Commit 24bcc307 authored by Eric Dumazet's avatar Eric Dumazet Committed by David S. Miller

net_sched: sch_fq: implement lockless fq_dump()

Instead of relying on RTNL, fq_dump() can use READ_ONCE()
annotations, paired with WRITE_ONCE() in fq_change()

v2: Addressed Simon feedback in V1: https://lore.kernel.org/netdev/20240416181915.GT2320920@kernel.org/Signed-off-by: default avatarEric Dumazet <edumazet@google.com>
Reviewed-by: default avatarSimon Horman <horms@kernel.org>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent fdf41237
...@@ -106,6 +106,8 @@ struct fq_perband_flows { ...@@ -106,6 +106,8 @@ struct fq_perband_flows {
int quantum; /* based on band nr : 576KB, 192KB, 64KB */ int quantum; /* based on band nr : 576KB, 192KB, 64KB */
}; };
#define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
struct fq_sched_data { struct fq_sched_data {
/* Read mostly cache line */ /* Read mostly cache line */
...@@ -122,7 +124,7 @@ struct fq_sched_data { ...@@ -122,7 +124,7 @@ struct fq_sched_data {
u8 rate_enable; u8 rate_enable;
u8 fq_trees_log; u8 fq_trees_log;
u8 horizon_drop; u8 horizon_drop;
u8 prio2band[(TC_PRIO_MAX + 1) >> 2]; u8 prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
u32 timer_slack; /* hrtimer slack in ns */ u32 timer_slack; /* hrtimer slack in ns */
/* Read/Write fields. */ /* Read/Write fields. */
...@@ -159,7 +161,7 @@ struct fq_sched_data { ...@@ -159,7 +161,7 @@ struct fq_sched_data {
/* return the i-th 2-bit value ("crumb") */ /* return the i-th 2-bit value ("crumb") */
static u8 fq_prio2band(const u8 *prio2band, unsigned int prio) static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
{ {
return (prio2band[prio / 4] >> (2 * (prio & 0x3))) & 0x3; return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
} }
/* /*
...@@ -888,7 +890,7 @@ static int fq_resize(struct Qdisc *sch, u32 log) ...@@ -888,7 +890,7 @@ static int fq_resize(struct Qdisc *sch, u32 log)
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
q->fq_root = array; q->fq_root = array;
q->fq_trees_log = log; WRITE_ONCE(q->fq_trees_log, log);
sch_tree_unlock(sch); sch_tree_unlock(sch);
...@@ -927,11 +929,15 @@ static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { ...@@ -927,11 +929,15 @@ static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
static void fq_prio2band_compress_crumb(const u8 *in, u8 *out) static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
{ {
const int num_elems = TC_PRIO_MAX + 1; const int num_elems = TC_PRIO_MAX + 1;
u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
int i; int i;
memset(out, 0, num_elems / 4); memset(tmp, 0, sizeof(tmp));
for (i = 0; i < num_elems; i++) for (i = 0; i < num_elems; i++)
out[i / 4] |= in[i] << (2 * (i & 0x3)); tmp[i / 4] |= in[i] << (2 * (i & 0x3));
for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
WRITE_ONCE(out[i], tmp[i]);
} }
static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out) static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
...@@ -958,7 +964,7 @@ static int fq_load_weights(struct fq_sched_data *q, ...@@ -958,7 +964,7 @@ static int fq_load_weights(struct fq_sched_data *q,
} }
} }
for (i = 0; i < FQ_BANDS; i++) for (i = 0; i < FQ_BANDS; i++)
q->band_flows[i].quantum = weights[i]; WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
return 0; return 0;
} }
...@@ -1011,16 +1017,18 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt, ...@@ -1011,16 +1017,18 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt,
err = -EINVAL; err = -EINVAL;
} }
if (tb[TCA_FQ_PLIMIT]) if (tb[TCA_FQ_PLIMIT])
sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); WRITE_ONCE(sch->limit,
nla_get_u32(tb[TCA_FQ_PLIMIT]));
if (tb[TCA_FQ_FLOW_PLIMIT]) if (tb[TCA_FQ_FLOW_PLIMIT])
q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); WRITE_ONCE(q->flow_plimit,
nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
if (tb[TCA_FQ_QUANTUM]) { if (tb[TCA_FQ_QUANTUM]) {
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
if (quantum > 0 && quantum <= (1 << 20)) { if (quantum > 0 && quantum <= (1 << 20)) {
q->quantum = quantum; WRITE_ONCE(q->quantum, quantum);
} else { } else {
NL_SET_ERR_MSG_MOD(extack, "invalid quantum"); NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
err = -EINVAL; err = -EINVAL;
...@@ -1028,7 +1036,8 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt, ...@@ -1028,7 +1036,8 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt,
} }
if (tb[TCA_FQ_INITIAL_QUANTUM]) if (tb[TCA_FQ_INITIAL_QUANTUM])
q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); WRITE_ONCE(q->initial_quantum,
nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
...@@ -1037,17 +1046,19 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt, ...@@ -1037,17 +1046,19 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt,
if (tb[TCA_FQ_FLOW_MAX_RATE]) { if (tb[TCA_FQ_FLOW_MAX_RATE]) {
u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
q->flow_max_rate = (rate == ~0U) ? ~0UL : rate; WRITE_ONCE(q->flow_max_rate,
(rate == ~0U) ? ~0UL : rate);
} }
if (tb[TCA_FQ_LOW_RATE_THRESHOLD]) if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
q->low_rate_threshold = WRITE_ONCE(q->low_rate_threshold,
nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
if (tb[TCA_FQ_RATE_ENABLE]) { if (tb[TCA_FQ_RATE_ENABLE]) {
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
if (enable <= 1) if (enable <= 1)
q->rate_enable = enable; WRITE_ONCE(q->rate_enable,
enable);
else else
err = -EINVAL; err = -EINVAL;
} }
...@@ -1055,7 +1066,8 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt, ...@@ -1055,7 +1066,8 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt,
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
q->flow_refill_delay = usecs_to_jiffies(usecs_delay); WRITE_ONCE(q->flow_refill_delay,
usecs_to_jiffies(usecs_delay));
} }
if (!err && tb[TCA_FQ_PRIOMAP]) if (!err && tb[TCA_FQ_PRIOMAP])
...@@ -1065,21 +1077,26 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt, ...@@ -1065,21 +1077,26 @@ static int fq_change(struct Qdisc *sch, struct nlattr *opt,
err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack); err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
if (tb[TCA_FQ_ORPHAN_MASK]) if (tb[TCA_FQ_ORPHAN_MASK])
q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); WRITE_ONCE(q->orphan_mask,
nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
if (tb[TCA_FQ_CE_THRESHOLD]) if (tb[TCA_FQ_CE_THRESHOLD])
q->ce_threshold = (u64)NSEC_PER_USEC * WRITE_ONCE(q->ce_threshold,
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]); (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
if (tb[TCA_FQ_TIMER_SLACK]) if (tb[TCA_FQ_TIMER_SLACK])
q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]); WRITE_ONCE(q->timer_slack,
nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
if (tb[TCA_FQ_HORIZON]) if (tb[TCA_FQ_HORIZON])
q->horizon = (u64)NSEC_PER_USEC * WRITE_ONCE(q->horizon,
nla_get_u32(tb[TCA_FQ_HORIZON]); (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_HORIZON]));
if (tb[TCA_FQ_HORIZON_DROP]) if (tb[TCA_FQ_HORIZON_DROP])
q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]); WRITE_ONCE(q->horizon_drop,
nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
if (!err) { if (!err) {
...@@ -1160,13 +1177,13 @@ static int fq_init(struct Qdisc *sch, struct nlattr *opt, ...@@ -1160,13 +1177,13 @@ static int fq_init(struct Qdisc *sch, struct nlattr *opt,
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
{ {
struct fq_sched_data *q = qdisc_priv(sch); struct fq_sched_data *q = qdisc_priv(sch);
u64 ce_threshold = q->ce_threshold;
struct tc_prio_qopt prio = { struct tc_prio_qopt prio = {
.bands = FQ_BANDS, .bands = FQ_BANDS,
}; };
u64 horizon = q->horizon;
struct nlattr *opts; struct nlattr *opts;
u64 ce_threshold;
s32 weights[3]; s32 weights[3];
u64 horizon;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS); opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL) if (opts == NULL)
...@@ -1174,35 +1191,48 @@ static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) ...@@ -1174,35 +1191,48 @@ static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
ce_threshold = READ_ONCE(q->ce_threshold);
do_div(ce_threshold, NSEC_PER_USEC); do_div(ce_threshold, NSEC_PER_USEC);
horizon = READ_ONCE(q->horizon);
do_div(horizon, NSEC_PER_USEC); do_div(horizon, NSEC_PER_USEC);
if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || if (nla_put_u32(skb, TCA_FQ_PLIMIT,
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || READ_ONCE(sch->limit)) ||
nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || READ_ONCE(q->flow_plimit)) ||
nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || nla_put_u32(skb, TCA_FQ_QUANTUM,
READ_ONCE(q->quantum)) ||
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
READ_ONCE(q->initial_quantum)) ||
nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
READ_ONCE(q->rate_enable)) ||
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
min_t(unsigned long, q->flow_max_rate, ~0U)) || min_t(unsigned long,
READ_ONCE(q->flow_max_rate), ~0U)) ||
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
jiffies_to_usecs(q->flow_refill_delay)) || jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
READ_ONCE(q->orphan_mask)) ||
nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD, nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
q->low_rate_threshold) || READ_ONCE(q->low_rate_threshold)) ||
nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) || nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) || nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) || READ_ONCE(q->fq_trees_log)) ||
nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
READ_ONCE(q->timer_slack)) ||
nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) || nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop)) nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
READ_ONCE(q->horizon_drop)))
goto nla_put_failure; goto nla_put_failure;
fq_prio2band_decompress_crumb(q->prio2band, prio.priomap); fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio)) if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
goto nla_put_failure; goto nla_put_failure;
weights[0] = q->band_flows[0].quantum; weights[0] = READ_ONCE(q->band_flows[0].quantum);
weights[1] = q->band_flows[1].quantum; weights[1] = READ_ONCE(q->band_flows[1].quantum);
weights[2] = q->band_flows[2].quantum; weights[2] = READ_ONCE(q->band_flows[2].quantum);
if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights)) if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
goto nla_put_failure; goto nla_put_failure;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment