Commit 2eef5a9c authored by Andrea Merello's avatar Andrea Merello Committed by Jonathan Cameron

iio: imu: add BNO055 serdev driver

Add a serdev driver for communicating to a BNO055 IMU via serial bus, and
enable the BNO055 core driver to work in this scenario.
Signed-off-by: default avatarAndrea Merello <andrea.merello@iit.it>
Link: https://lore.kernel.org/r/20220907132205.28021-13-andrea.merello@iit.itSigned-off-by: default avatarJonathan Cameron <Jonathan.Cameron@huawei.com>
parent 21f95c75
......@@ -2,3 +2,13 @@
config BOSCH_BNO055
tristate
config BOSCH_BNO055_SERIAL
tristate "Bosch BNO055 attached via UART"
depends on SERIAL_DEV_BUS
select BOSCH_BNO055
help
Enable this to support Bosch BNO055 IMUs attached via UART.
This driver can also be built as a module. If so, the module will be
called bno055_sl.
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_BOSCH_BNO055) += bno055.o
obj-$(CONFIG_BOSCH_BNO055_SERIAL) += bno055_ser.o
bno055_ser-y := bno055_ser_core.o
# define_trace.h needs to know how to find our header
CFLAGS_bno055_ser_trace.o := -I$(src)
bno055_ser-$(CONFIG_TRACING) += bno055_ser_trace.o
// SPDX-License-Identifier: GPL-2.0
/*
* Serial line interface for Bosh BNO055 IMU (via serdev).
* This file implements serial communication up to the register read/write
* level.
*
* Copyright (C) 2021-2022 Istituto Italiano di Tecnologia
* Electronic Design Laboratory
* Written by Andrea Merello <andrea.merello@iit.it>
*
* This driver is based on
* Plantower PMS7003 particulate matter sensor driver
* Which is
* Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
*/
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/serdev.h>
#include "bno055_ser_trace.h"
#include "bno055.h"
/*
* Register writes cmd have the following format
* +------+------+-----+-----+----- ... ----+
* | 0xAA | 0xOO | REG | LEN | payload[LEN] |
* +------+------+-----+-----+----- ... ----+
*
* Register write responses have the following format
* +------+----------+
* | 0xEE | ERROCODE |
* +------+----------+
*
* .. except when writing the SYS_RST bit (i.e. triggering a system reset); in
* case the IMU accepts the command, then it resets without responding. We don't
* handle this (yet) here (so we inform the common bno055 code not to perform
* sw resets - bno055 on serial bus basically requires the hw reset pin).
*
* Register read have the following format
* +------+------+-----+-----+
* | 0xAA | 0xO1 | REG | LEN |
* +------+------+-----+-----+
*
* Successful register read response have the following format
* +------+-----+----- ... ----+
* | 0xBB | LEN | payload[LEN] |
* +------+-----+----- ... ----+
*
* Failed register read response have the following format
* +------+--------+
* | 0xEE | ERRCODE| (ERRCODE always > 1)
* +------+--------+
*
* Error codes are
* 01: OK
* 02: read/write FAIL
* 04: invalid address
* 05: write on RO
* 06: wrong start byte
* 07: bus overrun
* 08: len too high
* 09: len too low
* 10: bus RX byte timeout (timeout is 30mS)
*
*
* **WORKAROUND ALERT**
*
* Serial communication seems very fragile: the BNO055 buffer seems to overflow
* very easy; BNO055 seems able to sink few bytes, then it needs a brief pause.
* On the other hand, it is also picky on timeout: if there is a pause > 30mS in
* between two bytes then the transaction fails (IMU internal RX FSM resets).
*
* BNO055 has been seen also failing to process commands in case we send them
* too close each other (or if it is somehow busy?)
*
* In particular I saw these scenarios:
* 1) If we send 2 bytes per time, then the IMU never(?) overflows.
* 2) If we send 4 bytes per time (i.e. the full header), then the IMU could
* overflow, but it seem to sink all 4 bytes, then it returns error.
* 3) If we send more than 4 bytes, the IMU could overflow, and I saw it sending
* error after 4 bytes are sent; we have troubles in synchronizing again,
* because we are still sending data, and the IMU interprets it as the 1st
* byte of a new command.
*
* While we must avoid case 3, we could send 4 bytes per time and eventually
* retry in case of failure; this seemed convenient for reads (which requires
* TXing exactly 4 bytes), however it has been seen that, depending by the IMU
* settings (e.g. LPF), failures became less or more frequent; in certain IMU
* configurations they are very rare, but in certain others we keeps failing
* even after like 30 retries.
*
* So, we just split TXes in [2-bytes + delay] steps, and still keep an eye on
* the IMU response; in case it overflows (which is now unlikely), we retry.
*/
/*
* Read operation overhead:
* 4 bytes req + 2byte resp hdr.
* 6 bytes = 60 bit (considering 1start + 1stop bits).
* 60/115200 = ~520uS + about 2500mS delay -> ~3mS
* In 3mS we could read back about 34 bytes that means 17 samples, this means
* that in case of scattered reads in which the gap is 17 samples or less it is
* still convenient to go for a burst.
* We have to take into account also IMU response time - IMU seems to be often
* reasonably quick to respond, but sometimes it seems to be in some "critical
* section" in which it delays handling of serial protocol. Because of this we
* round-up to 22, which is the max number of samples, always bursting indeed.
*/
#define BNO055_SER_XFER_BURST_BREAK_THRESHOLD 22
struct bno055_ser_priv {
enum {
CMD_NONE,
CMD_READ,
CMD_WRITE,
} expect_response;
int expected_data_len;
u8 *response_buf;
/**
* enum cmd_status - represent the status of a command sent to the HW.
* @STATUS_CRIT: The command failed: the serial communication failed.
* @STATUS_OK: The command executed successfully.
* @STATUS_FAIL: The command failed: HW responded with an error.
*/
enum {
STATUS_CRIT = -1,
STATUS_OK = 0,
STATUS_FAIL = 1,
} cmd_status;
/*
* Protects all the above fields, which are accessed in behalf of both
* the serdev RX callback and the regmap side
*/
struct mutex lock;
/* Only accessed in serdev RX callback context*/
struct {
enum {
RX_IDLE,
RX_START,
RX_DATA,
} state;
int databuf_count;
int expected_len;
int type;
} rx;
/* Never accessed in behalf of serdev RX callback context */
bool cmd_stale;
struct completion cmd_complete;
struct serdev_device *serdev;
};
static int bno055_ser_send_chunk(struct bno055_ser_priv *priv, const u8 *data, int len)
{
int ret;
trace_send_chunk(len, data);
ret = serdev_device_write(priv->serdev, data, len, msecs_to_jiffies(25));
if (ret < 0)
return ret;
if (ret < len)
return -EIO;
return 0;
}
/*
* Send a read or write command.
* 'data' can be NULL (used in read case). 'len' parameter is always valid; in
* case 'data' is non-NULL then it must match 'data' size.
*/
static int bno055_ser_do_send_cmd(struct bno055_ser_priv *priv,
bool read, int addr, int len, const u8 *data)
{
u8 hdr[] = {0xAA, read, addr, len};
int chunk_len;
int ret;
ret = bno055_ser_send_chunk(priv, hdr, 2);
if (ret)
goto fail;
usleep_range(2000, 3000);
ret = bno055_ser_send_chunk(priv, hdr + 2, 2);
if (ret)
goto fail;
if (read)
return 0;
while (len) {
chunk_len = min(len, 2);
usleep_range(2000, 3000);
ret = bno055_ser_send_chunk(priv, data, chunk_len);
if (ret)
goto fail;
data += chunk_len;
len -= chunk_len;
}
return 0;
fail:
/* waiting more than 30mS should clear the BNO055 internal state */
usleep_range(40000, 50000);
return ret;
}
static int bno055_ser_send_cmd(struct bno055_ser_priv *priv,
bool read, int addr, int len, const u8 *data)
{
const int retry_max = 5;
int retry = retry_max;
int ret = 0;
/*
* In case previous command was interrupted we still need to wait it to
* complete before we can issue new commands
*/
if (priv->cmd_stale) {
ret = wait_for_completion_interruptible_timeout(&priv->cmd_complete,
msecs_to_jiffies(100));
if (ret == -ERESTARTSYS)
return -ERESTARTSYS;
priv->cmd_stale = false;
/* if serial protocol broke, bail out */
if (priv->cmd_status == STATUS_CRIT)
return -EIO;
}
/*
* Try to convince the IMU to cooperate.. as explained in the comments
* at the top of this file, the IMU could also refuse the command (i.e.
* it is not ready yet); retry in this case.
*/
do {
mutex_lock(&priv->lock);
priv->expect_response = read ? CMD_READ : CMD_WRITE;
reinit_completion(&priv->cmd_complete);
mutex_unlock(&priv->lock);
if (retry != retry_max)
trace_cmd_retry(read, addr, retry_max - retry);
ret = bno055_ser_do_send_cmd(priv, read, addr, len, data);
if (ret)
continue;
ret = wait_for_completion_interruptible_timeout(&priv->cmd_complete,
msecs_to_jiffies(100));
if (ret == -ERESTARTSYS) {
priv->cmd_stale = true;
return -ERESTARTSYS;
}
if (!ret)
return -ETIMEDOUT;
if (priv->cmd_status == STATUS_OK)
return 0;
if (priv->cmd_status == STATUS_CRIT)
return -EIO;
/* loop in case priv->cmd_status == STATUS_FAIL */
} while (--retry);
if (ret < 0)
return ret;
if (priv->cmd_status == STATUS_FAIL)
return -EINVAL;
return 0;
}
static int bno055_ser_write_reg(void *context, const void *_data, size_t count)
{
const u8 *data = _data;
struct bno055_ser_priv *priv = context;
if (count < 2) {
dev_err(&priv->serdev->dev, "Invalid write count %zu", count);
return -EINVAL;
}
trace_write_reg(data[0], data[1]);
return bno055_ser_send_cmd(priv, 0, data[0], count - 1, data + 1);
}
static int bno055_ser_read_reg(void *context,
const void *_reg, size_t reg_size,
void *val, size_t val_size)
{
int ret;
int reg_addr;
const u8 *reg = _reg;
struct bno055_ser_priv *priv = context;
if (val_size > 128) {
dev_err(&priv->serdev->dev, "Invalid read valsize %zu", val_size);
return -EINVAL;
}
reg_addr = *reg;
trace_read_reg(reg_addr, val_size);
mutex_lock(&priv->lock);
priv->expected_data_len = val_size;
priv->response_buf = val;
mutex_unlock(&priv->lock);
ret = bno055_ser_send_cmd(priv, 1, reg_addr, val_size, NULL);
mutex_lock(&priv->lock);
priv->response_buf = NULL;
mutex_unlock(&priv->lock);
return ret;
}
/*
* Handler for received data; this is called from the receiver callback whenever
* it got some packet from the serial bus. The status tells us whether the
* packet is valid (i.e. header ok && received payload len consistent wrt the
* header). It's now our responsibility to check whether this is what we
* expected, of whether we got some unexpected, yet valid, packet.
*/
static void bno055_ser_handle_rx(struct bno055_ser_priv *priv, int status)
{
mutex_lock(&priv->lock);
switch (priv->expect_response) {
case CMD_NONE:
dev_warn(&priv->serdev->dev, "received unexpected, yet valid, data from sensor");
mutex_unlock(&priv->lock);
return;
case CMD_READ:
priv->cmd_status = status;
if (status == STATUS_OK &&
priv->rx.databuf_count != priv->expected_data_len) {
/*
* If we got here, then the lower layer serial protocol
* seems consistent with itself; if we got an unexpected
* amount of data then signal it as a non critical error
*/
priv->cmd_status = STATUS_FAIL;
dev_warn(&priv->serdev->dev,
"received an unexpected amount of, yet valid, data from sensor");
}
break;
case CMD_WRITE:
priv->cmd_status = status;
break;
}
priv->expect_response = CMD_NONE;
mutex_unlock(&priv->lock);
complete(&priv->cmd_complete);
}
/*
* Serdev receiver FSM. This tracks the serial communication and parse the
* header. It pushes packets to bno055_ser_handle_rx(), eventually communicating
* failures (i.e. malformed packets).
* Ideally it doesn't know anything about upper layer (i.e. if this is the
* packet we were really expecting), but since we copies the payload into the
* receiver buffer (that is not valid when i.e. we don't expect data), we
* snoop a bit in the upper layer..
* Also, we assume to RX one pkt per time (i.e. the HW doesn't send anything
* unless we require to AND we don't queue more than one request per time).
*/
static int bno055_ser_receive_buf(struct serdev_device *serdev,
const unsigned char *buf, size_t size)
{
int status;
struct bno055_ser_priv *priv = serdev_device_get_drvdata(serdev);
int remaining = size;
if (size == 0)
return 0;
trace_recv(size, buf);
switch (priv->rx.state) {
case RX_IDLE:
/*
* New packet.
* Check for its 1st byte that identifies the pkt type.
*/
if (buf[0] != 0xEE && buf[0] != 0xBB) {
dev_err(&priv->serdev->dev,
"Invalid packet start %x", buf[0]);
bno055_ser_handle_rx(priv, STATUS_CRIT);
break;
}
priv->rx.type = buf[0];
priv->rx.state = RX_START;
remaining--;
buf++;
priv->rx.databuf_count = 0;
fallthrough;
case RX_START:
/*
* Packet RX in progress, we expect either 1-byte len or 1-byte
* status depending by the packet type.
*/
if (remaining == 0)
break;
if (priv->rx.type == 0xEE) {
if (remaining > 1) {
dev_err(&priv->serdev->dev, "EE pkt. Extra data received");
status = STATUS_CRIT;
} else {
status = (buf[0] == 1) ? STATUS_OK : STATUS_FAIL;
}
bno055_ser_handle_rx(priv, status);
priv->rx.state = RX_IDLE;
break;
} else {
/*priv->rx.type == 0xBB */
priv->rx.state = RX_DATA;
priv->rx.expected_len = buf[0];
remaining--;
buf++;
}
fallthrough;
case RX_DATA:
/* Header parsed; now receiving packet data payload */
if (remaining == 0)
break;
if (priv->rx.databuf_count + remaining > priv->rx.expected_len) {
/*
* This is an inconsistency in serial protocol, we lost
* sync and we don't know how to handle further data
*/
dev_err(&priv->serdev->dev, "BB pkt. Extra data received");
bno055_ser_handle_rx(priv, STATUS_CRIT);
priv->rx.state = RX_IDLE;
break;
}
mutex_lock(&priv->lock);
/*
* NULL e.g. when read cmd is stale or when no read cmd is
* actually pending.
*/
if (priv->response_buf &&
/*
* Snoop on the upper layer protocol stuff to make sure not
* to write to an invalid memory. Apart for this, let's the
* upper layer manage any inconsistency wrt expected data
* len (as long as the serial protocol is consistent wrt
* itself (i.e. response header is consistent with received
* response len.
*/
(priv->rx.databuf_count + remaining <= priv->expected_data_len))
memcpy(priv->response_buf + priv->rx.databuf_count,
buf, remaining);
mutex_unlock(&priv->lock);
priv->rx.databuf_count += remaining;
/*
* Reached expected len advertised by the IMU for the current
* packet. Pass it to the upper layer (for us it is just valid).
*/
if (priv->rx.databuf_count == priv->rx.expected_len) {
bno055_ser_handle_rx(priv, STATUS_OK);
priv->rx.state = RX_IDLE;
}
break;
}
return size;
}
static const struct serdev_device_ops bno055_ser_serdev_ops = {
.receive_buf = bno055_ser_receive_buf,
.write_wakeup = serdev_device_write_wakeup,
};
static struct regmap_bus bno055_ser_regmap_bus = {
.write = bno055_ser_write_reg,
.read = bno055_ser_read_reg,
};
static int bno055_ser_probe(struct serdev_device *serdev)
{
struct bno055_ser_priv *priv;
struct regmap *regmap;
int ret;
priv = devm_kzalloc(&serdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
serdev_device_set_drvdata(serdev, priv);
priv->serdev = serdev;
mutex_init(&priv->lock);
init_completion(&priv->cmd_complete);
serdev_device_set_client_ops(serdev, &bno055_ser_serdev_ops);
ret = devm_serdev_device_open(&serdev->dev, serdev);
if (ret)
return ret;
if (serdev_device_set_baudrate(serdev, 115200) != 115200) {
dev_err(&serdev->dev, "Cannot set required baud rate");
return -EIO;
}
ret = serdev_device_set_parity(serdev, SERDEV_PARITY_NONE);
if (ret) {
dev_err(&serdev->dev, "Cannot set required parity setting");
return ret;
}
serdev_device_set_flow_control(serdev, false);
regmap = devm_regmap_init(&serdev->dev, &bno055_ser_regmap_bus,
priv, &bno055_regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(&serdev->dev, PTR_ERR(regmap),
"Unable to init register map");
return bno055_probe(&serdev->dev, regmap,
BNO055_SER_XFER_BURST_BREAK_THRESHOLD, false);
}
static const struct of_device_id bno055_ser_of_match[] = {
{ .compatible = "bosch,bno055" },
{ }
};
MODULE_DEVICE_TABLE(of, bno055_ser_of_match);
static struct serdev_device_driver bno055_ser_driver = {
.driver = {
.name = "bno055-ser",
.of_match_table = bno055_ser_of_match,
},
.probe = bno055_ser_probe,
};
module_serdev_device_driver(bno055_ser_driver);
MODULE_AUTHOR("Andrea Merello <andrea.merello@iit.it>");
MODULE_DESCRIPTION("Bosch BNO055 serdev interface");
MODULE_IMPORT_NS(IIO_BNO055);
MODULE_LICENSE("GPL");
//SPDX-License-Identifier: GPL-2.0
/*
* bno055_ser Trace Support
* Copyright (C) 2022 Istituto Italiano di Tecnologia
* Electronic Design Laboratory
*
* Based on:
* Device core Trace Support
* Copyright (C) 2021, Intel Corporation
*/
#define CREATE_TRACE_POINTS
#include "bno055_ser_trace.h"
/* SPDX-License-Identifier: GPL-2.0 */
#if !defined(__BNO055_SERDEV_TRACE_H__) || defined(TRACE_HEADER_MULTI_READ)
#define __BNO055_SERDEV_TRACE_H__
#include <linux/tracepoint.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM bno055_ser
TRACE_EVENT(send_chunk,
TP_PROTO(int len, const u8 *data),
TP_ARGS(len, data),
TP_STRUCT__entry(
__field(int, len)
__dynamic_array(u8, chunk, len)
),
TP_fast_assign(
__entry->len = len;
memcpy(__get_dynamic_array(chunk),
data, __entry->len);
),
TP_printk("len: %d, data: = %*ph",
__entry->len, __entry->len, __get_dynamic_array(chunk)
)
);
TRACE_EVENT(cmd_retry,
TP_PROTO(bool read, int addr, int retry),
TP_ARGS(read, addr, retry),
TP_STRUCT__entry(
__field(bool, read)
__field(int, addr)
__field(int, retry)
),
TP_fast_assign(
__entry->read = read;
__entry->addr = addr;
__entry->retry = retry;
),
TP_printk("%s addr 0x%x retry #%d",
__entry->read ? "read" : "write",
__entry->addr, __entry->retry
)
);
TRACE_EVENT(write_reg,
TP_PROTO(u8 addr, u8 value),
TP_ARGS(addr, value),
TP_STRUCT__entry(
__field(u8, addr)
__field(u8, value)
),
TP_fast_assign(
__entry->addr = addr;
__entry->value = value;
),
TP_printk("reg 0x%x = 0x%x",
__entry->addr, __entry->value
)
);
TRACE_EVENT(read_reg,
TP_PROTO(int addr, size_t len),
TP_ARGS(addr, len),
TP_STRUCT__entry(
__field(int, addr)
__field(size_t, len)
),
TP_fast_assign(
__entry->addr = addr;
__entry->len = len;
),
TP_printk("reg 0x%x (len %zu)",
__entry->addr, __entry->len
)
);
TRACE_EVENT(recv,
TP_PROTO(size_t len, const unsigned char *buf),
TP_ARGS(len, buf),
TP_STRUCT__entry(
__field(size_t, len)
__dynamic_array(unsigned char, buf, len)
),
TP_fast_assign(
__entry->len = len;
memcpy(__get_dynamic_array(buf),
buf, __entry->len);
),
TP_printk("len: %zu, data: = %*ph",
__entry->len, (int)__entry->len, __get_dynamic_array(buf)
)
);
#endif /* __BNO055_SERDEV_TRACE_H__ || TRACE_HEADER_MULTI_READ */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE bno055_ser_trace
/* This part must be outside protection */
#include <trace/define_trace.h>
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment