /*
* calculate_sizes() determines the order and the distribution of data within * calculate_sizes() determines the order and the distribution of data within
* a slab object. * a slab object.
...@@ -2319,6 +2315,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, ...@@ -2319,6 +2315,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
if (!calculate_sizes(s, -1)) if (!calculate_sizes(s, -1))
goto error; goto error;
/*
* The larger the object size is, the more pages we want on the partial
* list to avoid pounding the page allocator excessively.
*/
set_min_partial(s, ilog2(s->size));
s->refcount = 1; s->refcount = 1;
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
s->remote_node_defrag_ratio = 1000; s->remote_node_defrag_ratio = 1000;
...@@ -2475,7 +2476,7 @@ EXPORT_SYMBOL(kmem_cache_destroy); ...@@ -2475,7 +2476,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
* Kmalloc subsystem * Kmalloc subsystem
*******************************************************************/ *******************************************************************/
struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches); EXPORT_SYMBOL(kmalloc_caches);
static int __init setup_slub_min_order(char *str) static int __init setup_slub_min_order(char *str)
...@@ -2537,7 +2538,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, ...@@ -2537,7 +2538,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
} }
#ifdef CONFIG_ZONE_DMA #ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
static void sysfs_add_func(struct work_struct *w) static void sysfs_add_func(struct work_struct *w)
{ {
...@@ -2658,7 +2659,7 @@ void *__kmalloc(size_t size, gfp_t flags) ...@@ -2658,7 +2659,7 @@ void *__kmalloc(size_t size, gfp_t flags)
{ {
struct kmem_cache *s; struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE)) if (unlikely(size > SLUB_MAX_SIZE))
return kmalloc_large(size, flags); return kmalloc_large(size, flags);
s = get_slab(size, flags); s = get_slab(size, flags);
...@@ -2686,7 +2687,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) ...@@ -2686,7 +2687,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
{ {
struct kmem_cache *s; struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE)) if (unlikely(size > SLUB_MAX_SIZE))
return kmalloc_large_node(size, flags, node); return kmalloc_large_node(size, flags, node);
s = get_slab(size, flags); s = get_slab(size, flags);
...@@ -2986,7 +2987,7 @@ void __init kmem_cache_init(void) ...@@ -2986,7 +2987,7 @@ void __init kmem_cache_init(void)
caches++; caches++;
} }
for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i], create_kmalloc_cache(&kmalloc_caches[i],
"kmalloc", 1 << i, GFP_KERNEL); "kmalloc", 1 << i, GFP_KERNEL);
caches++; caches++;
...@@ -3023,7 +3024,7 @@ void __init kmem_cache_init(void) ...@@ -3023,7 +3024,7 @@ void __init kmem_cache_init(void)
slab_state = UP; slab_state = UP;
/* Provide the correct kmalloc names now that the caches are up */ /* Provide the correct kmalloc names now that the caches are up */
for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
kmalloc_caches[i]. name = kmalloc_caches[i]. name =
kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
...@@ -3223,7 +3224,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) ...@@ -3223,7 +3224,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
{ {
struct kmem_cache *s; struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE)) if (unlikely(size > SLUB_MAX_SIZE))
return kmalloc_large(size, gfpflags); return kmalloc_large(size, gfpflags);
s = get_slab(size, gfpflags); s = get_slab(size, gfpflags);
...@@ -3239,7 +3240,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, ...@@ -3239,7 +3240,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
{ {
struct kmem_cache *s; struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE)) if (unlikely(size > SLUB_MAX_SIZE))
return kmalloc_large_node(size, gfpflags, node); return kmalloc_large_node(size, gfpflags, node);
s = get_slab(size, gfpflags); s = get_slab(size, gfpflags);
...@@ -3836,6 +3837,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf) ...@@ -3836,6 +3837,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf)
} }
SLAB_ATTR(order); SLAB_ATTR(order);
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
return sprintf(buf, "%lu\n", s->min_partial);
}
static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
unsigned long min;
int err;
err = strict_strtoul(buf, 10, &min);
if (err)
return err;
set_min_partial(s, min);
return length;
}
SLAB_ATTR(min_partial);
static ssize_t ctor_show(struct kmem_cache *s, char *buf) static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{ {
if (s->ctor) { if (s->ctor) {
...@@ -4151,6 +4172,7 @@ static struct attribute *slab_attrs[] = { ...@@ -4151,6 +4172,7 @@ static struct attribute *slab_attrs[] = {
&object_size_attr.attr, &object_size_attr.attr,
&objs_per_slab_attr.attr, &objs_per_slab_attr.attr,
&order_attr.attr, &order_attr.attr,
&min_partial_attr.attr,
&objects_attr.attr, &objects_attr.attr,
&objects_partial_attr.attr, &objects_partial_attr.attr,
&total_objects_attr.attr, &total_objects_attr.attr,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment