Commit 1625c8cb authored by Huacai Chen's avatar Huacai Chen

Merge tag 'efi-next-for-v6.1' into loongarch-next

LoongArch architecture changes for 6.1 depend on the efi changes to
work, so merge them to create a base.
parents 4fe89d07 d3549a93
......@@ -65,10 +65,6 @@ linux,uefi-mmap-desc-size 32-bit Size in bytes of each entry in the UEFI
linux,uefi-mmap-desc-ver 32-bit Version of the mmap descriptor format.
linux,initrd-start 64-bit Physical start address of an initrd
linux,initrd-end 64-bit Physical end address of an initrd
kaslr-seed 64-bit Entropy used to randomize the kernel image
base address location.
========================== ====== ===========================================
......@@ -17,6 +17,7 @@
#ifdef CONFIG_EFI
void efi_init(void);
void arm_efi_init(void);
int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
......@@ -37,7 +38,7 @@ void efi_virtmap_load(void);
void efi_virtmap_unload(void);
#else
#define efi_init()
#define arm_efi_init()
#endif /* CONFIG_EFI */
/* arch specific definitions used by the stub code */
......
......@@ -4,6 +4,7 @@
*/
#include <linux/efi.h>
#include <linux/memblock.h>
#include <asm/efi.h>
#include <asm/mach/map.h>
#include <asm/mmu_context.h>
......@@ -73,3 +74,81 @@ int __init efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md)
return efi_set_mapping_permissions(mm, md);
return 0;
}
static unsigned long __initdata screen_info_table = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata cpu_state_table = EFI_INVALID_TABLE_ADDR;
const efi_config_table_type_t efi_arch_tables[] __initconst = {
{LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table},
{LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table},
{}
};
static void __init load_screen_info_table(void)
{
struct screen_info *si;
if (screen_info_table != EFI_INVALID_TABLE_ADDR) {
si = early_memremap_ro(screen_info_table, sizeof(*si));
if (!si) {
pr_err("Could not map screen_info config table\n");
return;
}
screen_info = *si;
early_memunmap(si, sizeof(*si));
/* dummycon on ARM needs non-zero values for columns/lines */
screen_info.orig_video_cols = 80;
screen_info.orig_video_lines = 25;
if (memblock_is_map_memory(screen_info.lfb_base))
memblock_mark_nomap(screen_info.lfb_base,
screen_info.lfb_size);
}
}
static void __init load_cpu_state_table(void)
{
if (cpu_state_table != EFI_INVALID_TABLE_ADDR) {
struct efi_arm_entry_state *state;
bool dump_state = true;
state = early_memremap_ro(cpu_state_table,
sizeof(struct efi_arm_entry_state));
if (state == NULL) {
pr_warn("Unable to map CPU entry state table.\n");
return;
}
if ((state->sctlr_before_ebs & 1) == 0)
pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n");
else if ((state->sctlr_after_ebs & 1) == 0)
pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n");
else
dump_state = false;
if (dump_state || efi_enabled(EFI_DBG)) {
pr_info("CPSR at EFI stub entry : 0x%08x\n",
state->cpsr_before_ebs);
pr_info("SCTLR at EFI stub entry : 0x%08x\n",
state->sctlr_before_ebs);
pr_info("CPSR after ExitBootServices() : 0x%08x\n",
state->cpsr_after_ebs);
pr_info("SCTLR after ExitBootServices(): 0x%08x\n",
state->sctlr_after_ebs);
}
early_memunmap(state, sizeof(struct efi_arm_entry_state));
}
}
void __init arm_efi_init(void)
{
efi_init();
load_screen_info_table();
/* ARM does not permit early mappings to persist across paging_init() */
efi_memmap_unmap();
load_cpu_state_table();
}
......@@ -1141,7 +1141,7 @@ void __init setup_arch(char **cmdline_p)
#endif
setup_dma_zone(mdesc);
xen_early_init();
efi_init();
arm_efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any memory
......
......@@ -151,12 +151,17 @@ libs-$(CONFIG_EFI_STUB) += $(objtree)/drivers/firmware/efi/libstub/lib.a
# Default target when executing plain make
boot := arch/arm64/boot
ifeq ($(CONFIG_EFI_ZBOOT),)
KBUILD_IMAGE := $(boot)/Image.gz
else
KBUILD_IMAGE := $(boot)/vmlinuz.efi
endif
all: Image.gz
all: $(notdir $(KBUILD_IMAGE))
Image: vmlinux
Image vmlinuz.efi: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
Image.%: Image
......
# SPDX-License-Identifier: GPL-2.0-only
Image
Image.gz
vmlinuz*
......@@ -38,3 +38,9 @@ $(obj)/Image.lzo: $(obj)/Image FORCE
$(obj)/Image.zst: $(obj)/Image FORCE
$(call if_changed,zstd)
EFI_ZBOOT_PAYLOAD := Image
EFI_ZBOOT_BFD_TARGET := elf64-littleaarch64
EFI_ZBOOT_MACH_TYPE := ARM64
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot
......@@ -24,9 +24,6 @@ PROVIDE(__efistub_primary_entry_offset = primary_entry - _text);
*/
PROVIDE(__efistub_memcmp = __pi_memcmp);
PROVIDE(__efistub_memchr = __pi_memchr);
PROVIDE(__efistub_memcpy = __pi_memcpy);
PROVIDE(__efistub_memmove = __pi_memmove);
PROVIDE(__efistub_memset = __pi_memset);
PROVIDE(__efistub_strlen = __pi_strlen);
PROVIDE(__efistub_strnlen = __pi_strnlen);
PROVIDE(__efistub_strcmp = __pi_strcmp);
......@@ -40,16 +37,6 @@ PROVIDE(__efistub__edata = _edata);
PROVIDE(__efistub_screen_info = screen_info);
PROVIDE(__efistub__ctype = _ctype);
/*
* The __ prefixed memcpy/memset/memmove symbols are provided by KASAN, which
* instruments the conventional ones. Therefore, any references from the EFI
* stub or other position independent, low level C code should be redirected to
* the non-instrumented versions as well.
*/
PROVIDE(__efistub___memcpy = __pi_memcpy);
PROVIDE(__efistub___memmove = __pi_memmove);
PROVIDE(__efistub___memset = __pi_memset);
PROVIDE(__pi___memcpy = __pi_memcpy);
PROVIDE(__pi___memmove = __pi_memmove);
PROVIDE(__pi___memset = __pi_memset);
......
......@@ -106,8 +106,6 @@ config LOONGARCH
select MODULES_USE_ELF_RELA if MODULES
select NEED_PER_CPU_EMBED_FIRST_CHUNK
select NEED_PER_CPU_PAGE_FIRST_CHUNK
select OF
select OF_EARLY_FLATTREE
select PCI
select PCI_DOMAINS_GENERIC
select PCI_ECAM if ACPI
......@@ -314,12 +312,20 @@ config DMI
config EFI
bool "EFI runtime service support"
select UCS2_STRING
select EFI_PARAMS_FROM_FDT
select EFI_RUNTIME_WRAPPERS
help
This enables the kernel to use EFI runtime services that are
available (such as the EFI variable services).
config EFI_STUB
bool "EFI boot stub support"
default y
depends on EFI
select EFI_GENERIC_STUB
help
This kernel feature allows the kernel to be loaded directly by
EFI firmware without the use of a bootloader.
config SMP
bool "Multi-Processing support"
help
......
......@@ -7,7 +7,14 @@ boot := arch/loongarch/boot
KBUILD_DEFCONFIG := loongson3_defconfig
KBUILD_IMAGE = $(boot)/vmlinux
image-name-y := vmlinux
image-name-$(CONFIG_EFI_ZBOOT) := vmlinuz
ifndef CONFIG_EFI_STUB
KBUILD_IMAGE := $(boot)/vmlinux.elf
else
KBUILD_IMAGE := $(boot)/$(image-name-y).efi
endif
#
# Select the object file format to substitute into the linker script.
......@@ -75,6 +82,7 @@ endif
head-y := arch/loongarch/kernel/head.o
libs-y += arch/loongarch/lib/
libs-$(CONFIG_EFI_STUB) += $(objtree)/drivers/firmware/efi/libstub/lib.a
ifeq ($(KBUILD_EXTMOD),)
prepare: vdso_prepare
......@@ -86,13 +94,13 @@ PHONY += vdso_install
vdso_install:
$(Q)$(MAKE) $(build)=arch/loongarch/vdso $@
all: $(KBUILD_IMAGE)
all: $(notdir $(KBUILD_IMAGE))
$(KBUILD_IMAGE): vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(bootvars-y) $@
vmlinux.elf vmlinux.efi vmlinuz.efi: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(bootvars-y) $(boot)/$@
install:
$(Q)install -D -m 755 $(KBUILD_IMAGE) $(INSTALL_PATH)/vmlinux-$(KERNELRELEASE)
$(Q)install -D -m 755 $(KBUILD_IMAGE) $(INSTALL_PATH)/$(image-name-y)-$(KERNELRELEASE)
$(Q)install -D -m 644 .config $(INSTALL_PATH)/config-$(KERNELRELEASE)
$(Q)install -D -m 644 System.map $(INSTALL_PATH)/System.map-$(KERNELRELEASE)
......
# SPDX-License-Identifier: GPL-2.0-only
vmlinux*
vmlinuz*
......@@ -8,9 +8,19 @@ drop-sections := .comment .note .options .note.gnu.build-id
strip-flags := $(addprefix --remove-section=,$(drop-sections)) -S
OBJCOPYFLAGS_vmlinux.efi := -O binary $(strip-flags)
targets := vmlinux
quiet_cmd_strip = STRIP $@
cmd_strip = $(STRIP) -s -o $@ $<
$(obj)/vmlinux: vmlinux FORCE
targets := vmlinux.elf
$(obj)/vmlinux.elf: vmlinux FORCE
$(call if_changed,strip)
targets += vmlinux.efi
$(obj)/vmlinux.efi: vmlinux FORCE
$(call if_changed,objcopy)
EFI_ZBOOT_PAYLOAD := vmlinux.efi
EFI_ZBOOT_BFD_TARGET := elf64-loongarch
EFI_ZBOOT_MACH_TYPE := LOONGARCH64
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot
......@@ -36,7 +36,7 @@ struct loongson_system_configuration {
};
extern u64 efi_system_table;
extern unsigned long fw_arg0, fw_arg1;
extern unsigned long fw_arg0, fw_arg1, fw_arg2;
extern struct loongson_board_info b_info;
extern struct loongson_system_configuration loongson_sysconf;
......
......@@ -17,9 +17,16 @@ void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
#define arch_efi_call_virt_teardown()
#define EFI_ALLOC_ALIGN SZ_64K
#define EFI_RT_VIRTUAL_OFFSET CSR_DMW0_BASE
struct screen_info *alloc_screen_info(void);
void free_screen_info(struct screen_info *si);
static inline struct screen_info *alloc_screen_info(void)
{
return &screen_info;
}
static inline void free_screen_info(struct screen_info *si)
{
}
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
{
......
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <linux/pe.h>
#include <linux/sizes.h>
.macro __EFI_PE_HEADER
.long PE_MAGIC
.Lcoff_header:
.short IMAGE_FILE_MACHINE_LOONGARCH64 /* Machine */
.short .Lsection_count /* NumberOfSections */
.long 0 /* TimeDateStamp */
.long 0 /* PointerToSymbolTable */
.long 0 /* NumberOfSymbols */
.short .Lsection_table - .Loptional_header /* SizeOfOptionalHeader */
.short IMAGE_FILE_DEBUG_STRIPPED | \
IMAGE_FILE_EXECUTABLE_IMAGE | \
IMAGE_FILE_LINE_NUMS_STRIPPED /* Characteristics */
.Loptional_header:
.short PE_OPT_MAGIC_PE32PLUS /* PE32+ format */
.byte 0x02 /* MajorLinkerVersion */
.byte 0x14 /* MinorLinkerVersion */
.long __inittext_end - .Lefi_header_end /* SizeOfCode */
.long _end - __initdata_begin /* SizeOfInitializedData */
.long 0 /* SizeOfUninitializedData */
.long __efistub_efi_pe_entry - _head /* AddressOfEntryPoint */
.long .Lefi_header_end - _head /* BaseOfCode */
.Lextra_header_fields:
.quad 0 /* ImageBase */
.long PECOFF_SEGMENT_ALIGN /* SectionAlignment */
.long PECOFF_FILE_ALIGN /* FileAlignment */
.short 0 /* MajorOperatingSystemVersion */
.short 0 /* MinorOperatingSystemVersion */
.short LINUX_EFISTUB_MAJOR_VERSION /* MajorImageVersion */
.short LINUX_EFISTUB_MINOR_VERSION /* MinorImageVersion */
.short 0 /* MajorSubsystemVersion */
.short 0 /* MinorSubsystemVersion */
.long 0 /* Win32VersionValue */
.long _end - _head /* SizeOfImage */
/* Everything before the kernel image is considered part of the header */
.long .Lefi_header_end - _head /* SizeOfHeaders */
.long 0 /* CheckSum */
.short IMAGE_SUBSYSTEM_EFI_APPLICATION /* Subsystem */
.short 0 /* DllCharacteristics */
.quad 0 /* SizeOfStackReserve */
.quad 0 /* SizeOfStackCommit */
.quad 0 /* SizeOfHeapReserve */
.quad 0 /* SizeOfHeapCommit */
.long 0 /* LoaderFlags */
.long (.Lsection_table - .) / 8 /* NumberOfRvaAndSizes */
.quad 0 /* ExportTable */
.quad 0 /* ImportTable */
.quad 0 /* ResourceTable */
.quad 0 /* ExceptionTable */
.quad 0 /* CertificationTable */
.quad 0 /* BaseRelocationTable */
/* Section table */
.Lsection_table:
.ascii ".text\0\0\0"
.long __inittext_end - .Lefi_header_end /* VirtualSize */
.long .Lefi_header_end - _head /* VirtualAddress */
.long __inittext_end - .Lefi_header_end /* SizeOfRawData */
.long .Lefi_header_end - _head /* PointerToRawData */
.long 0 /* PointerToRelocations */
.long 0 /* PointerToLineNumbers */
.short 0 /* NumberOfRelocations */
.short 0 /* NumberOfLineNumbers */
.long IMAGE_SCN_CNT_CODE | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_EXECUTE /* Characteristics */
.ascii ".data\0\0\0"
.long _end - __initdata_begin /* VirtualSize */
.long __initdata_begin - _head /* VirtualAddress */
.long _edata - __initdata_begin /* SizeOfRawData */
.long __initdata_begin - _head /* PointerToRawData */
.long 0 /* PointerToRelocations */
.long 0 /* PointerToLineNumbers */
.short 0 /* NumberOfRelocations */
.short 0 /* NumberOfLineNumbers */
.long IMAGE_SCN_CNT_INITIALIZED_DATA | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_WRITE /* Characteristics */
.set .Lsection_count, (. - .Lsection_table) / 40
.balign 0x10000 /* PECOFF_SEGMENT_ALIGN */
.Lefi_header_end:
.endm
......@@ -27,8 +27,13 @@
static unsigned long efi_nr_tables;
static unsigned long efi_config_table;
static unsigned long __initdata boot_memmap = EFI_INVALID_TABLE_ADDR;
static efi_system_table_t *efi_systab;
static efi_config_table_type_t arch_tables[] __initdata = {{},};
static efi_config_table_type_t arch_tables[] __initdata = {
{LINUX_EFI_BOOT_MEMMAP_GUID, &boot_memmap, "MEMMAP" },
{},
};
void __init efi_runtime_init(void)
{
......@@ -51,6 +56,7 @@ void __init efi_init(void)
{
int size;
void *config_tables;
struct efi_boot_memmap *tbl;
if (!efi_system_table)
return;
......@@ -61,6 +67,8 @@ void __init efi_init(void)
return;
}
efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
set_bit(EFI_64BIT, &efi.flags);
efi_nr_tables = efi_systab->nr_tables;
efi_config_table = (unsigned long)efi_systab->tables;
......@@ -69,4 +77,27 @@ void __init efi_init(void)
config_tables = early_memremap(efi_config_table, efi_nr_tables * size);
efi_config_parse_tables(config_tables, efi_systab->nr_tables, arch_tables);
early_memunmap(config_tables, efi_nr_tables * size);
set_bit(EFI_CONFIG_TABLES, &efi.flags);
if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI)
memblock_reserve(screen_info.lfb_base, screen_info.lfb_size);
if (boot_memmap == EFI_INVALID_TABLE_ADDR)
return;
tbl = early_memremap_ro(boot_memmap, sizeof(*tbl));
if (tbl) {
struct efi_memory_map_data data;
data.phys_map = boot_memmap + sizeof(*tbl);
data.size = tbl->map_size;
data.desc_size = tbl->desc_size;
data.desc_version = tbl->desc_ver;
if (efi_memmap_init_early(&data) < 0)
panic("Unable to map EFI memory map.\n");
early_memunmap(tbl, sizeof(*tbl));
}
}
......@@ -8,7 +8,6 @@
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/of_fdt.h>
#include <asm/early_ioremap.h>
#include <asm/bootinfo.h>
#include <asm/loongson.h>
......@@ -20,21 +19,17 @@ EXPORT_SYMBOL(loongson_sysconf);
void __init init_environ(void)
{
int efi_boot = fw_arg0;
struct efi_memory_map_data data;
void *fdt_ptr = early_memremap_ro(fw_arg1, SZ_64K);
char *cmdline = early_memremap_ro(fw_arg1, COMMAND_LINE_SIZE);
if (efi_boot)
set_bit(EFI_BOOT, &efi.flags);
else
clear_bit(EFI_BOOT, &efi.flags);
early_init_dt_scan(fdt_ptr);
early_init_fdt_reserve_self();
efi_system_table = efi_get_fdt_params(&data);
strscpy(boot_command_line, cmdline, COMMAND_LINE_SIZE);
early_memunmap(cmdline, COMMAND_LINE_SIZE);
efi_memmap_init_early(&data);
memblock_reserve(data.phys_map & PAGE_MASK,
PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK)));
efi_system_table = fw_arg2;
}
static int __init init_cpu_fullname(void)
......
......@@ -12,6 +12,26 @@
#include <asm/loongarch.h>
#include <asm/stackframe.h>
#ifdef CONFIG_EFI_STUB
#include "efi-header.S"
__HEAD
_head:
.word MZ_MAGIC /* "MZ", MS-DOS header */
.org 0x3c /* 0x04 ~ 0x3b reserved */
.long pe_header - _head /* Offset to the PE header */
pe_header:
__EFI_PE_HEADER
SYM_DATA(kernel_asize, .long _end - _text);
SYM_DATA(kernel_fsize, .long _edata - _text);
SYM_DATA(kernel_offset, .long kernel_offset - _text);
#endif
__REF
.align 12
......@@ -49,6 +69,8 @@ SYM_CODE_START(kernel_entry) # kernel entry point
st.d a0, t0, 0 # firmware arguments
la t0, fw_arg1
st.d a1, t0, 0
la t0, fw_arg2
st.d a2, t0, 0
/* KSave3 used for percpu base, initialized as 0 */
csrwr zero, PERCPU_BASE_KS
......
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#ifndef __LOONGARCH_KERNEL_IMAGE_VARS_H
#define __LOONGARCH_KERNEL_IMAGE_VARS_H
#ifdef CONFIG_EFI_STUB
__efistub_memcmp = memcmp;
__efistub_memchr = memchr;
__efistub_strcat = strcat;
__efistub_strcmp = strcmp;
__efistub_strlen = strlen;
__efistub_strncat = strncat;
__efistub_strnstr = strnstr;
__efistub_strnlen = strnlen;
__efistub_strrchr = strrchr;
__efistub_kernel_entry = kernel_entry;
__efistub_kernel_asize = kernel_asize;
__efistub_kernel_fsize = kernel_fsize;
__efistub_kernel_offset = kernel_offset;
__efistub_screen_info = screen_info;
#endif
#endif /* __LOONGARCH_KERNEL_IMAGE_VARS_H */
......@@ -49,11 +49,9 @@
#define SMBIOS_CORE_PACKAGE_OFFSET 0x23
#define LOONGSON_EFI_ENABLE (1 << 3)
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
struct screen_info screen_info __section(".data");
unsigned long fw_arg0, fw_arg1;
unsigned long fw_arg0, fw_arg1, fw_arg2;
DEFINE_PER_CPU(unsigned long, kernelsp);
struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
......@@ -122,16 +120,9 @@ static void __init parse_cpu_table(const struct dmi_header *dm)
static void __init parse_bios_table(const struct dmi_header *dm)
{
int bios_extern;
char *dmi_data = (char *)dm;
bios_extern = *(dmi_data + SMBIOS_BIOSEXTERN_OFFSET);
b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
if (bios_extern & LOONGSON_EFI_ENABLE)
set_bit(EFI_BOOT, &efi.flags);
else
clear_bit(EFI_BOOT, &efi.flags);
}
static void __init find_tokens(const struct dmi_header *dm, void *dummy)
......@@ -196,7 +187,6 @@ early_param("mem", early_parse_mem);
void __init platform_init(void)
{
efi_init();
#ifdef CONFIG_ACPI_TABLE_UPGRADE
acpi_table_upgrade();
#endif
......@@ -356,6 +346,7 @@ void __init setup_arch(char **cmdline_p)
*cmdline_p = boot_command_line;
init_environ();
efi_init();
memblock_init();
parse_early_param();
......
......@@ -12,6 +12,7 @@
#define BSS_FIRST_SECTIONS *(.bss..swapper_pg_dir)
#include <asm-generic/vmlinux.lds.h>
#include "image-vars.h"
/*
* Max avaliable Page Size is 64K, so we set SectionAlignment
......
......@@ -136,10 +136,14 @@ ifneq ($(CONFIG_XIP_KERNEL),y)
ifeq ($(CONFIG_RISCV_M_MODE)$(CONFIG_SOC_CANAAN),yy)
KBUILD_IMAGE := $(boot)/loader.bin
else
ifeq ($(CONFIG_EFI_ZBOOT),)
KBUILD_IMAGE := $(boot)/Image.gz
else
KBUILD_IMAGE := $(boot)/vmlinuz.efi
endif
endif
endif
BOOT_TARGETS := Image Image.gz loader loader.bin xipImage
BOOT_TARGETS := Image Image.gz loader loader.bin xipImage vmlinuz.efi
all: $(notdir $(KBUILD_IMAGE))
......
......@@ -4,4 +4,5 @@ Image.*
loader
loader.lds
loader.bin
vmlinuz*
xipImage
......@@ -58,3 +58,9 @@ $(obj)/Image.lzo: $(obj)/Image FORCE
$(obj)/loader.bin: $(obj)/loader FORCE
$(call if_changed,objcopy)
EFI_ZBOOT_PAYLOAD := Image
EFI_ZBOOT_BFD_TARGET := elf$(BITS)-littleriscv
EFI_ZBOOT_MACH_TYPE := RISCV$(BITS)
include $(srctree)/drivers/firmware/efi/libstub/Makefile.zboot
......@@ -25,21 +25,12 @@
*/
__efistub_memcmp = memcmp;
__efistub_memchr = memchr;
__efistub_memcpy = memcpy;
__efistub_memmove = memmove;
__efistub_memset = memset;
__efistub_strlen = strlen;
__efistub_strnlen = strnlen;
__efistub_strcmp = strcmp;
__efistub_strncmp = strncmp;
__efistub_strrchr = strrchr;
#ifdef CONFIG_KASAN
__efistub___memcpy = memcpy;
__efistub___memmove = memmove;
__efistub___memset = memset;
#endif
__efistub__start = _start;
__efistub__start_kernel = _start_kernel;
__efistub__end = _end;
......
......@@ -176,7 +176,8 @@ virt_to_phys_or_null_size(void *va, unsigned long size)
int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
{
unsigned long pfn, text, pf, rodata;
extern const u8 __efi64_thunk_ret_tramp[];
unsigned long pfn, text, pf, rodata, tramp;
struct page *page;
unsigned npages;
pgd_t *pgd = efi_mm.pgd;
......@@ -238,11 +239,9 @@ int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
npages = (_etext - _text) >> PAGE_SHIFT;
text = __pa(_text);
pfn = text >> PAGE_SHIFT;
pf = _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
pr_err("Failed to map kernel text 1:1\n");
if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
pr_err("Failed to unmap kernel text 1:1 mapping\n");
return 1;
}
......@@ -256,6 +255,15 @@ int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
return 1;
}
tramp = __pa(__efi64_thunk_ret_tramp);
pfn = tramp >> PAGE_SHIFT;
pf = _PAGE_ENC;
if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
pr_err("Failed to map mixed mode return trampoline\n");
return 1;
}
return 0;
}
......
......@@ -23,7 +23,6 @@
#include <linux/objtool.h>
#include <asm/page_types.h>
#include <asm/segment.h>
#include <asm/nospec-branch.h>
.text
.code64
......@@ -73,10 +72,18 @@ STACK_FRAME_NON_STANDARD __efi64_thunk
pushq %rdi /* EFI runtime service address */
lretq
// This return instruction is not needed for correctness, as it will
// never be reached. It only exists to make objtool happy, which will
// otherwise complain about unreachable instructions in the callers.
RET
SYM_FUNC_END(__efi64_thunk)
.section ".rodata", "a", @progbits
.balign 16
SYM_DATA_START(__efi64_thunk_ret_tramp)
1: movq 0x20(%rsp), %rsp
pop %rbx
pop %rbp
ANNOTATE_UNRET_SAFE
ret
int3
......@@ -84,7 +91,7 @@ STACK_FRAME_NON_STANDARD __efi64_thunk
2: pushl $__KERNEL_CS
pushl %ebp
lret
SYM_FUNC_END(__efi64_thunk)
SYM_DATA_END(__efi64_thunk_ret_tramp)
.bss
.balign 8
......
......@@ -105,9 +105,50 @@ config EFI_RUNTIME_WRAPPERS
config EFI_GENERIC_STUB
bool
config EFI_ZBOOT
bool "Enable the generic EFI decompressor"
depends on EFI_GENERIC_STUB && !ARM
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZ4
select HAVE_KERNEL_LZMA
select HAVE_KERNEL_LZO
select HAVE_KERNEL_XZ
select HAVE_KERNEL_ZSTD
help
Create the bootable image as an EFI application that carries the
actual kernel image in compressed form, and decompresses it into
memory before executing it via LoadImage/StartImage EFI boot service
calls. For compatibility with non-EFI loaders, the payload can be
decompressed and executed by the loader as well, provided that the
loader implements the decompression algorithm and that non-EFI boot
is supported by the encapsulated image. (The compression algorithm
used is described in the zboot image header)
config EFI_ZBOOT_SIGNED
def_bool y
depends on EFI_ZBOOT_SIGNING_CERT != ""
depends on EFI_ZBOOT_SIGNING_KEY != ""
config EFI_ZBOOT_SIGNING
bool "Sign the EFI decompressor for UEFI secure boot"
depends on EFI_ZBOOT
help
Use the 'sbsign' command line tool (which must exist on the host
path) to sign both the EFI decompressor PE/COFF image, as well as the
encapsulated PE/COFF image, which is subsequently compressed and
wrapped by the former image.
config EFI_ZBOOT_SIGNING_CERT
string "Certificate to use for signing the compressed EFI boot image"
depends on EFI_ZBOOT_SIGNING
config EFI_ZBOOT_SIGNING_KEY
string "Private key to use for signing the compressed EFI boot image"
depends on EFI_ZBOOT_SIGNING
config EFI_ARMSTUB_DTB_LOADER
bool "Enable the DTB loader"
depends on EFI_GENERIC_STUB && !RISCV
depends on EFI_GENERIC_STUB && !RISCV && !LOONGARCH
default y
help
Select this config option to add support for the dtb= command
......@@ -124,7 +165,7 @@ config EFI_GENERIC_STUB_INITRD_CMDLINE_LOADER
bool "Enable the command line initrd loader" if !X86
depends on EFI_STUB && (EFI_GENERIC_STUB || X86)
default y if X86
depends on !RISCV
depends on !RISCV && !LOONGARCH
help
Select this config option to add support for the initrd= command
line parameter, allowing an initrd that resides on the same volume
......
......@@ -51,34 +51,10 @@ static phys_addr_t __init efi_to_phys(unsigned long addr)
return addr;
}
static __initdata unsigned long screen_info_table = EFI_INVALID_TABLE_ADDR;
static __initdata unsigned long cpu_state_table = EFI_INVALID_TABLE_ADDR;
static const efi_config_table_type_t arch_tables[] __initconst = {
{LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID, &screen_info_table},
{LINUX_EFI_ARM_CPU_STATE_TABLE_GUID, &cpu_state_table},
{}
};
extern __weak const efi_config_table_type_t efi_arch_tables[];
static void __init init_screen_info(void)
{
struct screen_info *si;
if (IS_ENABLED(CONFIG_ARM) &&
screen_info_table != EFI_INVALID_TABLE_ADDR) {
si = early_memremap_ro(screen_info_table, sizeof(*si));
if (!si) {
pr_err("Could not map screen_info config table\n");
return;
}
screen_info = *si;
early_memunmap(si, sizeof(*si));
/* dummycon on ARM needs non-zero values for columns/lines */
screen_info.orig_video_cols = 80;
screen_info.orig_video_lines = 25;
}
if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI &&
memblock_is_map_memory(screen_info.lfb_base))
memblock_mark_nomap(screen_info.lfb_base, screen_info.lfb_size);
......@@ -119,8 +95,7 @@ static int __init uefi_init(u64 efi_system_table)
goto out;
}
retval = efi_config_parse_tables(config_tables, systab->nr_tables,
IS_ENABLED(CONFIG_ARM) ? arch_tables
: NULL);
efi_arch_tables);
early_memunmap(config_tables, table_size);
out:
......@@ -248,36 +223,4 @@ void __init efi_init(void)
PAGE_ALIGN(data.size + (data.phys_map & ~PAGE_MASK)));
init_screen_info();
#ifdef CONFIG_ARM
/* ARM does not permit early mappings to persist across paging_init() */
efi_memmap_unmap();
if (cpu_state_table != EFI_INVALID_TABLE_ADDR) {
struct efi_arm_entry_state *state;
bool dump_state = true;
state = early_memremap_ro(cpu_state_table,
sizeof(struct efi_arm_entry_state));
if (state == NULL) {
pr_warn("Unable to map CPU entry state table.\n");
return;
}
if ((state->sctlr_before_ebs & 1) == 0)
pr_warn(FW_BUG "EFI stub was entered with MMU and Dcache disabled, please fix your firmware!\n");
else if ((state->sctlr_after_ebs & 1) == 0)
pr_warn(FW_BUG "ExitBootServices() returned with MMU and Dcache disabled, please fix your firmware!\n");
else
dump_state = false;
if (dump_state || efi_enabled(EFI_DBG)) {
pr_info("CPSR at EFI stub entry : 0x%08x\n", state->cpsr_before_ebs);
pr_info("SCTLR at EFI stub entry : 0x%08x\n", state->sctlr_before_ebs);
pr_info("CPSR after ExitBootServices() : 0x%08x\n", state->cpsr_after_ebs);
pr_info("SCTLR after ExitBootServices(): 0x%08x\n", state->sctlr_after_ebs);
}
early_memunmap(state, sizeof(struct efi_arm_entry_state));
}
#endif
}
......@@ -21,6 +21,7 @@
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/kexec.h>
#include <linux/platform_device.h>
......@@ -55,6 +56,7 @@ EXPORT_SYMBOL(efi);
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata initrd = EFI_INVALID_TABLE_ADDR;
struct mm_struct efi_mm = {
.mm_rb = RB_ROOT,
......@@ -532,6 +534,7 @@ static const efi_config_table_type_t common_tables[] __initconst = {
{LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
{LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
{LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
{LINUX_EFI_INITRD_MEDIA_GUID, &initrd, "INITRD" },
{EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
#ifdef CONFIG_EFI_RCI2_TABLE
{DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
......@@ -674,6 +677,18 @@ int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
}
}
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) &&
initrd != EFI_INVALID_TABLE_ADDR && phys_initrd_size == 0) {
struct linux_efi_initrd *tbl;
tbl = early_memremap(initrd, sizeof(*tbl));
if (tbl) {
phys_initrd_start = tbl->base;
phys_initrd_size = tbl->size;
early_memunmap(tbl, sizeof(*tbl));
}
}
return 0;
}
......
......@@ -26,8 +26,10 @@ cflags-$(CONFIG_ARM) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
$(call cc-option,-mno-single-pic-base)
cflags-$(CONFIG_RISCV) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
-fpic
cflags-$(CONFIG_LOONGARCH) := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) \
-fpie
cflags-$(CONFIG_EFI_GENERIC_STUB) += -I$(srctree)/scripts/dtc/libfdt
cflags-$(CONFIG_EFI_PARAMS_FROM_FDT) += -I$(srctree)/scripts/dtc/libfdt
KBUILD_CFLAGS := $(cflags-y) -Os -DDISABLE_BRANCH_PROFILING \
-include $(srctree)/include/linux/hidden.h \
......@@ -64,21 +66,32 @@ lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \
skip_spaces.o lib-cmdline.o lib-ctype.o \
alignedmem.o relocate.o vsprintf.o
# include the stub's generic dependencies from lib/ when building for ARM/arm64
efi-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
# include the stub's libfdt dependencies from lib/ when needed
libfdt-deps := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c \
fdt_empty_tree.c fdt_sw.c
lib-$(CONFIG_EFI_PARAMS_FROM_FDT) += fdt.o \
$(patsubst %.c,lib-%.o,$(libfdt-deps))
$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
$(call if_changed_rule,cc_o_c)
lib-$(CONFIG_EFI_GENERIC_STUB) += efi-stub.o fdt.o string.o \
$(patsubst %.c,lib-%.o,$(efi-deps-y))
lib-$(CONFIG_EFI_GENERIC_STUB) += efi-stub.o string.o intrinsics.o systable.o
lib-$(CONFIG_ARM) += arm32-stub.o
lib-$(CONFIG_ARM64) += arm64-stub.o
lib-$(CONFIG_X86) += x86-stub.o
lib-$(CONFIG_RISCV) += riscv-stub.o
lib-$(CONFIG_LOONGARCH) += loongarch-stub.o
CFLAGS_arm32-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
zboot-obj-$(CONFIG_RISCV) := lib-clz_ctz.o lib-ashldi3.o
lib-$(CONFIG_EFI_ZBOOT) += zboot.o $(zboot-obj-y)
extra-y := $(lib-y)
lib-y := $(patsubst %.o,%.stub.o,$(lib-y))
# Even when -mbranch-protection=none is set, Clang will generate a
# .note.gnu.property for code-less object files (like lib/ctype.c),
# so work around this by explicitly removing the unwanted section.
......@@ -118,9 +131,6 @@ STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS
# a verification pass to see if any absolute relocations exist in any of the
# object files.
#
extra-y := $(lib-y)
lib-y := $(patsubst %.o,%.stub.o,$(lib-y))
STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_ARM64) := R_AARCH64_ABS
......@@ -132,6 +142,12 @@ STUBCOPY_FLAGS-$(CONFIG_RISCV) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_RISCV) := R_RISCV_HI20
# For LoongArch, keep all the symbols in .init section and make sure that no
# absolute symbols references exist.
STUBCOPY_FLAGS-$(CONFIG_LOONGARCH) += --prefix-alloc-sections=.init \
--prefix-symbols=__efistub_
STUBCOPY_RELOC-$(CONFIG_LOONGARCH) := R_LARCH_MARK_LA
$(obj)/%.stub.o: $(obj)/%.o FORCE
$(call if_changed,stubcopy)
......
# SPDX-License-Identifier: GPL-2.0
# to be include'd by arch/$(ARCH)/boot/Makefile after setting
# EFI_ZBOOT_PAYLOAD, EFI_ZBOOT_BFD_TARGET and EFI_ZBOOT_MACH_TYPE
comp-type-$(CONFIG_KERNEL_GZIP) := gzip
comp-type-$(CONFIG_KERNEL_LZ4) := lz4
comp-type-$(CONFIG_KERNEL_LZMA) := lzma
comp-type-$(CONFIG_KERNEL_LZO) := lzo
comp-type-$(CONFIG_KERNEL_XZ) := xzkern
comp-type-$(CONFIG_KERNEL_ZSTD) := zstd22
# in GZIP, the appended le32 carrying the uncompressed size is part of the
# format, but in other cases, we just append it at the end for convenience,
# causing the original tools to complain when checking image integrity.
# So disregard it when calculating the payload size in the zimage header.
zboot-method-y := $(comp-type-y)_with_size
zboot-size-len-y := 4
zboot-method-$(CONFIG_KERNEL_GZIP) := gzip
zboot-size-len-$(CONFIG_KERNEL_GZIP) := 0
quiet_cmd_sbsign = SBSIGN $@
cmd_sbsign = sbsign --out $@ $< \
--key $(CONFIG_EFI_ZBOOT_SIGNING_KEY) \
--cert $(CONFIG_EFI_ZBOOT_SIGNING_CERT)
$(obj)/$(EFI_ZBOOT_PAYLOAD).signed: $(obj)/$(EFI_ZBOOT_PAYLOAD) FORCE
$(call if_changed,sbsign)
ZBOOT_PAYLOAD-y := $(EFI_ZBOOT_PAYLOAD)
ZBOOT_PAYLOAD-$(CONFIG_EFI_ZBOOT_SIGNED) := $(EFI_ZBOOT_PAYLOAD).signed
$(obj)/vmlinuz: $(obj)/$(ZBOOT_PAYLOAD-y) FORCE
$(call if_changed,$(zboot-method-y))
OBJCOPYFLAGS_vmlinuz.o := -I binary -O $(EFI_ZBOOT_BFD_TARGET) \
--rename-section .data=.gzdata,load,alloc,readonly,contents
$(obj)/vmlinuz.o: $(obj)/vmlinuz FORCE
$(call if_changed,objcopy)
AFLAGS_zboot-header.o += -DMACHINE_TYPE=IMAGE_FILE_MACHINE_$(EFI_ZBOOT_MACH_TYPE) \
-DZBOOT_EFI_PATH="\"$(realpath $(obj)/vmlinuz.efi.elf)\"" \
-DZBOOT_SIZE_LEN=$(zboot-size-len-y) \
-DCOMP_TYPE="\"$(comp-type-y)\""
$(obj)/zboot-header.o: $(srctree)/drivers/firmware/efi/libstub/zboot-header.S FORCE
$(call if_changed_rule,as_o_S)
ZBOOT_DEPS := $(obj)/zboot-header.o $(objtree)/drivers/firmware/efi/libstub/lib.a
LDFLAGS_vmlinuz.efi.elf := -T $(srctree)/drivers/firmware/efi/libstub/zboot.lds
$(obj)/vmlinuz.efi.elf: $(obj)/vmlinuz.o $(ZBOOT_DEPS) FORCE
$(call if_changed,ld)
ZBOOT_EFI-y := vmlinuz.efi
ZBOOT_EFI-$(CONFIG_EFI_ZBOOT_SIGNED) := vmlinuz.efi.unsigned
OBJCOPYFLAGS_$(ZBOOT_EFI-y) := -O binary
$(obj)/$(ZBOOT_EFI-y): $(obj)/vmlinuz.efi.elf FORCE
$(call if_changed,objcopy)
targets += zboot-header.o vmlinuz vmlinuz.o vmlinuz.efi.elf vmlinuz.efi
ifneq ($(CONFIG_EFI_ZBOOT_SIGNED),)
$(obj)/vmlinuz.efi: $(obj)/vmlinuz.efi.unsigned FORCE
$(call if_changed,sbsign)
endif
targets += $(EFI_ZBOOT_PAYLOAD).signed vmlinuz.efi.unsigned
......@@ -19,6 +19,14 @@ efi_status_t check_platform_features(void)
{
u64 tg;
/*
* If we have 48 bits of VA space for TTBR0 mappings, we can map the
* UEFI runtime regions 1:1 and so calling SetVirtualAddressMap() is
* unnecessary.
*/
if (VA_BITS_MIN >= 48)
efi_novamap = true;
/* UEFI mandates support for 4 KB granularity, no need to check */
if (IS_ENABLED(CONFIG_ARM64_4K_PAGES))
return EFI_SUCCESS;
......@@ -42,26 +50,17 @@ efi_status_t check_platform_features(void)
*/
static bool check_image_region(u64 base, u64 size)
{
unsigned long map_size, desc_size, buff_size;
efi_memory_desc_t *memory_map;
struct efi_boot_memmap map;
struct efi_boot_memmap *map;
efi_status_t status;
bool ret = false;
int map_offset;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
return false;
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
u64 end = md->phys_addr + md->num_pages * EFI_PAGE_SIZE;
/*
......@@ -74,7 +73,7 @@ static bool check_image_region(u64 base, u64 size)
}
}
efi_bs_call(free_pool, memory_map);
efi_bs_call(free_pool, map);
return ret;
}
......
......@@ -10,7 +10,6 @@
*/
#include <linux/efi.h>
#include <linux/libfdt.h>
#include <asm/efi.h>
#include "efistub.h"
......@@ -40,16 +39,22 @@
#ifdef CONFIG_ARM64
# define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
#elif defined(CONFIG_RISCV)
#elif defined(CONFIG_RISCV) || defined(CONFIG_LOONGARCH)
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_MIN
#else
#else /* Only if TASK_SIZE is a constant */
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
#endif
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
static bool flat_va_mapping;
/*
* Some architectures map the EFI regions into the kernel's linear map using a
* fixed offset.
*/
#ifndef EFI_RT_VIRTUAL_OFFSET
#define EFI_RT_VIRTUAL_OFFSET 0
#endif
const efi_system_table_t *efi_system_table;
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0);
static struct screen_info *setup_graphics(void)
{
......@@ -124,16 +129,11 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
unsigned long image_addr;
unsigned long image_size = 0;
/* addr/point and size pairs for memory management*/
unsigned long initrd_addr = 0;
unsigned long initrd_size = 0;
unsigned long fdt_addr = 0; /* Original DTB */
unsigned long fdt_size = 0;
char *cmdline_ptr = NULL;
int cmdline_size = 0;
efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
unsigned long reserve_addr = 0;
unsigned long reserve_size = 0;
enum efi_secureboot_mode secure_boot;
struct screen_info *si;
efi_properties_table_t *prop_tbl;
......@@ -154,8 +154,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
* information about the running image, such as size and the command
* line.
*/
status = efi_system_table->boottime->handle_protocol(handle,
&loaded_image_proto, (void *)&image);
status = efi_bs_call(handle_protocol, handle, &loaded_image_proto,
(void *)&image);
if (status != EFI_SUCCESS) {
efi_err("Failed to get loaded image protocol\n");
goto fail;
......@@ -209,40 +209,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
/* Ask the firmware to clear memory on unclean shutdown */
efi_enable_reset_attack_mitigation();
secure_boot = efi_get_secureboot();
/*
* Unauthenticated device tree data is a security hazard, so ignore
* 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
* boot is enabled if we can't determine its state.
*/
if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
secure_boot != efi_secureboot_mode_disabled) {
if (strstr(cmdline_ptr, "dtb="))
efi_err("Ignoring DTB from command line.\n");
} else {
status = efi_load_dtb(image, &fdt_addr, &fdt_size);
if (status != EFI_SUCCESS) {
efi_err("Failed to load device tree!\n");
goto fail_free_image;
}
}
if (fdt_addr) {
efi_info("Using DTB from command line\n");
} else {
/* Look for a device tree configuration table entry. */
fdt_addr = (uintptr_t)get_fdt(&fdt_size);
if (fdt_addr)
efi_info("Using DTB from configuration table\n");
}
if (!fdt_addr)
efi_info("Generating empty DTB\n");
efi_load_initrd(image, &initrd_addr, &initrd_size, ULONG_MAX,
efi_get_max_initrd_addr(image_addr));
efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr),
NULL);
efi_random_get_seed();
......@@ -254,8 +222,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
* The easiest way to achieve that is to simply use a 1:1 mapping.
*/
prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
flat_va_mapping = prop_tbl &&
(prop_tbl->memory_protection_attribute &
flat_va_mapping |= prop_tbl &&
(prop_tbl->memory_protection_attribute &
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
/* force efi_novamap if SetVirtualAddressMap() is unsupported */
......@@ -284,25 +252,8 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
install_memreserve_table();
status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
initrd_addr, initrd_size,
cmdline_ptr, fdt_addr, fdt_size);
if (status != EFI_SUCCESS)
goto fail_free_initrd;
if (IS_ENABLED(CONFIG_ARM))
efi_handle_post_ebs_state();
efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
/* not reached */
fail_free_initrd:
efi_err("Failed to update FDT and exit boot services\n");
status = efi_boot_kernel(handle, image, image_addr, cmdline_ptr);
efi_free(initrd_size, initrd_addr);
efi_free(fdt_size, fdt_addr);
fail_free_image:
efi_free(image_size, image_addr);
efi_free(reserve_size, reserve_addr);
fail_free_screeninfo:
......@@ -313,6 +264,35 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
return status;
}
/*
* efi_allocate_virtmap() - create a pool allocation for the virtmap
*
* Create an allocation that is of sufficient size to hold all the memory
* descriptors that will be passed to SetVirtualAddressMap() to inform the
* firmware about the virtual mapping that will be used under the OS to call
* into the firmware.
*/
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
unsigned long *desc_size, u32 *desc_ver)
{
unsigned long size, mmap_key;
efi_status_t status;
/*
* Use the size of the current memory map as an upper bound for the
* size of the buffer we need to pass to SetVirtualAddressMap() to
* cover all EFI_MEMORY_RUNTIME regions.
*/
size = 0;
status = efi_bs_call(get_memory_map, &size, NULL, &mmap_key, desc_size,
desc_ver);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
return efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
(void **)virtmap);
}
/*
* efi_get_virtmap() - create a virtual mapping for the EFI memory map
*
......@@ -328,6 +308,8 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
efi_memory_desc_t *in, *out = runtime_map;
int l;
*count = 0;
for (l = 0; l < map_size; l += desc_size) {
u64 paddr, size;
......@@ -338,7 +320,7 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
paddr = in->phys_addr;
size = in->num_pages * EFI_PAGE_SIZE;
in->virt_addr = in->phys_addr;
in->virt_addr = in->phys_addr + EFI_RT_VIRTUAL_OFFSET;
if (efi_novamap) {
continue;
}
......
......@@ -160,16 +160,24 @@ void efi_set_u64_split(u64 data, u32 *lo, u32 *hi)
*/
#define EFI_MMAP_NR_SLACK_SLOTS 8
struct efi_boot_memmap {
efi_memory_desc_t **map;
unsigned long *map_size;
unsigned long *desc_size;
u32 *desc_ver;
unsigned long *key_ptr;
unsigned long *buff_size;
typedef struct efi_generic_dev_path efi_device_path_protocol_t;
union efi_device_path_to_text_protocol {
struct {
efi_char16_t *(__efiapi *convert_device_node_to_text)(
const efi_device_path_protocol_t *,
bool, bool);
efi_char16_t *(__efiapi *convert_device_path_to_text)(
const efi_device_path_protocol_t *,
bool, bool);
};
struct {
u32 convert_device_node_to_text;
u32 convert_device_path_to_text;
} mixed_mode;
};
typedef struct efi_generic_dev_path efi_device_path_protocol_t;
typedef union efi_device_path_to_text_protocol efi_device_path_to_text_protocol_t;
typedef void *efi_event_t;
/* Note that notifications won't work in mixed mode */
......@@ -254,13 +262,17 @@ union efi_boot_services {
efi_handle_t *);
efi_status_t (__efiapi *install_configuration_table)(efi_guid_t *,
void *);
void *load_image;
void *start_image;
efi_status_t (__efiapi *load_image)(bool, efi_handle_t,
efi_device_path_protocol_t *,
void *, unsigned long,
efi_handle_t *);
efi_status_t (__efiapi *start_image)(efi_handle_t, unsigned long *,
efi_char16_t **);
efi_status_t __noreturn (__efiapi *exit)(efi_handle_t,
efi_status_t,
unsigned long,
efi_char16_t *);
void *unload_image;
efi_status_t (__efiapi *unload_image)(efi_handle_t);
efi_status_t (__efiapi *exit_boot_services)(efi_handle_t,
unsigned long);
void *get_next_monotonic_count;
......@@ -277,11 +289,11 @@ union efi_boot_services {
void *locate_handle_buffer;
efi_status_t (__efiapi *locate_protocol)(efi_guid_t *, void *,
void **);
void *install_multiple_protocol_interfaces;
void *uninstall_multiple_protocol_interfaces;
efi_status_t (__efiapi *install_multiple_protocol_interfaces)(efi_handle_t *, ...);
efi_status_t (__efiapi *uninstall_multiple_protocol_interfaces)(efi_handle_t, ...);
void *calculate_crc32;
void *copy_mem;
void *set_mem;
void (__efiapi *copy_mem)(void *, const void *, unsigned long);
void (__efiapi *set_mem)(void *, unsigned long, unsigned char);
void *create_event_ex;
};
struct {
......@@ -741,6 +753,7 @@ union apple_properties_protocol {
typedef u32 efi_tcg2_event_log_format;
#define INITRD_EVENT_TAG_ID 0x8F3B22ECU
#define LOAD_OPTIONS_EVENT_TAG_ID 0x8F3B22EDU
#define EV_EVENT_TAG 0x00000006U
#define EFI_TCG2_EVENT_HEADER_VERSION 0x1
......@@ -840,7 +853,7 @@ typedef struct {
u16 file_path_list_length;
const efi_char16_t *description;
const efi_device_path_protocol_t *file_path_list;
size_t optional_data_size;
u32 optional_data_size;
const void *optional_data;
} efi_load_option_unpacked_t;
......@@ -850,20 +863,16 @@ typedef efi_status_t (*efi_exit_boot_map_processing)(
struct efi_boot_memmap *map,
void *priv);
efi_status_t efi_exit_boot_services(void *handle,
struct efi_boot_memmap *map,
void *priv,
efi_status_t efi_exit_boot_services(void *handle, void *priv,
efi_exit_boot_map_processing priv_func);
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
unsigned long *new_fdt_addr,
u64 initrd_addr, u64 initrd_size,
char *cmdline_ptr,
unsigned long fdt_addr,
unsigned long fdt_size);
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr);
void *get_fdt(unsigned long *fdt_size);
efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap,
unsigned long *desc_size, u32 *desc_ver);
void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
unsigned long desc_size, efi_memory_desc_t *runtime_map,
int *count);
......@@ -885,11 +894,12 @@ __printf(1, 2) int efi_printk(char const *fmt, ...);
void efi_free(unsigned long size, unsigned long addr);
void efi_apply_loadoptions_quirk(const void **load_options, int *load_options_size);
void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size);
char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len);
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map);
efi_status_t efi_get_memory_map(struct efi_boot_memmap **map,
bool install_cfg_tbl);
efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr,
unsigned long max);
......@@ -932,10 +942,9 @@ static inline efi_status_t efi_load_dtb(efi_loaded_image_t *image,
}
efi_status_t efi_load_initrd(efi_loaded_image_t *image,
unsigned long *load_addr,
unsigned long *load_size,
unsigned long soft_limit,
unsigned long hard_limit);
unsigned long hard_limit,
const struct linux_efi_initrd **out);
/*
* This function handles the architcture specific differences between arm and
* arm64 regarding where the kernel image must be loaded and any memory that
......
......@@ -28,8 +28,7 @@ static void fdt_update_cell_size(void *fdt)
}
static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
void *fdt, int new_fdt_size, char *cmdline_ptr,
u64 initrd_addr, u64 initrd_size)
void *fdt, int new_fdt_size, char *cmdline_ptr)
{
int node, num_rsv;
int status;
......@@ -93,21 +92,6 @@ static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
goto fdt_set_fail;
}
/* Set initrd address/end in device tree, if present */
if (initrd_size != 0) {
u64 initrd_image_end;
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
if (status)
goto fdt_set_fail;
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
if (status)
goto fdt_set_fail;
}
/* Add FDT entries for EFI runtime services in chosen node. */
node = fdt_subnode_offset(fdt, 0, "chosen");
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
......@@ -170,25 +154,25 @@ static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
if (node < 0)
return EFI_LOAD_ERROR;
fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->map_size);
fdt_val32 = cpu_to_fdt32(map->map_size);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->desc_size);
fdt_val32 = cpu_to_fdt32(map->desc_size);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
if (err)
return EFI_LOAD_ERROR;
fdt_val32 = cpu_to_fdt32(*map->desc_ver);
fdt_val32 = cpu_to_fdt32(map->desc_ver);
err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
if (err)
......@@ -198,22 +182,25 @@ static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
}
struct exit_boot_struct {
struct efi_boot_memmap *boot_memmap;
efi_memory_desc_t *runtime_map;
int *runtime_entry_count;
int runtime_entry_count;
void *new_fdt_addr;
};
static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
void *priv)
static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
{
struct exit_boot_struct *p = priv;
p->boot_memmap = map;
/*
* Update the memory map with virtual addresses. The function will also
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
* entries so that we can pass it straight to SetVirtualAddressMap()
*/
efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
p->runtime_map, p->runtime_entry_count);
efi_get_virtmap(map->map, map->map_size, map->desc_size,
p->runtime_map, &p->runtime_entry_count);
return update_fdt_memmap(p->new_fdt_addr, map);
}
......@@ -223,86 +210,86 @@ static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
#endif
/*
* Allocate memory for a new FDT, then add EFI, commandline, and
* initrd related fields to the FDT. This routine increases the
* FDT allocation size until the allocated memory is large
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
* which are fixed at 4K bytes, so in most cases the first
* allocation should succeed.
* EFI boot services are exited at the end of this function.
* There must be no allocations between the get_memory_map()
* call and the exit_boot_services() call, so the exiting of
* boot services is very tightly tied to the creation of the FDT
* with the final memory map in it.
* Allocate memory for a new FDT, then add EFI and commandline related fields
* to the FDT. This routine increases the FDT allocation size until the
* allocated memory is large enough. EFI allocations are in EFI_PAGE_SIZE
* granules, which are fixed at 4K bytes, so in most cases the first allocation
* should succeed. EFI boot services are exited at the end of this function.
* There must be no allocations between the get_memory_map() call and the
* exit_boot_services() call, so the exiting of boot services is very tightly
* tied to the creation of the FDT with the final memory map in it.
*/
static
efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
efi_loaded_image_t *image,
unsigned long *new_fdt_addr,
u64 initrd_addr, u64 initrd_size,
char *cmdline_ptr,
unsigned long fdt_addr,
unsigned long fdt_size)
char *cmdline_ptr)
{
unsigned long map_size, desc_size, buff_size;
unsigned long desc_size;
u32 desc_ver;
unsigned long mmap_key;
efi_memory_desc_t *memory_map, *runtime_map;
efi_status_t status;
int runtime_entry_count;
struct efi_boot_memmap map;
struct exit_boot_struct priv;
unsigned long fdt_addr = 0;
unsigned long fdt_size = 0;
map.map = &runtime_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = &desc_ver;
map.key_ptr = &mmap_key;
map.buff_size = &buff_size;
if (!efi_novamap) {
status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
&desc_ver);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
}
}
/*
* Get a copy of the current memory map that we will use to prepare
* the input for SetVirtualAddressMap(). We don't have to worry about
* subsequent allocations adding entries, since they could not affect
* the number of EFI_MEMORY_RUNTIME regions.
* Unauthenticated device tree data is a security hazard, so ignore
* 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
* boot is enabled if we can't determine its state.
*/
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
efi_get_secureboot() != efi_secureboot_mode_disabled) {
if (strstr(cmdline_ptr, "dtb="))
efi_err("Ignoring DTB from command line.\n");
} else {
status = efi_load_dtb(image, &fdt_addr, &fdt_size);
if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
efi_err("Failed to load device tree!\n");
goto fail;
}
}
if (fdt_addr) {
efi_info("Using DTB from command line\n");
} else {
/* Look for a device tree configuration table entry. */
fdt_addr = (uintptr_t)get_fdt(&fdt_size);
if (fdt_addr)
efi_info("Using DTB from configuration table\n");
}
if (!fdt_addr)
efi_info("Generating empty DTB\n");
efi_info("Exiting boot services...\n");
map.map = &memory_map;
status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
if (status != EFI_SUCCESS) {
efi_err("Unable to allocate memory for new device tree.\n");
goto fail;
}
/*
* Now that we have done our final memory allocation (and free)
* we can get the memory map key needed for exit_boot_services().
*/
status = efi_get_memory_map(&map);
if (status != EFI_SUCCESS)
goto fail_free_new_fdt;
status = update_fdt((void *)fdt_addr, fdt_size,
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
initrd_addr, initrd_size);
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr);
if (status != EFI_SUCCESS) {
efi_err("Unable to construct new device tree.\n");
goto fail_free_new_fdt;
}
runtime_entry_count = 0;
priv.runtime_map = runtime_map;
priv.runtime_entry_count = &runtime_entry_count;
priv.new_fdt_addr = (void *)*new_fdt_addr;
priv.new_fdt_addr = (void *)*new_fdt_addr;
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status == EFI_SUCCESS) {
efi_set_virtual_address_map_t *svam;
......@@ -312,8 +299,8 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
/* Install the new virtual address map */
svam = efi_system_table->runtime->set_virtual_address_map;
status = svam(runtime_entry_count * desc_size, desc_size,
desc_ver, runtime_map);
status = svam(priv.runtime_entry_count * desc_size, desc_size,
desc_ver, priv.runtime_map);
/*
* We are beyond the point of no return here, so if the call to
......@@ -321,6 +308,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
* incoming kernel but proceed normally otherwise.
*/
if (status != EFI_SUCCESS) {
efi_memory_desc_t *p;
int l;
/*
......@@ -329,8 +317,9 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
* the incoming kernel that no virtual translation has
* been installed.
*/
for (l = 0; l < map_size; l += desc_size) {
efi_memory_desc_t *p = (void *)memory_map + l;
for (l = 0; l < priv.boot_memmap->map_size;
l += priv.boot_memmap->desc_size) {
p = (void *)priv.boot_memmap->map + l;
if (p->attribute & EFI_MEMORY_RUNTIME)
p->virt_addr = 0;
......@@ -345,11 +334,33 @@ efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
efi_free(MAX_FDT_SIZE, *new_fdt_addr);
fail:
efi_system_table->boottime->free_pool(runtime_map);
efi_free(fdt_size, fdt_addr);
efi_bs_call(free_pool, priv.runtime_map);
return EFI_LOAD_ERROR;
}
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr)
{
unsigned long fdt_addr;
efi_status_t status;
status = allocate_new_fdt_and_exit_boot(handle, image, &fdt_addr,
cmdline_ptr);
if (status != EFI_SUCCESS) {
efi_err("Failed to update FDT and exit boot services\n");
return status;
}
if (IS_ENABLED(CONFIG_ARM))
efi_handle_post_ebs_state();
efi_enter_kernel(kernel_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
/* not reached */
}
void *get_fdt(unsigned long *fdt_size)
{
void *fdt;
......
......@@ -66,10 +66,28 @@ static efi_status_t efi_open_file(efi_file_protocol_t *volume,
static efi_status_t efi_open_volume(efi_loaded_image_t *image,
efi_file_protocol_t **fh)
{
struct efi_vendor_dev_path *dp = image->file_path;
efi_guid_t li_proto = LOADED_IMAGE_PROTOCOL_GUID;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
efi_simple_file_system_protocol_t *io;
efi_status_t status;
// If we are using EFI zboot, we should look for the file system
// protocol on the parent image's handle instead
if (IS_ENABLED(CONFIG_EFI_ZBOOT) &&
image->parent_handle != NULL &&
dp != NULL &&
dp->header.type == EFI_DEV_MEDIA &&
dp->header.sub_type == EFI_DEV_MEDIA_VENDOR &&
!efi_guidcmp(dp->vendorguid, LINUX_EFI_ZBOOT_MEDIA_GUID)) {
status = efi_bs_call(handle_protocol, image->parent_handle,
&li_proto, (void *)&image);
if (status != EFI_SUCCESS) {
efi_err("Failed to locate parent image handle\n");
return status;
}
}
status = efi_bs_call(handle_protocol, image->device_handle, &fs_proto,
(void **)&io);
if (status != EFI_SUCCESS) {
......@@ -136,7 +154,7 @@ efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
unsigned long *load_size)
{
const efi_char16_t *cmdline = image->load_options;
int cmdline_len = image->load_options_size;
u32 cmdline_len = image->load_options_size;
unsigned long efi_chunk_size = ULONG_MAX;
efi_file_protocol_t *volume = NULL;
efi_file_protocol_t *file;
......@@ -238,6 +256,9 @@ efi_status_t handle_cmdline_files(efi_loaded_image_t *image,
if (volume)
volume->close(volume);
if (*load_size == 0)
return EFI_NOT_READY;
return EFI_SUCCESS;
err_close_file:
......
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <asm/efi.h>
#include <asm/string.h>
#include "efistub.h"
#ifdef CONFIG_KASAN
#undef memcpy
#undef memmove
#undef memset
void *__memcpy(void *__dest, const void *__src, size_t __n) __alias(memcpy);
void *__memmove(void *__dest, const void *__src, size_t count) __alias(memmove);
void *__memset(void *s, int c, size_t count) __alias(memset);
#endif
void *memcpy(void *dst, const void *src, size_t len)
{
efi_bs_call(copy_mem, dst, src, len);
return dst;
}
extern void *memmove(void *dst, const void *src, size_t len) __alias(memcpy);
void *memset(void *dst, int c, size_t len)
{
efi_bs_call(set_mem, dst, len, c & U8_MAX);
return dst;
}
// SPDX-License-Identifier: GPL-2.0
/*
* Author: Yun Liu <liuyun@loongson.cn>
* Huacai Chen <chenhuacai@loongson.cn>
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*/
#include <asm/efi.h>
#include <asm/addrspace.h>
#include "efistub.h"
typedef void __noreturn (*kernel_entry_t)(bool efi, unsigned long cmdline,
unsigned long systab);
extern int kernel_asize;
extern int kernel_fsize;
extern int kernel_offset;
extern kernel_entry_t kernel_entry;
efi_status_t check_platform_features(void)
{
return EFI_SUCCESS;
}
efi_status_t handle_kernel_image(unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
efi_loaded_image_t *image,
efi_handle_t image_handle)
{
efi_status_t status;
unsigned long kernel_addr = 0;
kernel_addr = (unsigned long)&kernel_offset - kernel_offset;
status = efi_relocate_kernel(&kernel_addr, kernel_fsize, kernel_asize,
PHYSADDR(VMLINUX_LOAD_ADDRESS), SZ_2M, 0x0);
*image_addr = kernel_addr;
*image_size = kernel_asize;
return status;
}
struct exit_boot_struct {
efi_memory_desc_t *runtime_map;
int runtime_entry_count;
};
static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
{
struct exit_boot_struct *p = priv;
/*
* Update the memory map with virtual addresses. The function will also
* populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
* entries so that we can pass it straight to SetVirtualAddressMap()
*/
efi_get_virtmap(map->map, map->map_size, map->desc_size,
p->runtime_map, &p->runtime_entry_count);
return EFI_SUCCESS;
}
efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
unsigned long kernel_addr, char *cmdline_ptr)
{
kernel_entry_t real_kernel_entry;
struct exit_boot_struct priv;
unsigned long desc_size;
efi_status_t status;
u32 desc_ver;
status = efi_alloc_virtmap(&priv.runtime_map, &desc_size, &desc_ver);
if (status != EFI_SUCCESS) {
efi_err("Unable to retrieve UEFI memory map.\n");
return status;
}
efi_info("Exiting boot services\n");
efi_novamap = false;
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status != EFI_SUCCESS)
return status;
/* Install the new virtual address map */
efi_rt_call(set_virtual_address_map,
priv.runtime_entry_count * desc_size, desc_size,
desc_ver, priv.runtime_map);
/* Config Direct Mapping */
csr_write64(CSR_DMW0_INIT, LOONGARCH_CSR_DMWIN0);
csr_write64(CSR_DMW1_INIT, LOONGARCH_CSR_DMWIN1);
real_kernel_entry = (kernel_entry_t)
((unsigned long)&kernel_entry - kernel_addr + VMLINUX_LOAD_ADDRESS);
real_kernel_entry(true, (unsigned long)cmdline_ptr,
(unsigned long)efi_system_table);
}
......@@ -5,71 +5,66 @@
#include "efistub.h"
static inline bool mmap_has_headroom(unsigned long buff_size,
unsigned long map_size,
unsigned long desc_size)
{
unsigned long slack = buff_size - map_size;
return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}
/**
* efi_get_memory_map() - get memory map
* @map: on return pointer to memory map
* @map: pointer to memory map pointer to which to assign the
* newly allocated memory map
* @install_cfg_tbl: whether or not to install the boot memory map as a
* configuration table
*
* Retrieve the UEFI memory map. The allocated memory leaves room for
* up to EFI_MMAP_NR_SLACK_SLOTS additional memory map entries.
*
* Return: status code
*/
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
efi_status_t efi_get_memory_map(struct efi_boot_memmap **map,
bool install_cfg_tbl)
{
efi_memory_desc_t *m = NULL;
int memtype = install_cfg_tbl ? EFI_ACPI_RECLAIM_MEMORY
: EFI_LOADER_DATA;
efi_guid_t tbl_guid = LINUX_EFI_BOOT_MEMMAP_GUID;
struct efi_boot_memmap *m, tmp;
efi_status_t status;
unsigned long key;
u32 desc_version;
*map->desc_size = sizeof(*m);
*map->map_size = *map->desc_size * 32;
*map->buff_size = *map->map_size;
again:
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
*map->map_size, (void **)&m);
unsigned long size;
tmp.map_size = 0;
status = efi_bs_call(get_memory_map, &tmp.map_size, NULL, &tmp.map_key,
&tmp.desc_size, &tmp.desc_ver);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
size = tmp.map_size + tmp.desc_size * EFI_MMAP_NR_SLACK_SLOTS;
status = efi_bs_call(allocate_pool, memtype, sizeof(*m) + size,
(void **)&m);
if (status != EFI_SUCCESS)
goto fail;
*map->desc_size = 0;
key = 0;
status = efi_bs_call(get_memory_map, map->map_size, m,
&key, map->desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL ||
!mmap_has_headroom(*map->buff_size, *map->map_size,
*map->desc_size)) {
efi_bs_call(free_pool, m);
return status;
if (install_cfg_tbl) {
/*
* Make sure there is some entries of headroom so that the
* buffer can be reused for a new map after allocations are
* no longer permitted. Its unlikely that the map will grow to
* exceed this headroom once we are ready to trigger
* ExitBootServices()
* Installing a configuration table might allocate memory, and
* this may modify the memory map. This means we should install
* the configuration table first, and re-install or delete it
* as needed.
*/
*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
*map->buff_size = *map->map_size;
goto again;
status = efi_bs_call(install_configuration_table, &tbl_guid, m);
if (status != EFI_SUCCESS)
goto free_map;
}
if (status == EFI_SUCCESS) {
if (map->key_ptr)
*map->key_ptr = key;
if (map->desc_ver)
*map->desc_ver = desc_version;
} else {
efi_bs_call(free_pool, m);
}
m->buff_size = m->map_size = size;
status = efi_bs_call(get_memory_map, &m->map_size, m->map, &m->map_key,
&m->desc_size, &m->desc_ver);
if (status != EFI_SUCCESS)
goto uninstall_table;
*map = m;
return EFI_SUCCESS;
fail:
*map->map = m;
uninstall_table:
if (install_cfg_tbl)
efi_bs_call(install_configuration_table, &tbl_guid, NULL);
free_map:
efi_bs_call(free_pool, m);
return status;
}
......
......@@ -55,22 +55,13 @@ efi_status_t efi_random_alloc(unsigned long size,
unsigned long *addr,
unsigned long random_seed)
{
unsigned long map_size, desc_size, total_slots = 0, target_slot;
unsigned long total_slots = 0, target_slot;
unsigned long total_mirrored_slots = 0;
unsigned long buff_size;
struct efi_boot_memmap *map;
efi_status_t status;
efi_memory_desc_t *memory_map;
int map_offset;
struct efi_boot_memmap map;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(&map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
return status;
......@@ -80,8 +71,8 @@ efi_status_t efi_random_alloc(unsigned long size,
size = round_up(size, EFI_ALLOC_ALIGN);
/* count the suitable slots in each memory map entry */
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align));
......@@ -109,8 +100,8 @@ efi_status_t efi_random_alloc(unsigned long size,
* to calculate the randomly chosen address, and allocate it directly
* using EFI_ALLOCATE_ADDRESS.
*/
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
for (map_offset = 0; map_offset < map->map_size; map_offset += map->desc_size) {
efi_memory_desc_t *md = (void *)map->map + map_offset;
efi_physical_addr_t target;
unsigned long pages;
......@@ -133,7 +124,7 @@ efi_status_t efi_random_alloc(unsigned long size,
break;
}
efi_bs_call(free_pool, memory_map);
efi_bs_call(free_pool, map);
return status;
}
......@@ -23,21 +23,12 @@
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long min)
{
unsigned long map_size, desc_size, buff_size;
efi_memory_desc_t *map;
struct efi_boot_memmap *map;
efi_status_t status;
unsigned long nr_pages;
int i;
struct efi_boot_memmap boot_map;
boot_map.map = &map;
boot_map.map_size = &map_size;
boot_map.desc_size = &desc_size;
boot_map.desc_ver = NULL;
boot_map.key_ptr = NULL;
boot_map.buff_size = &buff_size;
status = efi_get_memory_map(&boot_map);
status = efi_get_memory_map(&map, false);
if (status != EFI_SUCCESS)
goto fail;
......@@ -52,12 +43,12 @@ efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
size = round_up(size, EFI_ALLOC_ALIGN);
nr_pages = size / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
for (i = 0; i < map->map_size / map->desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
unsigned long m = (unsigned long)map->map;
u64 start, end;
desc = efi_early_memdesc_ptr(m, desc_size, i);
desc = efi_early_memdesc_ptr(m, map->desc_size, i);
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
......@@ -87,7 +78,7 @@ efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
}
}
if (i == map_size / desc_size)
if (i == map->map_size / map->desc_size)
status = EFI_NOT_FOUND;
efi_bs_call(free_pool, map);
......
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
const efi_system_table_t *efi_system_table;
......@@ -722,32 +722,22 @@ static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
efi_set_u64_split((unsigned long)efi_system_table,
&p->efi->efi_systab, &p->efi->efi_systab_hi);
p->efi->efi_memdesc_size = *map->desc_size;
p->efi->efi_memdesc_version = *map->desc_ver;
efi_set_u64_split((unsigned long)*map->map,
p->efi->efi_memdesc_size = map->desc_size;
p->efi->efi_memdesc_version = map->desc_ver;
efi_set_u64_split((unsigned long)map->map,
&p->efi->efi_memmap, &p->efi->efi_memmap_hi);
p->efi->efi_memmap_size = *map->map_size;
p->efi->efi_memmap_size = map->map_size;
return EFI_SUCCESS;
}
static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
{
unsigned long map_sz, key, desc_size, buff_size;
efi_memory_desc_t *mem_map;
struct setup_data *e820ext = NULL;
__u32 e820ext_size = 0;
efi_status_t status;
__u32 desc_version;
struct efi_boot_memmap map;
struct exit_boot_struct priv;
map.map = &mem_map;
map.map_size = &map_sz;
map.desc_size = &desc_size;
map.desc_ver = &desc_version;
map.key_ptr = &key;
map.buff_size = &buff_size;
priv.boot_params = boot_params;
priv.efi = &boot_params->efi_info;
......@@ -756,7 +746,7 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
return status;
/* Might as well exit boot services now */
status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
status = efi_exit_boot_services(handle, &priv, exit_boot_func);
if (status != EFI_SUCCESS)
return status;
......@@ -782,7 +772,7 @@ unsigned long efi_main(efi_handle_t handle,
unsigned long bzimage_addr = (unsigned long)startup_32;
unsigned long buffer_start, buffer_end;
struct setup_header *hdr = &boot_params->hdr;
unsigned long addr, size;
const struct linux_efi_initrd *initrd = NULL;
efi_status_t status;
efi_system_table = sys_table_arg;
......@@ -877,17 +867,18 @@ unsigned long efi_main(efi_handle_t handle,
* arguments will be processed only if image is not NULL, which will be
* the case only if we were loaded via the PE entry point.
*/
status = efi_load_initrd(image, &addr, &size, hdr->initrd_addr_max,
ULONG_MAX);
status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
&initrd);
if (status != EFI_SUCCESS)
goto fail;
if (size > 0) {
efi_set_u64_split(addr, &hdr->ramdisk_image,
if (initrd && initrd->size > 0) {
efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
&boot_params->ext_ramdisk_image);
efi_set_u64_split(size, &hdr->ramdisk_size,
efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
&boot_params->ext_ramdisk_size);
}
/*
* If the boot loader gave us a value for secure_boot then we use that,
* otherwise we ask the BIOS.
......
/* SPDX-License-Identifier: GPL-2.0 */
#include <linux/pe.h>
#ifdef CONFIG_64BIT
.set .Lextra_characteristics, 0x0
.set .Lpe_opt_magic, PE_OPT_MAGIC_PE32PLUS
#else
.set .Lextra_characteristics, IMAGE_FILE_32BIT_MACHINE
.set .Lpe_opt_magic, PE_OPT_MAGIC_PE32
#endif
.section ".head", "a"
.globl __efistub_efi_zboot_header
__efistub_efi_zboot_header:
.Ldoshdr:
.long MZ_MAGIC
.ascii "zimg" // image type
.long __efistub__gzdata_start - .Ldoshdr // payload offset
.long __efistub__gzdata_size - ZBOOT_SIZE_LEN // payload size
.long 0, 0 // reserved
.asciz COMP_TYPE // compression type
.org .Ldoshdr + 0x3c
.long .Lpehdr - .Ldoshdr // PE header offset
.Lpehdr:
.long PE_MAGIC
.short MACHINE_TYPE
.short .Lsection_count
.long 0
.long 0
.long 0
.short .Lsection_table - .Loptional_header
.short IMAGE_FILE_DEBUG_STRIPPED | \
IMAGE_FILE_EXECUTABLE_IMAGE | \
IMAGE_FILE_LINE_NUMS_STRIPPED |\
.Lextra_characteristics
.Loptional_header:
.short .Lpe_opt_magic
.byte 0, 0
.long _etext - .Lefi_header_end
.long __data_size
.long 0
.long __efistub_efi_zboot_entry - .Ldoshdr
.long .Lefi_header_end - .Ldoshdr
#ifdef CONFIG_64BIT
.quad 0
#else
.long _etext - .Ldoshdr, 0x0
#endif
.long 4096
.long 512
.short 0, 0
.short LINUX_EFISTUB_MAJOR_VERSION // MajorImageVersion
.short LINUX_EFISTUB_MINOR_VERSION // MinorImageVersion
.short 0, 0
.long 0
.long _end - .Ldoshdr
.long .Lefi_header_end - .Ldoshdr
.long 0
.short IMAGE_SUBSYSTEM_EFI_APPLICATION
.short 0
#ifdef CONFIG_64BIT
.quad 0, 0, 0, 0
#else
.long 0, 0, 0, 0
#endif
.long 0
.long (.Lsection_table - .) / 8
.quad 0 // ExportTable
.quad 0 // ImportTable
.quad 0 // ResourceTable
.quad 0 // ExceptionTable
.quad 0 // CertificationTable
.quad 0 // BaseRelocationTable
#ifdef CONFIG_DEBUG_EFI
.long .Lefi_debug_table - .Ldoshdr // DebugTable
.long .Lefi_debug_table_size
#endif
.Lsection_table:
.ascii ".text\0\0\0"
.long _etext - .Lefi_header_end
.long .Lefi_header_end - .Ldoshdr
.long _etext - .Lefi_header_end
.long .Lefi_header_end - .Ldoshdr
.long 0, 0
.short 0, 0
.long IMAGE_SCN_CNT_CODE | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_EXECUTE
.ascii ".data\0\0\0"
.long __data_size
.long _etext - .Ldoshdr
.long __data_rawsize
.long _etext - .Ldoshdr
.long 0, 0
.short 0, 0
.long IMAGE_SCN_CNT_INITIALIZED_DATA | \
IMAGE_SCN_MEM_READ | \
IMAGE_SCN_MEM_WRITE
.set .Lsection_count, (. - .Lsection_table) / 40
#ifdef CONFIG_DEBUG_EFI
.section ".rodata", "a"
.align 2
.Lefi_debug_table:
// EFI_IMAGE_DEBUG_DIRECTORY_ENTRY
.long 0 // Characteristics
.long 0 // TimeDateStamp
.short 0 // MajorVersion
.short 0 // MinorVersion
.long IMAGE_DEBUG_TYPE_CODEVIEW // Type
.long .Lefi_debug_entry_size // SizeOfData
.long 0 // RVA
.long .Lefi_debug_entry - .Ldoshdr // FileOffset
.set .Lefi_debug_table_size, . - .Lefi_debug_table
.previous
.Lefi_debug_entry:
// EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY
.ascii "NB10" // Signature
.long 0 // Unknown
.long 0 // Unknown2
.long 0 // Unknown3
.asciz ZBOOT_EFI_PATH
.set .Lefi_debug_entry_size, . - .Lefi_debug_entry
#endif
.p2align 12
.Lefi_header_end:
// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <linux/pe.h>
#include <asm/efi.h>
#include <asm/unaligned.h>
#include "efistub.h"
static unsigned char zboot_heap[SZ_256K] __aligned(64);
static unsigned long free_mem_ptr, free_mem_end_ptr;
#define STATIC static
#if defined(CONFIG_KERNEL_GZIP)
#include "../../../../lib/decompress_inflate.c"
#elif defined(CONFIG_KERNEL_LZ4)
#include "../../../../lib/decompress_unlz4.c"
#elif defined(CONFIG_KERNEL_LZMA)
#include "../../../../lib/decompress_unlzma.c"
#elif defined(CONFIG_KERNEL_LZO)
#include "../../../../lib/decompress_unlzo.c"
#elif defined(CONFIG_KERNEL_XZ)
#undef memcpy
#define memcpy memcpy
#undef memmove
#define memmove memmove
#include "../../../../lib/decompress_unxz.c"
#elif defined(CONFIG_KERNEL_ZSTD)
#include "../../../../lib/decompress_unzstd.c"
#endif
extern char efi_zboot_header[];
extern char _gzdata_start[], _gzdata_end[];
static void log(efi_char16_t str[])
{
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, L"EFI decompressor: ");
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, str);
efi_call_proto(efi_table_attr(efi_system_table, con_out),
output_string, L"\n");
}
static void error(char *x)
{
log(L"error() called from decompressor library\n");
}
// Local version to avoid pulling in memcmp()
static bool guids_eq(const efi_guid_t *a, const efi_guid_t *b)
{
const u32 *l = (u32 *)a;
const u32 *r = (u32 *)b;
return l[0] == r[0] && l[1] == r[1] && l[2] == r[2] && l[3] == r[3];
}
static efi_status_t __efiapi
load_file(efi_load_file_protocol_t *this, efi_device_path_protocol_t *rem,
bool boot_policy, unsigned long *bufsize, void *buffer)
{
unsigned long compressed_size = _gzdata_end - _gzdata_start;
struct efi_vendor_dev_path *vendor_dp;
bool decompress = false;
unsigned long size;
int ret;
if (rem == NULL || bufsize == NULL)
return EFI_INVALID_PARAMETER;
if (boot_policy)
return EFI_UNSUPPORTED;
// Look for our vendor media device node in the remaining file path
if (rem->type == EFI_DEV_MEDIA &&
rem->sub_type == EFI_DEV_MEDIA_VENDOR) {
vendor_dp = container_of(rem, struct efi_vendor_dev_path, header);
if (!guids_eq(&vendor_dp->vendorguid, &LINUX_EFI_ZBOOT_MEDIA_GUID))
return EFI_NOT_FOUND;
decompress = true;
rem = (void *)(vendor_dp + 1);
}
if (rem->type != EFI_DEV_END_PATH ||
rem->sub_type != EFI_DEV_END_ENTIRE)
return EFI_NOT_FOUND;
// The uncompressed size of the payload is appended to the raw bit
// stream, and may therefore appear misaligned in memory
size = decompress ? get_unaligned_le32(_gzdata_end - 4)
: compressed_size;
if (buffer == NULL || *bufsize < size) {
*bufsize = size;
return EFI_BUFFER_TOO_SMALL;
}
if (decompress) {
ret = __decompress(_gzdata_start, compressed_size, NULL, NULL,
buffer, size, NULL, error);
if (ret < 0) {
log(L"Decompression failed");
return EFI_DEVICE_ERROR;
}
} else {
memcpy(buffer, _gzdata_start, compressed_size);
}
return EFI_SUCCESS;
}
// Return the length in bytes of the device path up to the first end node.
static int device_path_length(const efi_device_path_protocol_t *dp)
{
int len = 0;
while (dp->type != EFI_DEV_END_PATH) {
len += dp->length;
dp = (void *)((u8 *)dp + dp->length);
}
return len;
}
static void append_rel_offset_node(efi_device_path_protocol_t **dp,
unsigned long start, unsigned long end)
{
struct efi_rel_offset_dev_path *rodp = (void *)*dp;
rodp->header.type = EFI_DEV_MEDIA;
rodp->header.sub_type = EFI_DEV_MEDIA_REL_OFFSET;
rodp->header.length = sizeof(struct efi_rel_offset_dev_path);
rodp->reserved = 0;
rodp->starting_offset = start;
rodp->ending_offset = end;
*dp = (void *)(rodp + 1);
}
static void append_ven_media_node(efi_device_path_protocol_t **dp,
efi_guid_t *guid)
{
struct efi_vendor_dev_path *vmdp = (void *)*dp;
vmdp->header.type = EFI_DEV_MEDIA;
vmdp->header.sub_type = EFI_DEV_MEDIA_VENDOR;
vmdp->header.length = sizeof(struct efi_vendor_dev_path);
vmdp->vendorguid = *guid;
*dp = (void *)(vmdp + 1);
}
static void append_end_node(efi_device_path_protocol_t **dp)
{
(*dp)->type = EFI_DEV_END_PATH;
(*dp)->sub_type = EFI_DEV_END_ENTIRE;
(*dp)->length = sizeof(struct efi_generic_dev_path);
++*dp;
}
asmlinkage efi_status_t __efiapi
efi_zboot_entry(efi_handle_t handle, efi_system_table_t *systab)
{
struct efi_mem_mapped_dev_path mmdp = {
.header.type = EFI_DEV_HW,
.header.sub_type = EFI_DEV_MEM_MAPPED,
.header.length = sizeof(struct efi_mem_mapped_dev_path)
};
efi_device_path_protocol_t *parent_dp, *dpp, *lf2_dp, *li_dp;
efi_load_file2_protocol_t zboot_load_file2;
efi_loaded_image_t *parent, *child;
unsigned long exit_data_size;
efi_handle_t child_handle;
efi_handle_t zboot_handle;
efi_char16_t *exit_data;
efi_status_t status;
void *dp_alloc;
int dp_len;
WRITE_ONCE(efi_system_table, systab);
free_mem_ptr = (unsigned long)&zboot_heap;
free_mem_end_ptr = free_mem_ptr + sizeof(zboot_heap);
exit_data = NULL;
exit_data_size = 0;
status = efi_bs_call(handle_protocol, handle,
&LOADED_IMAGE_PROTOCOL_GUID, (void **)&parent);
if (status != EFI_SUCCESS) {
log(L"Failed to locate parent's loaded image protocol");
return status;
}
status = efi_bs_call(handle_protocol, handle,
&LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID,
(void **)&parent_dp);
if (status != EFI_SUCCESS || parent_dp == NULL) {
// Create a MemoryMapped() device path node to describe
// the parent image if no device path was provided.
mmdp.memory_type = parent->image_code_type;
mmdp.starting_addr = (unsigned long)parent->image_base;
mmdp.ending_addr = (unsigned long)parent->image_base +
parent->image_size - 1;
parent_dp = &mmdp.header;
dp_len = sizeof(mmdp);
} else {
dp_len = device_path_length(parent_dp);
}
// Allocate some pool memory for device path protocol data
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
2 * (dp_len + sizeof(struct efi_rel_offset_dev_path) +
sizeof(struct efi_generic_dev_path)) +
sizeof(struct efi_vendor_dev_path),
(void **)&dp_alloc);
if (status != EFI_SUCCESS) {
log(L"Failed to allocate device path pool memory");
return status;
}
// Create a device path describing the compressed payload in this image
// <...parent_dp...>/Offset(<start>, <end>)
lf2_dp = memcpy(dp_alloc, parent_dp, dp_len);
dpp = (void *)((u8 *)lf2_dp + dp_len);
append_rel_offset_node(&dpp,
(unsigned long)(_gzdata_start - efi_zboot_header),
(unsigned long)(_gzdata_end - efi_zboot_header - 1));
append_end_node(&dpp);
// Create a device path describing the decompressed payload in this image
// <...parent_dp...>/Offset(<start>, <end>)/VenMedia(ZBOOT_MEDIA_GUID)
dp_len += sizeof(struct efi_rel_offset_dev_path);
li_dp = memcpy(dpp, lf2_dp, dp_len);
dpp = (void *)((u8 *)li_dp + dp_len);
append_ven_media_node(&dpp, &LINUX_EFI_ZBOOT_MEDIA_GUID);
append_end_node(&dpp);
zboot_handle = NULL;
zboot_load_file2.load_file = load_file;
status = efi_bs_call(install_multiple_protocol_interfaces,
&zboot_handle,
&EFI_DEVICE_PATH_PROTOCOL_GUID, lf2_dp,
&EFI_LOAD_FILE2_PROTOCOL_GUID, &zboot_load_file2,
NULL);
if (status != EFI_SUCCESS) {
log(L"Failed to install LoadFile2 protocol and device path");
goto free_dpalloc;
}
status = efi_bs_call(load_image, false, handle, li_dp, NULL, 0,
&child_handle);
if (status != EFI_SUCCESS) {
log(L"Failed to load image");
goto uninstall_lf2;
}
status = efi_bs_call(handle_protocol, child_handle,
&LOADED_IMAGE_PROTOCOL_GUID, (void **)&child);
if (status != EFI_SUCCESS) {
log(L"Failed to locate child's loaded image protocol");
goto unload_image;
}
// Copy the kernel command line
child->load_options = parent->load_options;
child->load_options_size = parent->load_options_size;
status = efi_bs_call(start_image, child_handle, &exit_data_size,
&exit_data);
if (status != EFI_SUCCESS) {
log(L"StartImage() returned with error");
if (exit_data_size > 0)
log(exit_data);
// If StartImage() returns EFI_SECURITY_VIOLATION, the image is
// not unloaded so we need to do it by hand.
if (status == EFI_SECURITY_VIOLATION)
unload_image:
efi_bs_call(unload_image, child_handle);
}
uninstall_lf2:
efi_bs_call(uninstall_multiple_protocol_interfaces,
zboot_handle,
&EFI_DEVICE_PATH_PROTOCOL_GUID, lf2_dp,
&EFI_LOAD_FILE2_PROTOCOL_GUID, &zboot_load_file2,
NULL);
free_dpalloc:
efi_bs_call(free_pool, dp_alloc);
efi_bs_call(exit, handle, status, exit_data_size, exit_data);
// Free ExitData in case Exit() returned with a failure code,
// but return the original status code.
log(L"Exit() returned with failure code");
if (exit_data != NULL)
efi_bs_call(free_pool, exit_data);
return status;
}
/* SPDX-License-Identifier: GPL-2.0 */
ENTRY(__efistub_efi_zboot_header);
SECTIONS
{
.head : ALIGN(4096) {
*(.head)
}
.text : {
*(.text* .init.text*)
}
.rodata : ALIGN(8) {
__efistub__gzdata_start = .;
*(.gzdata)
__efistub__gzdata_end = .;
*(.rodata* .init.rodata* .srodata*)
_etext = ALIGN(4096);
. = _etext;
}
.data : ALIGN(4096) {
*(.data* .init.data*)
_edata = ALIGN(512);
. = _edata;
}
.bss : {
*(.bss* .init.bss*)
_end = ALIGN(512);
. = _end;
}
/DISCARD/ : {
*(.modinfo .init.modinfo)
}
}
PROVIDE(__efistub__gzdata_size = ABSOLUTE(. - __efistub__gzdata_start));
PROVIDE(__data_rawsize = ABSOLUTE(_edata - _etext));
PROVIDE(__data_size = ABSOLUTE(_end - _etext));
......@@ -368,6 +368,9 @@ void efi_native_runtime_setup(void);
#define UV_SYSTEM_TABLE_GUID EFI_GUID(0x3b13a7d4, 0x633e, 0x11dd, 0x93, 0xec, 0xda, 0x25, 0x56, 0xd8, 0x95, 0x93)
#define LINUX_EFI_CRASH_GUID EFI_GUID(0xcfc8fc79, 0xbe2e, 0x4ddc, 0x97, 0xf0, 0x9f, 0x98, 0xbf, 0xe2, 0x98, 0xa0)
#define LOADED_IMAGE_PROTOCOL_GUID EFI_GUID(0x5b1b31a1, 0x9562, 0x11d2, 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b)
#define LOADED_IMAGE_DEVICE_PATH_PROTOCOL_GUID EFI_GUID(0xbc62157e, 0x3e33, 0x4fec, 0x99, 0x20, 0x2d, 0x3b, 0x36, 0xd7, 0x50, 0xdf)
#define EFI_DEVICE_PATH_PROTOCOL_GUID EFI_GUID(0x09576e91, 0x6d3f, 0x11d2, 0x8e, 0x39, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b)
#define EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID EFI_GUID(0x8b843e20, 0x8132, 0x4852, 0x90, 0xcc, 0x55, 0x1a, 0x4e, 0x4a, 0x7f, 0x1c)
#define EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID EFI_GUID(0x9042a9de, 0x23dc, 0x4a38, 0x96, 0xfb, 0x7a, 0xde, 0xd0, 0x80, 0x51, 0x6a)
#define EFI_UGA_PROTOCOL_GUID EFI_GUID(0x982c298b, 0xf4fa, 0x41cb, 0xb8, 0x38, 0x77, 0xaa, 0x68, 0x8f, 0xb8, 0x39)
#define EFI_PCI_IO_PROTOCOL_GUID EFI_GUID(0x4cf5b200, 0x68b8, 0x4ca5, 0x9e, 0xec, 0xb2, 0x3e, 0x3f, 0x50, 0x02, 0x9a)
......@@ -408,8 +411,10 @@ void efi_native_runtime_setup(void);
#define LINUX_EFI_TPM_FINAL_LOG_GUID EFI_GUID(0x1e2ed096, 0x30e2, 0x4254, 0xbd, 0x89, 0x86, 0x3b, 0xbe, 0xf8, 0x23, 0x25)
#define LINUX_EFI_MEMRESERVE_TABLE_GUID EFI_GUID(0x888eb0c6, 0x8ede, 0x4ff5, 0xa8, 0xf0, 0x9a, 0xee, 0x5c, 0xb9, 0x77, 0xc2)
#define LINUX_EFI_INITRD_MEDIA_GUID EFI_GUID(0x5568e427, 0x68fc, 0x4f3d, 0xac, 0x74, 0xca, 0x55, 0x52, 0x31, 0xcc, 0x68)
#define LINUX_EFI_ZBOOT_MEDIA_GUID EFI_GUID(0xe565a30d, 0x47da, 0x4dbd, 0xb3, 0x54, 0x9b, 0xb5, 0xc8, 0x4f, 0x8b, 0xe2)
#define LINUX_EFI_MOK_VARIABLE_TABLE_GUID EFI_GUID(0xc451ed2b, 0x9694, 0x45d3, 0xba, 0xba, 0xed, 0x9f, 0x89, 0x88, 0xa3, 0x89)
#define LINUX_EFI_COCO_SECRET_AREA_GUID EFI_GUID(0xadf956ad, 0xe98c, 0x484c, 0xae, 0x11, 0xb5, 0x1c, 0x7d, 0x33, 0x64, 0x47)
#define LINUX_EFI_BOOT_MEMMAP_GUID EFI_GUID(0x800f683f, 0xd08b, 0x423a, 0xa2, 0x93, 0x96, 0x5c, 0x3c, 0x6f, 0xe2, 0xb4)
#define RISCV_EFI_BOOT_PROTOCOL_GUID EFI_GUID(0xccd15fec, 0x6f73, 0x4eec, 0x83, 0x95, 0x3e, 0x69, 0xe4, 0xb9, 0x40, 0xbf)
......@@ -518,6 +523,15 @@ typedef union {
efi_system_table_32_t mixed_mode;
} efi_system_table_t;
struct efi_boot_memmap {
unsigned long map_size;
unsigned long desc_size;
u32 desc_ver;
unsigned long map_key;
unsigned long buff_size;
efi_memory_desc_t map[];
};
/*
* Architecture independent structure for describing a memory map for the
* benefit of efi_memmap_init_early(), and for passing context between
......@@ -952,6 +966,7 @@ extern int efi_status_to_err(efi_status_t status);
#define EFI_DEV_MEDIA_VENDOR 3
#define EFI_DEV_MEDIA_FILE 4
#define EFI_DEV_MEDIA_PROTOCOL 5
#define EFI_DEV_MEDIA_REL_OFFSET 8
#define EFI_DEV_BIOS_BOOT 0x05
#define EFI_DEV_END_PATH 0x7F
#define EFI_DEV_END_PATH2 0xFF
......@@ -982,12 +997,27 @@ struct efi_vendor_dev_path {
u8 vendordata[];
} __packed;
struct efi_rel_offset_dev_path {
struct efi_generic_dev_path header;
u32 reserved;
u64 starting_offset;
u64 ending_offset;
} __packed;
struct efi_mem_mapped_dev_path {
struct efi_generic_dev_path header;
u32 memory_type;
u64 starting_addr;
u64 ending_addr;
} __packed;
struct efi_dev_path {
union {
struct efi_generic_dev_path header;
struct efi_acpi_dev_path acpi;
struct efi_pci_dev_path pci;
struct efi_vendor_dev_path vendor;
struct efi_rel_offset_dev_path rel_offset;
};
} __packed;
......@@ -1321,6 +1351,11 @@ struct linux_efi_coco_secret_area {
u64 size;
};
struct linux_efi_initrd {
unsigned long base;
unsigned long size;
};
/* Header of a populated EFI secret area */
#define EFI_SECRET_TABLE_HEADER_GUID EFI_GUID(0x1e74f542, 0x71dd, 0x4d66, 0x96, 0x3e, 0xef, 0x42, 0x87, 0xff, 0x17, 0x3b)
......
......@@ -65,6 +65,8 @@
#define IMAGE_FILE_MACHINE_SH5 0x01a8
#define IMAGE_FILE_MACHINE_THUMB 0x01c2
#define IMAGE_FILE_MACHINE_WCEMIPSV2 0x0169
#define IMAGE_FILE_MACHINE_LOONGARCH32 0x6232
#define IMAGE_FILE_MACHINE_LOONGARCH64 0x6264
/* flags */
#define IMAGE_FILE_RELOCS_STRIPPED 0x0001
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment