Commit 31d1b771 authored by Bartlomiej Zolnierkiewicz's avatar Bartlomiej Zolnierkiewicz

Merge tag 'v4.20-rc7' of...

Merge tag 'v4.20-rc7' of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux into fbdev-for-next

Linux 4.20-rc7

Sync with upstream (which now contains fbdev-v4.20 changes) to
prepare a base for fbdev-v4.21 changes.
parents 217188d9 7566ec39

Too many changes to show.

To preserve performance only 1000 of 1000+ files are displayed.

......@@ -323,7 +323,6 @@ ForEachMacros:
- 'protocol_for_each_card'
- 'protocol_for_each_dev'
- 'queue_for_each_hw_ctx'
- 'radix_tree_for_each_contig'
- 'radix_tree_for_each_slot'
- 'radix_tree_for_each_tagged'
- 'rbtree_postorder_for_each_entry_safe'
......
......@@ -119,6 +119,13 @@ Mark Brown <broonie@sirena.org.uk>
Mark Yao <markyao0591@gmail.com> <mark.yao@rock-chips.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@theobroma-systems.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@ginzinger.com>
Matthew Wilcox <willy@infradead.org> <matthew.r.wilcox@intel.com>
Matthew Wilcox <willy@infradead.org> <matthew@wil.cx>
Matthew Wilcox <willy@infradead.org> <mawilcox@linuxonhyperv.com>
Matthew Wilcox <willy@infradead.org> <mawilcox@microsoft.com>
Matthew Wilcox <willy@infradead.org> <willy@debian.org>
Matthew Wilcox <willy@infradead.org> <willy@linux.intel.com>
Matthew Wilcox <willy@infradead.org> <willy@parisc-linux.org>
Matthieu CASTET <castet.matthieu@free.fr>
Mauro Carvalho Chehab <mchehab@kernel.org> <mchehab@brturbo.com.br>
Mauro Carvalho Chehab <mchehab@kernel.org> <maurochehab@gmail.com>
......@@ -152,7 +159,13 @@ Peter Oruba <peter@oruba.de>
Peter Oruba <peter.oruba@amd.com>
Pratyush Anand <pratyush.anand@gmail.com> <pratyush.anand@st.com>
Praveen BP <praveenbp@ti.com>
Punit Agrawal <punitagrawal@gmail.com> <punit.agrawal@arm.com>
Qais Yousef <qsyousef@gmail.com> <qais.yousef@imgtec.com>
Oleksij Rempel <linux@rempel-privat.de> <bug-track@fisher-privat.net>
Oleksij Rempel <linux@rempel-privat.de> <external.Oleksij.Rempel@de.bosch.com>
Oleksij Rempel <linux@rempel-privat.de> <fixed-term.Oleksij.Rempel@de.bosch.com>
Oleksij Rempel <linux@rempel-privat.de> <o.rempel@pengutronix.de>
Oleksij Rempel <linux@rempel-privat.de> <ore@pengutronix.de>
Rajesh Shah <rajesh.shah@intel.com>
Ralf Baechle <ralf@linux-mips.org>
Ralf Wildenhues <Ralf.Wildenhues@gmx.de>
......
......@@ -2138,6 +2138,10 @@ E: paul@laufernet.com
D: Soundblaster driver fixes, ISAPnP quirk
S: California, USA
N: Jarkko Lavinen
E: jarkko.lavinen@nokia.com
D: OMAP MMC support
N: Jonathan Layes
D: ARPD support
......@@ -2200,6 +2204,10 @@ S: Post Office Box 371
S: North Little Rock, Arkansas 72115
S: USA
N: Christopher Li
E: sparse@chrisli.org
D: Sparse maintainer 2009 - 2018
N: Stephan Linz
E: linz@mazet.de
E: Stephan.Linz@gmx.de
......@@ -2533,6 +2541,10 @@ S: Ormond
S: Victoria 3163
S: Australia
N: Eric Miao
E: eric.y.miao@gmail.com
D: MMP support
N: Pauline Middelink
E: middelin@polyware.nl
D: General low-level bug fixes, /proc fixes, identd support
......@@ -4107,6 +4119,10 @@ S: 1507 145th Place SE #B5
S: Bellevue, Washington 98007
S: USA
N: Haojian Zhuang
E: haojian.zhuang@gmail.com
D: MMP support
N: Richard Zidlicky
E: rz@linux-m68k.org, rdzidlic@geocities.com
W: http://www.geocities.com/rdzidlic
......
This diff is collapsed.
......@@ -25,38 +25,3 @@ Description:
4.2.2.
The files are read only.
What: /sys/bus/usb/drivers/usbtmc/*/TermChar
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Description:
This file is the TermChar value to be sent to the USB TMC
device as described by the document, "Universal Serial Bus Test
and Measurement Class Specification
(USBTMC) Revision 1.0" as published by the USB-IF.
Note that the TermCharEnabled file determines if this value is
sent to the device or not.
What: /sys/bus/usb/drivers/usbtmc/*/TermCharEnabled
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Description:
This file determines if the TermChar is to be sent to the
device on every transaction or not. For more details about
this, please see the document, "Universal Serial Bus Test and
Measurement Class Specification (USBTMC) Revision 1.0" as
published by the USB-IF.
What: /sys/bus/usb/drivers/usbtmc/*/auto_abort
Date: August 2008
Contact: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Description:
This file determines if the transaction of the USB TMC
device is to be automatically aborted if there is any error.
For more details about this, please see the document,
"Universal Serial Bus Test and Measurement Class Specification
(USBTMC) Revision 1.0" as published by the USB-IF.
What: /config/stp-policy/<device>:p_sys-t.<policy>/<node>/uuid
Date: June 2018
KernelVersion: 4.19
Description:
UUID source identifier string, RW.
Default value is randomly generated at the mkdir <node> time.
Data coming from trace sources that use this <node> will be
tagged with this UUID in the MIPI SyS-T packet stream, to
allow the decoder to discern between different sources
within the same master/channel range, and identify the
higher level decoders that may be needed for each source.
What: /config/stp-policy/<device>:p_sys-t.<policy>/<node>/do_len
Date: June 2018
KernelVersion: 4.19
Description:
Include payload length in the MIPI SyS-T header, boolean.
If enabled, the SyS-T protocol encoder will include payload
length in each packet's metadata. This is normally redundant
if the underlying transport protocol supports marking message
boundaries (which STP does), so this is off by default.
What: /config/stp-policy/<device>:p_sys-t.<policy>/<node>/ts_interval
Date: June 2018
KernelVersion: 4.19
Description:
Time interval in milliseconds. Include a timestamp in the
MIPI SyS-T packet metadata, if this many milliseconds have
passed since the previous packet from this source. Zero is
the default and stands for "never send the timestamp".
What: /config/stp-policy/<device>:p_sys-t.<policy>/<node>/clocksync_interval
Date: June 2018
KernelVersion: 4.19
Description:
Time interval in milliseconds. Send a CLOCKSYNC packet if
this many milliseconds have passed since the previous
CLOCKSYNC packet from this source. Zero is the default and
stands for "never send the CLOCKSYNC". It makes sense to
use this option with sources that generate constant and/or
periodic data, like stm_heartbeat.
......@@ -12,6 +12,10 @@ Date: Dec 2014
KernelVersion: 4.0
Description: Control descriptors
All attributes read only:
bInterfaceNumber - USB interface number for this
streaming interface
What: /config/usb-gadget/gadget/functions/uvc.name/control/class
Date: Dec 2014
KernelVersion: 4.0
......@@ -109,6 +113,10 @@ Date: Dec 2014
KernelVersion: 4.0
Description: Streaming descriptors
All attributes read only:
bInterfaceNumber - USB interface number for this
streaming interface
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class
Date: Dec 2014
KernelVersion: 4.0
......@@ -160,6 +168,10 @@ Description: Specific MJPEG format descriptors
All attributes read only,
except bmaControls and bDefaultFrameIndex:
bFormatIndex - unique id for this format descriptor;
only defined after parent header is
linked into the streaming class;
read-only
bmaControls - this format's data for bmaControls in
the streaming header
bmInterfaceFlags - specifies interlace information,
......@@ -177,6 +189,10 @@ Date: Dec 2014
KernelVersion: 4.0
Description: Specific MJPEG frame descriptors
bFrameIndex - unique id for this framedescriptor;
only defined after parent format is
linked into the streaming header;
read-only
dwFrameInterval - indicates how frame interval can be
programmed; a number of values
separated by newline can be specified
......@@ -204,6 +220,10 @@ Date: Dec 2014
KernelVersion: 4.0
Description: Specific uncompressed format descriptors
bFormatIndex - unique id for this format descriptor;
only defined after parent header is
linked into the streaming class;
read-only
bmaControls - this format's data for bmaControls in
the streaming header
bmInterfaceFlags - specifies interlace information,
......@@ -224,6 +244,10 @@ Date: Dec 2014
KernelVersion: 4.0
Description: Specific uncompressed frame descriptors
bFrameIndex - unique id for this framedescriptor;
only defined after parent format is
linked into the streaming header;
read-only
dwFrameInterval - indicates how frame interval can be
programmed; a number of values
separated by newline can be specified
......
......@@ -199,7 +199,7 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/in_positionrelative_x_raw
What: /sys/bus/iio/devices/iio:deviceX/in_positionrelative_y_raw
KernelVersion: 4.18
KernelVersion: 4.19
Contact: linux-iio@vger.kernel.org
Description:
Relative position in direction x or y on a pad (may be
......
......@@ -323,3 +323,27 @@ Description:
This is similar to /sys/bus/pci/drivers_autoprobe, but
affects only the VFs associated with a specific PF.
What: /sys/bus/pci/devices/.../p2pmem/size
Date: November 2017
Contact: Logan Gunthorpe <logang@deltatee.com>
Description:
If the device has any Peer-to-Peer memory registered, this
file contains the total amount of memory that the device
provides (in decimal).
What: /sys/bus/pci/devices/.../p2pmem/available
Date: November 2017
Contact: Logan Gunthorpe <logang@deltatee.com>
Description:
If the device has any Peer-to-Peer memory registered, this
file contains the amount of memory that has not been
allocated (in decimal).
What: /sys/bus/pci/devices/.../p2pmem/published
Date: November 2017
Contact: Logan Gunthorpe <logang@deltatee.com>
Description:
If the device has any Peer-to-Peer memory registered, this
file contains a '1' if the memory has been published for
use outside the driver that owns the device.
......@@ -189,6 +189,16 @@ Description:
The file will read "hotplug", "wired" and "not used" if the
information is available, and "unknown" otherwise.
What: /sys/bus/usb/devices/.../(hub interface)/portX/location
Date: October 2018
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Some platforms provide usb port physical location through
firmware. This is used by the kernel to pair up logical ports
mapping to the same physical connector. The attribute exposes the
raw location value as a hex integer.
What: /sys/bus/usb/devices/.../(hub interface)/portX/quirks
Date: May 2018
Contact: Nicolas Boichat <drinkcat@chromium.org>
......@@ -219,7 +229,14 @@ Description:
ports and report them to the kernel. This attribute is to expose
the number of over-current situation occurred on a specific port
to user space. This file will contain an unsigned 32 bit value
which wraps to 0 after its maximum is reached.
which wraps to 0 after its maximum is reached. This file supports
poll() for monitoring changes to this value in user space.
Any time this value changes the corresponding hub device will send a
udev event with the following attributes:
OVER_CURRENT_PORT=/sys/bus/usb/devices/.../(hub interface)/portX
OVER_CURRENT_COUNT=[current value of this sysfs attribute]
What: /sys/bus/usb/devices/.../(hub interface)/portX/usb3_lpm_permit
Date: November 2015
......
What: /sys/bus/vmbus/devices/.../driver_override
Date: August 2019
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description:
This file allows the driver for a device to be specified which
will override standard static and dynamic ID matching. When
specified, only a driver with a name matching the value written
to driver_override will have an opportunity to bind to the
device. The override is specified by writing a string to the
driver_override file (echo uio_hv_generic > driver_override) and
may be cleared with an empty string (echo > driver_override).
This returns the device to standard matching rules binding.
Writing to driver_override does not automatically unbind the
device from its current driver or make any attempt to
automatically load the specified driver. If no driver with a
matching name is currently loaded in the kernel, the device
will not bind to any driver. This also allows devices to
opt-out of driver binding using a driver_override name such as
"none". Only a single driver may be specified in the override,
there is no support for parsing delimiters.
sysfs interface for the S6E63M0 AMOLED LCD panel driver
-------------------------------------------------------
What: /sys/class/lcd/<lcd>/gamma_mode
Date: May, 2010
KernelVersion: v2.6.35
Contact: dri-devel@lists.freedesktop.org
Description:
(RW) Read or write the gamma mode. Following three modes are
supported:
0 - gamma value 2.2,
1 - gamma value 1.9 and
2 - gamma value 1.7.
What: /sys/class/lcd/<lcd>/gamma_table
Date: May, 2010
KernelVersion: v2.6.35
Contact: dri-devel@lists.freedesktop.org
Description:
(RO) Displays the size of the gamma table i.e. the number of
gamma modes available.
This is a backlight lcd driver. These interfaces are an extension to the API
documented in Documentation/ABI/testing/sysfs-class-lcd and in
Documentation/ABI/stable/sysfs-class-backlight (under
/sys/class/backlight/<backlight>/).
What: /sys/class/leds/<led>/hw_pattern
Date: September 2018
KernelVersion: 4.20
Description:
Specify a hardware pattern for the SC27XX LED. For the SC27XX
LED controller, it only supports 4 stages to make a single
hardware pattern, which is used to configure the rise time,
high time, fall time and low time for the breathing mode.
For the breathing mode, the SC27XX LED only expects one brightness
for the high stage. To be compatible with the hardware pattern
format, we should set brightness as 0 for rise stage, fall
stage and low stage.
Min stage duration: 125 ms
Max stage duration: 31875 ms
Since the stage duration step is 125 ms, the duration should be
a multiplier of 125, like 125ms, 250ms, 375ms, 500ms ... 31875ms.
Thus the format of the hardware pattern values should be:
"0 rise_duration brightness high_duration 0 fall_duration 0 low_duration".
What: /sys/class/leds/<led>/pattern
Date: September 2018
KernelVersion: 4.20
Description:
Specify a software pattern for the LED, that supports altering
the brightness for the specified duration with one software
timer. It can do gradual dimming and step change of brightness.
The pattern is given by a series of tuples, of brightness and
duration (ms). The LED is expected to traverse the series and
each brightness value for the specified duration. Duration of
0 means brightness should immediately change to new value, and
writing malformed pattern deactivates any active one.
1. For gradual dimming, the dimming interval now is set as 50
milliseconds. So the tuple with duration less than dimming
interval (50ms) is treated as a step change of brightness,
i.e. the subsequent brightness will be applied without adding
intervening dimming intervals.
The gradual dimming format of the software pattern values should be:
"brightness_1 duration_1 brightness_2 duration_2 brightness_3
duration_3 ...". For example:
echo 0 1000 255 2000 > pattern
It will make the LED go gradually from zero-intensity to max (255)
intensity in 1000 milliseconds, then back to zero intensity in 2000
milliseconds:
LED brightness
^
255-| / \ / \ /
| / \ / \ /
| / \ / \ /
| / \ / \ /
0-| / \/ \/
+---0----1----2----3----4----5----6------------> time (s)
2. To make the LED go instantly from one brightness value to another,
we should use zero-time lengths (the brightness must be same as
the previous tuple's). So the format should be:
"brightness_1 duration_1 brightness_1 0 brightness_2 duration_2
brightness_2 0 ...". For example:
echo 0 1000 0 0 255 2000 255 0 > pattern
It will make the LED stay off for one second, then stay at max brightness
for two seconds:
LED brightness
^
255-| +---------+ +---------+
| | | | |
| | | | |
| | | | |
0-| -----+ +----+ +----
+---0----1----2----3----4----5----6------------> time (s)
What: /sys/class/leds/<led>/hw_pattern
Date: September 2018
KernelVersion: 4.20
Description:
Specify a hardware pattern for the LED, for LED hardware that
supports autonomously controlling brightness over time, according
to some preprogrammed hardware patterns. It deactivates any active
software pattern.
Since different LED hardware can have different semantics of
hardware patterns, each driver is expected to provide its own
description for the hardware patterns in their ABI documentation
file.
What: /sys/class/leds/<led>/repeat
Date: September 2018
KernelVersion: 4.20
Description:
Specify a pattern repeat number. -1 means repeat indefinitely,
other negative numbers and number 0 are invalid.
This file will always return the originally written repeat
number.
......@@ -91,6 +91,24 @@ Description:
stacked (e.g: VLAN interfaces) but still have the same MAC
address as their parent device.
What: /sys/class/net/<iface>/dev_port
Date: February 2014
KernelVersion: 3.15
Contact: netdev@vger.kernel.org
Description:
Indicates the port number of this network device, formatted
as a decimal value. Some NICs have multiple independent ports
on the same PCI bus, device and function. This attribute allows
userspace to distinguish the respective interfaces.
Note: some device drivers started to use 'dev_id' for this
purpose since long before 3.15 and have not adopted the new
attribute ever since. To query the port number, some tools look
exclusively at 'dev_port', while others only consult 'dev_id'.
If a network device has multiple client adapter ports as
described in the previous paragraph and does not set this
attribute to its port number, it's a kernel bug.
What: /sys/class/net/<iface>/dormant
Date: March 2006
KernelVersion: 2.6.17
......@@ -117,7 +135,7 @@ Description:
full: full duplex
Note: This attribute is only valid for interfaces that implement
the ethtool get_settings method (mostly Ethernet).
the ethtool get_link_ksettings method (mostly Ethernet).
What: /sys/class/net/<iface>/flags
Date: April 2005
......@@ -224,7 +242,7 @@ Description:
an integer representing the link speed in Mbits/sec.
Note: this attribute is only valid for interfaces that implement
the ethtool get_settings method (mostly Ethernet ).
the ethtool get_link_ksettings method (mostly Ethernet).
What: /sys/class/net/<iface>/tx_queue_len
Date: April 2005
......
What: /sys/class/net/<iface>/dsa/tagging
Date: August 2018
KernelVersion: 4.20
Contact: netdev@vger.kernel.org
Description:
String indicating the type of tagging protocol used by the
DSA slave network device.
......@@ -121,7 +121,22 @@ What: /sys/fs/f2fs/<disk>/idle_interval
Date: January 2016
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
Controls the idle timing.
Controls the idle timing for all paths other than
discard and gc path.
What: /sys/fs/f2fs/<disk>/discard_idle_interval
Date: September 2018
Contact: "Chao Yu" <yuchao0@huawei.com>
Contact: "Sahitya Tummala" <stummala@codeaurora.org>
Description:
Controls the idle timing for discard path.
What: /sys/fs/f2fs/<disk>/gc_idle_interval
Date: September 2018
Contact: "Chao Yu" <yuchao0@huawei.com>
Contact: "Sahitya Tummala" <stummala@codeaurora.org>
Description:
Controls the idle timing for gc path.
What: /sys/fs/f2fs/<disk>/iostat_enable
Date: August 2017
......
What: /sys/devices/platform/lg-laptop/reader_mode
Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Control reader mode. 1 means on, 0 means off.
What: /sys/devices/platform/lg-laptop/fn_lock
Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Control FN lock mode. 1 means on, 0 means off.
What: /sys/devices/platform/lg-laptop/battery_care_limit
Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Maximal battery charge level. Accepted values are 80 or 100.
What: /sys/devices/platform/lg-laptop/fan_mode
Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Control fan mode. 1 for performance mode, 0 for silent mode.
What: /sys/devices/platform/lg-laptop/usb_charge
Date: October 2018
KernelVersion: 4.20
Contact: "Matan Ziv-Av <matan@svgalib.org>
Description:
Control USB port charging when device is turned off.
1 means on, 0 means off.
......@@ -99,7 +99,7 @@ Description:
this file, the suspend image will be as small as possible.
Reading from this file will display the current image size
limit, which is set to 500 MB by default.
limit, which is set to around 2/5 of available RAM by default.
What: /sys/power/pm_trace
Date: August 2006
......
00-INDEX
- this file
acpi-info.txt
- info on how PCI host bridges are represented in ACPI
MSI-HOWTO.txt
- the Message Signaled Interrupts (MSI) Driver Guide HOWTO and FAQ.
PCIEBUS-HOWTO.txt
- a guide describing the PCI Express Port Bus driver
pci-error-recovery.txt
- info on PCI error recovery
pci-iov-howto.txt
- the PCI Express I/O Virtualization HOWTO
pci.txt
- info on the PCI subsystem for device driver authors
pcieaer-howto.txt
- the PCI Express Advanced Error Reporting Driver Guide HOWTO
endpoint/pci-endpoint.txt
- guide to add endpoint controller driver and endpoint function driver.
endpoint/pci-endpoint-cfs.txt
- guide to use configfs to configure the PCI endpoint function.
endpoint/pci-test-function.txt
- specification of *PCI test* function device.
endpoint/pci-test-howto.txt
- userguide for PCI endpoint test function.
endpoint/function/binding/
- binding documentation for PCI endpoint function
......@@ -99,17 +99,20 @@ Note that the devices listed here correspond to the value populated in 1.4 above
2.2 Using Endpoint Test function Device
pcitest.sh added in tools/pci/ can be used to run all the default PCI endpoint
tests. Before pcitest.sh can be used pcitest.c should be compiled using the
following commands.
tests. To compile this tool the following commands should be used:
cd <kernel-dir>
make headers_install ARCH=arm
arm-linux-gnueabihf-gcc -Iusr/include tools/pci/pcitest.c -o pcitest
cp pcitest <rootfs>/usr/sbin/
cp tools/pci/pcitest.sh <rootfs>
# cd <kernel-dir>
# make -C tools/pci
or if you desire to compile and install in your system:
# cd <kernel-dir>
# make -C tools/pci install
The tool and script will be located in <rootfs>/usr/bin/
2.2.1 pcitest.sh Output
# ./pcitest.sh
# pcitest.sh
BAR tests
BAR0: OKAY
......
......@@ -110,7 +110,7 @@ The actual steps taken by a platform to recover from a PCI error
event will be platform-dependent, but will follow the general
sequence described below.
STEP 0: Error Event: ERR_NONFATAL
STEP 0: Error Event
-------------------
A PCI bus error is detected by the PCI hardware. On powerpc, the slot
is isolated, in that all I/O is blocked: all reads return 0xffffffff,
......@@ -228,7 +228,13 @@ proceeds to either STEP3 (Link Reset) or to STEP 5 (Resume Operations).
If any driver returned PCI_ERS_RESULT_NEED_RESET, then the platform
proceeds to STEP 4 (Slot Reset)
STEP 3: Slot Reset
STEP 3: Link Reset
------------------
The platform resets the link. This is a PCI-Express specific step
and is done whenever a fatal error has been detected that can be
"solved" by resetting the link.
STEP 4: Slot Reset
------------------
In response to a return value of PCI_ERS_RESULT_NEED_RESET, the
......@@ -314,7 +320,7 @@ Failure).
>>> However, it probably should.
STEP 4: Resume Operations
STEP 5: Resume Operations
-------------------------
The platform will call the resume() callback on all affected device
drivers if all drivers on the segment have returned
......@@ -326,7 +332,7 @@ a result code.
At this point, if a new error happens, the platform will restart
a new error recovery sequence.
STEP 5: Permanent Failure
STEP 6: Permanent Failure
-------------------------
A "permanent failure" has occurred, and the platform cannot recover
the device. The platform will call error_detected() with a
......@@ -349,27 +355,6 @@ errors. See the discussion in powerpc/eeh-pci-error-recovery.txt
for additional detail on real-life experience of the causes of
software errors.
STEP 0: Error Event: ERR_FATAL
-------------------
PCI bus error is detected by the PCI hardware. On powerpc, the slot is
isolated, in that all I/O is blocked: all reads return 0xffffffff, all
writes are ignored.
STEP 1: Remove devices
--------------------
Platform removes the devices depending on the error agent, it could be
this port for all subordinates or upstream component (likely downstream
port)
STEP 2: Reset link
--------------------
The platform resets the link. This is a PCI-Express specific step and is
done whenever a fatal error has been detected that can be "solved" by
resetting the link.
STEP 3: Re-enumerate the devices
--------------------
Initiates the re-enumeration.
Conclusion; General Remarks
---------------------------
......
00-INDEX
- This file
arrayRCU.txt
- Using RCU to Protect Read-Mostly Arrays
checklist.txt
- Review Checklist for RCU Patches
listRCU.txt
- Using RCU to Protect Read-Mostly Linked Lists
lockdep.txt
- RCU and lockdep checking
lockdep-splat.txt
- RCU Lockdep splats explained.
NMI-RCU.txt
- Using RCU to Protect Dynamic NMI Handlers
rcu_dereference.txt
- Proper care and feeding of return values from rcu_dereference()
rcubarrier.txt
- RCU and Unloadable Modules
rculist_nulls.txt
- RCU list primitives for use with SLAB_TYPESAFE_BY_RCU
rcuref.txt
- Reference-count design for elements of lists/arrays protected by RCU
rcu.txt
- RCU Concepts
RTFP.txt
- List of RCU papers (bibliography) going back to 1980.
stallwarn.txt
- RCU CPU stall warnings (module parameter rcu_cpu_stall_suppress)
torture.txt
- RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST)
UP.txt
- RCU on Uniprocessor Systems
whatisRCU.txt
- What is RCU?
......@@ -1227,9 +1227,11 @@ to overflow the counter, this approach corrects the
CPU enters the idle loop from process context.
</p><p>The <tt>-&gt;dynticks</tt> field counts the corresponding
CPU's transitions to and from dyntick-idle mode, so that this counter
has an even value when the CPU is in dyntick-idle mode and an odd
value otherwise.
CPU's transitions to and from either dyntick-idle or user mode, so
that this counter has an even value when the CPU is in dyntick-idle
mode or user mode and an odd value otherwise. The transitions to/from
user mode need to be counted for user mode adaptive-ticks support
(see timers/NO_HZ.txt).
</p><p>The <tt>-&gt;rcu_need_heavy_qs</tt> field is used
to record the fact that the RCU core code would really like to
......@@ -1372,8 +1374,7 @@ that is, if the CPU is currently idle.
Accessor Functions</a></h3>
<p>The following listing shows the
<tt>rcu_get_root()</tt>, <tt>rcu_for_each_node_breadth_first</tt>,
<tt>rcu_for_each_nonleaf_node_breadth_first()</tt>, and
<tt>rcu_get_root()</tt>, <tt>rcu_for_each_node_breadth_first</tt> and
<tt>rcu_for_each_leaf_node()</tt> function and macros:
<pre>
......@@ -1386,13 +1387,9 @@ Accessor Functions</a></h3>
7 for ((rnp) = &amp;(rsp)-&gt;node[0]; \
8 (rnp) &lt; &amp;(rsp)-&gt;node[NUM_RCU_NODES]; (rnp)++)
9
10 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
11 for ((rnp) = &amp;(rsp)-&gt;node[0]; \
12 (rnp) &lt; (rsp)-&gt;level[NUM_RCU_LVLS - 1]; (rnp)++)
13
14 #define rcu_for_each_leaf_node(rsp, rnp) \
15 for ((rnp) = (rsp)-&gt;level[NUM_RCU_LVLS - 1]; \
16 (rnp) &lt; &amp;(rsp)-&gt;node[NUM_RCU_NODES]; (rnp)++)
10 #define rcu_for_each_leaf_node(rsp, rnp) \
11 for ((rnp) = (rsp)-&gt;level[NUM_RCU_LVLS - 1]; \
12 (rnp) &lt; &amp;(rsp)-&gt;node[NUM_RCU_NODES]; (rnp)++)
</pre>
<p>The <tt>rcu_get_root()</tt> simply returns a pointer to the
......@@ -1405,10 +1402,7 @@ macro takes advantage of the layout of the <tt>rcu_node</tt>
structures in the <tt>rcu_state</tt> structure's
<tt>-&gt;node[]</tt> array, performing a breadth-first traversal by
simply traversing the array in order.
The <tt>rcu_for_each_nonleaf_node_breadth_first()</tt> macro operates
similarly, but traverses only the first part of the array, thus excluding
the leaf <tt>rcu_node</tt> structures.
Finally, the <tt>rcu_for_each_leaf_node()</tt> macro traverses only
Similarly, the <tt>rcu_for_each_leaf_node()</tt> macro traverses only
the last part of the array, thus traversing only the leaf
<tt>rcu_node</tt> structures.
......@@ -1416,15 +1410,14 @@ the last part of the array, thus traversing only the leaf
<tr><th>&nbsp;</th></tr>
<tr><th align="left">Quick Quiz:</th></tr>
<tr><td>
What do <tt>rcu_for_each_nonleaf_node_breadth_first()</tt> and
What does
<tt>rcu_for_each_leaf_node()</tt> do if the <tt>rcu_node</tt> tree
contains only a single node?
</td></tr>
<tr><th align="left">Answer:</th></tr>
<tr><td bgcolor="#ffffff"><font color="ffffff">
In the single-node case,
<tt>rcu_for_each_nonleaf_node_breadth_first()</tt> is a no-op
and <tt>rcu_for_each_leaf_node()</tt> traverses the single node.
<tt>rcu_for_each_leaf_node()</tt> traverses the single node.
</font></td></tr>
<tr><td>&nbsp;</td></tr>
</table>
......
......@@ -12,10 +12,9 @@ high efficiency and minimal disturbance, expedited grace periods accept
lower efficiency and significant disturbance to attain shorter latencies.
<p>
There are three flavors of RCU (RCU-bh, RCU-preempt, and RCU-sched),
but only two flavors of expedited grace periods because the RCU-bh
expedited grace period maps onto the RCU-sched expedited grace period.
Each of the remaining two implementations is covered in its own section.
There are two flavors of RCU (RCU-preempt and RCU-sched), with an earlier
third RCU-bh flavor having been implemented in terms of the other two.
Each of the two implementations is covered in its own section.
<ol>
<li> <a href="#Expedited Grace Period Design">
......@@ -158,7 +157,7 @@ whether or not the current CPU is in an RCU read-side critical section.
The best that <tt>sync_sched_exp_handler()</tt> can do is to check
for idle, on the off-chance that the CPU went idle while the IPI
was in flight.
If the CPU is idle, then tt>sync_sched_exp_handler()</tt> reports
If the CPU is idle, then <tt>sync_sched_exp_handler()</tt> reports
the quiescent state.
<p>
......
......@@ -87,7 +87,3 @@ o Where can I find more information on RCU?
See the RTFP.txt file in this directory.
Or point your browser at http://www.rdrop.com/users/paulmck/RCU/.
o What are all these files in this directory?
See 00-INDEX for the list.
......@@ -16,12 +16,9 @@ o A CPU looping in an RCU read-side critical section.
o A CPU looping with interrupts disabled.
o A CPU looping with preemption disabled. This condition can
result in RCU-sched stalls and, if ksoftirqd is in use, RCU-bh
stalls.
o A CPU looping with preemption disabled.
o A CPU looping with bottom halves disabled. This condition can
result in RCU-sched and RCU-bh stalls.
o A CPU looping with bottom halves disabled.
o For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
without invoking schedule(). If the looping in the kernel is
......@@ -87,9 +84,9 @@ o A hardware failure. This is quite unlikely, but has occurred
This resulted in a series of RCU CPU stall warnings, eventually
leading the realization that the CPU had failed.
The RCU, RCU-sched, RCU-bh, and RCU-tasks implementations have CPU stall
warning. Note that SRCU does -not- have CPU stall warnings. Please note
that RCU only detects CPU stalls when there is a grace period in progress.
The RCU, RCU-sched, and RCU-tasks implementations have CPU stall warning.
Note that SRCU does -not- have CPU stall warnings. Please note that
RCU only detects CPU stalls when there is a grace period in progress.
No grace period, no CPU stall warnings.
To diagnose the cause of the stall, inspect the stack traces.
......
......@@ -934,7 +934,8 @@ c. Do you need to treat NMI handlers, hardirq handlers,
d. Do you need RCU grace periods to complete even in the face
of softirq monopolization of one or more of the CPUs? For
example, is your code subject to network-based denial-of-service
attacks? If so, you need RCU-bh.
attacks? If so, you should disable softirq across your readers,
for example, by using rcu_read_lock_bh().
e. Is your workload too update-intensive for normal use of
RCU, but inappropriate for other synchronization mechanisms?
......
================================
PSI - Pressure Stall Information
================================
:Date: April, 2018
:Author: Johannes Weiner <hannes@cmpxchg.org>
When CPU, memory or IO devices are contended, workloads experience
latency spikes, throughput losses, and run the risk of OOM kills.
Without an accurate measure of such contention, users are forced to
either play it safe and under-utilize their hardware resources, or
roll the dice and frequently suffer the disruptions resulting from
excessive overcommit.
The psi feature identifies and quantifies the disruptions caused by
such resource crunches and the time impact it has on complex workloads
or even entire systems.
Having an accurate measure of productivity losses caused by resource
scarcity aids users in sizing workloads to hardware--or provisioning
hardware according to workload demand.
As psi aggregates this information in realtime, systems can be managed
dynamically using techniques such as load shedding, migrating jobs to
other systems or data centers, or strategically pausing or killing low
priority or restartable batch jobs.
This allows maximizing hardware utilization without sacrificing
workload health or risking major disruptions such as OOM kills.
Pressure interface
==================
Pressure information for each resource is exported through the
respective file in /proc/pressure/ -- cpu, memory, and io.
The format for CPU is as such:
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
and for memory and IO:
some avg10=0.00 avg60=0.00 avg300=0.00 total=0
full avg10=0.00 avg60=0.00 avg300=0.00 total=0
The "some" line indicates the share of time in which at least some
tasks are stalled on a given resource.
The "full" line indicates the share of time in which all non-idle
tasks are stalled on a given resource simultaneously. In this state
actual CPU cycles are going to waste, and a workload that spends
extended time in this state is considered to be thrashing. This has
severe impact on performance, and it's useful to distinguish this
situation from a state where some tasks are stalled but the CPU is
still doing productive work. As such, time spent in this subset of the
stall state is tracked separately and exported in the "full" averages.
The ratios are tracked as recent trends over ten, sixty, and three
hundred second windows, which gives insight into short term events as
well as medium and long term trends. The total absolute stall time is
tracked and exported as well, to allow detection of latency spikes
which wouldn't necessarily make a dent in the time averages, or to
average trends over custom time frames.
Cgroup2 interface
=================
In a system with a CONFIG_CGROUP=y kernel and the cgroup2 filesystem
mounted, pressure stall information is also tracked for tasks grouped
into cgroups. Each subdirectory in the cgroupfs mountpoint contains
cpu.pressure, memory.pressure, and io.pressure files; the format is
the same as the /proc/pressure/ files.
......@@ -64,8 +64,8 @@ The sysctl settings (writable only with ``CAP_SYS_PTRACE``) are:
Using ``PTRACE_TRACEME`` is unchanged.
2 - admin-only attach:
only processes with ``CAP_SYS_PTRACE`` may use ptrace
with ``PTRACE_ATTACH``, or through children calling ``PTRACE_TRACEME``.
only processes with ``CAP_SYS_PTRACE`` may use ptrace, either with
``PTRACE_ATTACH`` or through children calling ``PTRACE_TRACEME``.
3 - no attach:
no processes may use ptrace with ``PTRACE_ATTACH`` nor via
......
......@@ -51,8 +51,7 @@ Documentation
- There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. See Documentation/00-INDEX for a list of what
is contained in each file. Please read the
drivers for example. Please read the
:ref:`Documentation/process/changes.rst <changes>` file, as it
contains information about the problems, which may result by upgrading
your kernel.
......
......@@ -966,6 +966,12 @@ All time durations are in microseconds.
$PERIOD duration. "max" for $MAX indicates no limit. If only
one number is written, $MAX is updated.
cpu.pressure
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for CPU. See
Documentation/accounting/psi.txt for details.
Memory
------
......@@ -1127,6 +1133,10 @@ PAGE_SIZE multiple when read back.
disk readahead. For now OOM in memory cgroup kills
tasks iff shortage has happened inside page fault.
This event is not raised if the OOM killer is not
considered as an option, e.g. for failed high-order
allocations.
oom_kill
The number of processes belonging to this cgroup
killed by any kind of OOM killer.
......@@ -1271,6 +1281,12 @@ PAGE_SIZE multiple when read back.
higher than the limit for an extended period of time. This
reduces the impact on the workload and memory management.
memory.pressure
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for memory. See
Documentation/accounting/psi.txt for details.
Usage Guidelines
~~~~~~~~~~~~~~~~
......@@ -1408,6 +1424,12 @@ IO Interface Files
8:16 rbps=2097152 wbps=max riops=max wiops=max
io.pressure
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for IO. See
Documentation/accounting/psi.txt for details.
Writeback
~~~~~~~~~
......
This diff is collapsed.
......@@ -71,6 +71,7 @@ configure specific aspects of kernel behavior to your liking.
java
ras
bcache
ext4
pm/index
thunderbolt
LSM/index
......
......@@ -856,6 +856,12 @@
causing system reset or hang due to sending
INIT from AP to BSP.
perf_v4_pmi= [X86,INTEL]
Format: <bool>
Disable Intel PMU counter freezing feature.
The feature only exists starting from
Arch Perfmon v4 (Skylake and newer).
disable_ddw [PPC/PSERIES]
Disable Dynamic DMA Window support. Use this if
to workaround buggy firmware.
......@@ -1063,7 +1069,7 @@
earlyprintk=serial[,0x...[,baudrate]]
earlyprintk=ttySn[,baudrate]
earlyprintk=dbgp[debugController#]
earlyprintk=pciserial,bus:device.function[,baudrate]
earlyprintk=pciserial[,force],bus:device.function[,baudrate]
earlyprintk=xdbc[xhciController#]
earlyprintk is useful when the kernel crashes before
......@@ -1095,6 +1101,10 @@
The sclp output can only be used on s390.
The optional "force" to "pciserial" enables use of a
PCI device even when its classcode is not of the
UART class.
edac_report= [HW,EDAC] Control how to report EDAC event
Format: {"on" | "off" | "force"}
on: enable EDAC to report H/W event. May be overridden
......@@ -1385,6 +1395,11 @@
hvc_iucv_allow= [S390] Comma-separated list of z/VM user IDs.
If specified, z/VM IUCV HVC accepts connections
from listed z/VM user IDs only.
hv_nopvspin [X86,HYPER_V] Disables the paravirt spinlock optimizations
which allow the hypervisor to 'idle' the
guest on lock contention.
keep_bootcon [KNL]
Do not unregister boot console at start. This is only
useful for debugging when something happens in the window
......@@ -1749,12 +1764,24 @@
nobypass [PPC/POWERNV]
Disable IOMMU bypass, using IOMMU for PCI devices.
iommu.strict= [ARM64] Configure TLB invalidation behaviour
Format: { "0" | "1" }
0 - Lazy mode.
Request that DMA unmap operations use deferred
invalidation of hardware TLBs, for increased
throughput at the cost of reduced device isolation.
Will fall back to strict mode if not supported by
the relevant IOMMU driver.
1 - Strict mode (default).
DMA unmap operations invalidate IOMMU hardware TLBs
synchronously.
iommu.passthrough=
[ARM64] Configure DMA to bypass the IOMMU by default.
Format: { "0" | "1" }
0 - Use IOMMU translation for DMA.
1 - Bypass the IOMMU for DMA.
unset - Use IOMMU translation for DMA.
unset - Use value of CONFIG_IOMMU_DEFAULT_PASSTHROUGH.
io7= [HW] IO7 for Marvel based alpha systems
See comment before marvel_specify_io7 in
......@@ -2274,6 +2301,8 @@
ltpc= [NET]
Format: <io>,<irq>,<dma>
lsm.debug [SECURITY] Enable LSM initialization debugging output.
machvec= [IA-64] Force the use of a particular machine-vector
(machvec) in a generic kernel.
Example: machvec=hpzx1_swiotlb
......@@ -2404,7 +2433,7 @@
seconds. Use this parameter to check at some
other rate. 0 disables periodic checking.
memtest= [KNL,X86,ARM] Enable memtest
memtest= [KNL,X86,ARM,PPC] Enable memtest
Format: <integer>
default : 0 <disable>
Specifies the number of memtest passes to be
......@@ -3476,6 +3505,10 @@
before loading.
See Documentation/blockdev/ramdisk.txt.
psi= [KNL] Enable or disable pressure stall information
tracking.
Format: <bool>
psmouse.proto= [HW,MOUSE] Highest PS2 mouse protocol extension to
probe for; one of (bare|imps|exps|lifebook|any).
psmouse.rate= [HW,MOUSE] Set desired mouse report rate, in reports
......@@ -3540,14 +3573,14 @@
In kernels built with CONFIG_RCU_NOCB_CPU=y, set
the specified list of CPUs to be no-callback CPUs.
Invocation of these CPUs' RCU callbacks will
be offloaded to "rcuox/N" kthreads created for
that purpose, where "x" is "b" for RCU-bh, "p"
for RCU-preempt, and "s" for RCU-sched, and "N"
is the CPU number. This reduces OS jitter on the
offloaded CPUs, which can be useful for HPC and
real-time workloads. It can also improve energy
efficiency for asymmetric multiprocessors.
Invocation of these CPUs' RCU callbacks will be
offloaded to "rcuox/N" kthreads created for that
purpose, where "x" is "p" for RCU-preempt, and
"s" for RCU-sched, and "N" is the CPU number.
This reduces OS jitter on the offloaded CPUs,
which can be useful for HPC and real-time
workloads. It can also improve energy efficiency
for asymmetric multiprocessors.
rcu_nocb_poll [KNL]
Rather than requiring that offloaded CPUs
......@@ -3601,7 +3634,14 @@
Set required age in jiffies for a
given grace period before RCU starts
soliciting quiescent-state help from
rcu_note_context_switch().
rcu_note_context_switch(). If not specified, the
kernel will calculate a value based on the most
recent settings of rcutree.jiffies_till_first_fqs
and rcutree.jiffies_till_next_fqs.
This calculated value may be viewed in
rcutree.jiffies_to_sched_qs. Any attempt to
set rcutree.jiffies_to_sched_qs will be
cheerfully overwritten.
rcutree.jiffies_till_first_fqs= [KNL]
Set delay from grace-period initialization to
......@@ -3869,12 +3909,6 @@
rcupdate.rcu_self_test= [KNL]
Run the RCU early boot self tests
rcupdate.rcu_self_test_bh= [KNL]
Run the RCU bh early boot self tests
rcupdate.rcu_self_test_sched= [KNL]
Run the RCU sched early boot self tests
rdinit= [KNL]
Format: <full_path>
Run specified binary instead of /init from the ramdisk,
......@@ -4165,9 +4199,13 @@
spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.
The default operation protects the kernel from
user space attacks.
on - unconditionally enable
off - unconditionally disable
on - unconditionally enable, implies
spectre_v2_user=on
off - unconditionally disable, implies
spectre_v2_user=off
auto - kernel detects whether your CPU model is
vulnerable
......@@ -4177,6 +4215,12 @@
CONFIG_RETPOLINE configuration option, and the
compiler with which the kernel was built.
Selecting 'on' will also enable the mitigation
against user space to user space task attacks.
Selecting 'off' will disable both the kernel and
the user space protections.
Specific mitigations can also be selected manually:
retpoline - replace indirect branches
......@@ -4186,6 +4230,48 @@
Not specifying this option is equivalent to
spectre_v2=auto.
spectre_v2_user=
[X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability between
user space tasks
on - Unconditionally enable mitigations. Is
enforced by spectre_v2=on
off - Unconditionally disable mitigations. Is
enforced by spectre_v2=off
prctl - Indirect branch speculation is enabled,
but mitigation can be enabled via prctl
per thread. The mitigation control state
is inherited on fork.
prctl,ibpb
- Like "prctl" above, but only STIBP is
controlled per thread. IBPB is issued
always when switching between different user
space processes.
seccomp
- Same as "prctl" above, but all seccomp
threads will enable the mitigation unless
they explicitly opt out.
seccomp,ibpb
- Like "seccomp" above, but only STIBP is
controlled per thread. IBPB is issued
always when switching between different
user space processes.
auto - Kernel selects the mitigation depending on
the available CPU features and vulnerability.
Default mitigation:
If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"
Not specifying this option is equivalent to
spectre_v2_user=auto.
spec_store_bypass_disable=
[HW] Control Speculative Store Bypass (SSB) Disable mitigation
(Speculative Store Bypass vulnerability)
......@@ -4610,7 +4696,8 @@
usbcore.old_scheme_first=
[USB] Start with the old device initialization
scheme (default 0 = off).
scheme, applies only to low and full-speed devices
(default 0 = off).
usbcore.usbfs_memory_mb=
[USB] Memory limit (in MB) for buffers allocated by
......@@ -4683,6 +4770,8 @@
prevent spurious wakeup);
n = USB_QUIRK_DELAY_CTRL_MSG (Device needs a
pause after every control message);
o = USB_QUIRK_HUB_SLOW_RESET (Hub needs extra
delay after resetting its port);
Example: quirks=0781:5580:bk,0a5c:5834:gij
usbhid.mousepoll=
......@@ -4825,6 +4914,18 @@
This is actually a boot loader parameter; the value is
passed to the kernel using a special protocol.
vm_debug[=options] [KNL] Available with CONFIG_DEBUG_VM=y.
May slow down system boot speed, especially when
enabled on systems with a large amount of memory.
All options are enabled by default, and this
interface is meant to allow for selectively
enabling or disabling specific virtual memory
debugging features.
Available options are:
P Enable page structure init time poisoning
- Disable all of the above options
vmalloc=nn[KMG] [KNL,BOOT] Forces the vmalloc area to have an exact
size of <nn>. This can be used to increase the
minimum size (128MB on x86). It can also be used to
......
......@@ -553,7 +553,7 @@ When nested virtualization is in use, three operating systems are involved:
the bare metal hypervisor, the nested hypervisor and the nested virtual
machine. VMENTER operations from the nested hypervisor into the nested
guest will always be processed by the bare metal hypervisor. If KVM is the
bare metal hypervisor it wiil:
bare metal hypervisor it will:
- Flush the L1D cache on every switch from the nested hypervisor to the
nested virtual machine, so that the nested hypervisor's secrets are not
......
......@@ -29,6 +29,7 @@ the Linux memory management.
hugetlbpage
idle_page_tracking
ksm
memory-hotplug
numa_memory_policy
pagemap
soft-dirty
......
This diff is collapsed.
......@@ -150,7 +150,7 @@ data structures necessary to handle the given policy and, possibly, to add
a governor ``sysfs`` interface to it. Next, the governor is started by
invoking its ``->start()`` callback.
That callback it expected to register per-CPU utilization update callbacks for
That callback is expected to register per-CPU utilization update callbacks for
all of the online CPUs belonging to the given policy with the CPU scheduler.
The utilization update callbacks will be invoked by the CPU scheduler on
important events, like task enqueue and dequeue, on every iteration of the
......
......@@ -465,6 +465,13 @@ Next, the following policy attributes have special meaning if
policy for the time interval between the last two invocations of the
driver's utilization update callback by the CPU scheduler for that CPU.
One more policy attribute is present if the `HWP feature is enabled in the
processor <Active Mode With HWP_>`_:
``base_frequency``
Shows the base frequency of the CPU. Any frequency above this will be
in the turbo frequency range.
The meaning of these attributes in the `passive mode <Passive Mode_>`_ is the
same as for other scaling drivers.
......
......@@ -26,23 +26,35 @@ information is helpful. Any exploit code is very helpful and will not
be released without consent from the reporter unless it has already been
made public.
Disclosure
----------
The goal of the Linux kernel security team is to work with the bug
submitter to understand and fix the bug. We prefer to publish the fix as
soon as possible, but try to avoid public discussion of the bug itself
and leave that to others.
Publishing the fix may be delayed when the bug or the fix is not yet
fully understood, the solution is not well-tested or for vendor
coordination. However, we expect these delays to be short, measurable in
days, not weeks or months. A release date is negotiated by the security
team working with the bug submitter as well as vendors. However, the
kernel security team holds the final say when setting a timeframe. The
timeframe varies from immediate (esp. if it's already publicly known bug)
to a few weeks. As a basic default policy, we expect report date to
release date to be on the order of 7 days.
Disclosure and embargoed information
------------------------------------
The security list is not a disclosure channel. For that, see Coordination
below.
Once a robust fix has been developed, the release process starts. Fixes
for publicly known bugs are released immediately.
Although our preference is to release fixes for publicly undisclosed bugs
as soon as they become available, this may be postponed at the request of
the reporter or an affected party for up to 7 calendar days from the start
of the release process, with an exceptional extension to 14 calendar days
if it is agreed that the criticality of the bug requires more time. The
only valid reason for deferring the publication of a fix is to accommodate
the logistics of QA and large scale rollouts which require release
coordination.
Whilst embargoed information may be shared with trusted individuals in
order to develop a fix, such information will not be published alongside
the fix or on any other disclosure channel without the permission of the
reporter. This includes but is not limited to the original bug report
and followup discussions (if any), exploits, CVE information or the
identity of the reporter.
In other words our only interest is in getting bugs fixed. All other
information submitted to the security list and any followup discussions
of the report are treated confidentially even after the embargo has been
lifted, in perpetuity.
Coordination
------------
......@@ -68,7 +80,7 @@ may delay the bug handling. If a reporter wishes to have a CVE identifier
assigned ahead of public disclosure, they will need to contact the private
linux-distros list, described above. When such a CVE identifier is known
before a patch is provided, it is desirable to mention it in the commit
message, though.
message if the reporter agrees.
Non-disclosure agreements
-------------------------
......
00-INDEX
- this file
Booting
- requirements for booting
CCN.txt
- Cache Coherent Network ring-bus and perf PMU driver.
Interrupts
- ARM Interrupt subsystem documentation
IXP4xx
- Intel IXP4xx Network processor.
Netwinder
- Netwinder specific documentation
Porting
- Symbol definitions for porting Linux to a new ARM machine.
Setup
- Kernel initialization parameters on ARM Linux
README
- General ARM documentation
SA1100/
- SA1100 documentation
Samsung-S3C24XX/
- S3C24XX ARM Linux Overview
SPEAr/
- ST SPEAr platform Linux Overview
VFP/
- Release notes for Linux Kernel Vector Floating Point support code
cluster-pm-race-avoidance.txt
- Algorithm for CPU and Cluster setup/teardown
empeg/
- Ltd's Empeg MP3 Car Audio Player
firmware.txt
- Secure firmware registration and calling.
kernel_mode_neon.txt
- How to use NEON instructions in kernel mode
kernel_user_helpers.txt
- Helper functions in kernel space made available for userspace.
mem_alignment
- alignment abort handler documentation
memory.txt
- description of the virtual memory layout
nwfpe/
- NWFPE floating point emulator documentation
swp_emulation
- SWP/SWPB emulation handler/logging description
tcm.txt
- ARM Tightly Coupled Memory
uefi.txt
- [U]EFI configuration and runtime services documentation
vlocks.txt
- Voting locks, low-level mechanism relying on memory system atomic writes.
......@@ -26,6 +26,7 @@ Offset Value Purpose
0x20 0xfcba0d10 (Magic cookie) AFTR
0x24 exynos_cpu_resume_ns AFTR
0x28 + 4*cpu 0x8 (Magic cookie, Exynos3250) AFTR
0x28 0x0 or last value during resume (Exynos542x) System suspend
2. Secure mode
......
......@@ -78,11 +78,11 @@ HWCAP_EVTSTRM
HWCAP_AES
Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0001.
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.
HWCAP_PMULL
Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0010.
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.
HWCAP_SHA1
......@@ -153,7 +153,7 @@ HWCAP_ASIMDDP
HWCAP_SHA512
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0002.
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0010.
HWCAP_SVE
......@@ -173,8 +173,12 @@ HWCAP_USCAT
HWCAP_ILRCPC
Functionality implied by ID_AA64ISR1_EL1.LRCPC == 0b0002.
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HugeTLBpage on ARM64
====================
Hugepage relies on making efficient use of TLBs to improve performance of
address translations. The benefit depends on both -
- the size of hugepages
- size of entries supported by the TLBs
The ARM64 port supports two flavours of hugepages.
1) Block mappings at the pud/pmd level
--------------------------------------
These are regular hugepages where a pmd or a pud page table entry points to a
block of memory. Regardless of the supported size of entries in TLB, block
mappings reduce the depth of page table walk needed to translate hugepage
addresses.
2) Using the Contiguous bit
---------------------------
The architecture provides a contiguous bit in the translation table entries
(D4.5.3, ARM DDI 0487C.a) that hints to the MMU to indicate that it is one of a
contiguous set of entries that can be cached in a single TLB entry.
The contiguous bit is used in Linux to increase the mapping size at the pmd and
pte (last) level. The number of supported contiguous entries varies by page size
and level of the page table.
The following hugepage sizes are supported -
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
......@@ -56,6 +56,8 @@ stable kernels.
| ARM | Cortex-A72 | #853709 | N/A |
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
| ARM | Cortex-A76 | #1188873 | ARM64_ERRATUM_1188873 |
| ARM | Cortex-A76 | #1286807 | ARM64_ERRATUM_1286807 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
......
00-INDEX
- This file
bfq-iosched.txt
- BFQ IO scheduler and its tunables
biodoc.txt
- Notes on the Generic Block Layer Rewrite in Linux 2.5
biovecs.txt
- Immutable biovecs and biovec iterators
capability.txt
- Generic Block Device Capability (/sys/block/<device>/capability)
cfq-iosched.txt
- CFQ IO scheduler tunables
cmdline-partition.txt
- how to specify block device partitions on kernel command line
data-integrity.txt
- Block data integrity
deadline-iosched.txt
- Deadline IO scheduler tunables
ioprio.txt
- Block io priorities (in CFQ scheduler)
pr.txt
- Block layer support for Persistent Reservations
null_blk.txt
- Null block for block-layer benchmarking.
queue-sysfs.txt
- Queue's sysfs entries
request.txt
- The members of struct request (in include/linux/blkdev.h)
stat.txt
- Block layer statistics in /sys/block/<device>/stat
switching-sched.txt
- Switching I/O schedulers at runtime
writeback_cache_control.txt
- Control of volatile write back caches
00-INDEX
- this file
README.DAC960
- info on Mylex DAC960/DAC1100 PCI RAID Controller Driver for Linux.
cciss.txt
- info, major/minor #'s for Compaq's SMART Array Controllers.
cpqarray.txt
- info on using Compaq's SMART2 Intelligent Disk Array Controllers.
floppy.txt
- notes and driver options for the floppy disk driver.
mflash.txt
- info on mGine m(g)flash driver for linux.
nbd.txt
- info on a TCP implementation of a network block device.
paride.txt
- information about the parallel port IDE subsystem.
ramdisk.txt
- short guide on how to set up and use the RAM disk.
This diff is collapsed.
......@@ -190,7 +190,7 @@ whitespace:
notify_free Depending on device usage scenario it may account
a) the number of pages freed because of swap slot free
notifications or b) the number of pages freed because of
REQ_DISCARD requests sent by bio. The former ones are
REQ_OP_DISCARD requests sent by bio. The former ones are
sent to a swap block device when a swap slot is freed,
which implies that this disk is being used as a swap disk.
The latter ones are sent by filesystem mounted with
......
00-INDEX
- this file (info on CD-ROMs and Linux)
Makefile
- only used to generate TeX output from the documentation.
cdrom-standard.tex
- LaTeX document on standardizing the CD-ROM programming interface.
ide-cd
- info on setting up and using ATAPI (aka IDE) CD-ROMs.
packet-writing.txt
- Info on the CDRW packet writing module
00-INDEX
- this file
blkio-controller.txt
- Description for Block IO Controller, implementation and usage details.
cgroups.txt
- Control Groups definition, implementation details, examples and API.
cpuacct.txt
- CPU Accounting Controller; account CPU usage for groups of tasks.
cpusets.txt
- documents the cpusets feature; assign CPUs and Mem to a set of tasks.
admin-guide/devices.rst
- Device Whitelist Controller; description, interface and security.
freezer-subsystem.txt
- checkpointing; rationale to not use signals, interface.
hugetlb.txt
- HugeTLB Controller implementation and usage details.
memcg_test.txt
- Memory Resource Controller; implementation details.
memory.txt
- Memory Resource Controller; design, accounting, interface, testing.
net_cls.txt
- Network classifier cgroups details and usages.
net_prio.txt
- Network priority cgroups details and usages.
pids.txt
- Process number cgroups details and usages.
......@@ -27,7 +27,7 @@ cgroup.
Currently user space applications can easily take away all the rdma verb
specific resources such as AH, CQ, QP, MR etc. Due to which other applications
in other cgroup or kernel space ULPs may not even get chance to allocate any
rdma resources. This can leads to service unavailability.
rdma resources. This can lead to service unavailability.
Therefore RDMA controller is needed through which resource consumption
of processes can be limited. Through this controller different rdma
......
......@@ -259,7 +259,7 @@ latex_elements = {
'papersize': 'a4paper',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '8pt',
'pointsize': '11pt',
# Latex figure (float) alignment
#'figure_align': 'htbp',
......@@ -272,8 +272,8 @@ latex_elements = {
'preamble': '''
% Use some font with UTF-8 support with XeLaTeX
\\usepackage{fontspec}
\\setsansfont{DejaVu Serif}
\\setromanfont{DejaVu Sans}
\\setsansfont{DejaVu Sans}
\\setromanfont{DejaVu Serif}
\\setmonofont{DejaVu Sans Mono}
'''
......@@ -383,6 +383,10 @@ latex_documents = [
'The kernel development community', 'manual'),
('filesystems/index', 'filesystems.tex', 'Linux Filesystems API',
'The kernel development community', 'manual'),
('admin-guide/ext4', 'ext4-admin-guide.tex', 'ext4 Administration Guide',
'ext4 Community', 'manual'),
('filesystems/ext4/index', 'ext4-data-structures.tex',
'ext4 Data Structures and Algorithms', 'ext4 Community', 'manual'),
('gpu/index', 'gpu.tex', 'Linux GPU Driver Developer\'s Guide',
'The kernel development community', 'manual'),
('input/index', 'linux-input.tex', 'The Linux input driver subsystem',
......
......@@ -5,54 +5,23 @@ Boot time memory management
Early system initialization cannot use "normal" memory management
simply because it is not set up yet. But there is still need to
allocate memory for various data structures, for instance for the
physical page allocator. To address this, a specialized allocator
called the :ref:`Boot Memory Allocator <bootmem>`, or bootmem, was
introduced. Several years later PowerPC developers added a "Logical
Memory Blocks" allocator, which was later adopted by other
architectures and renamed to :ref:`memblock <memblock>`. There is also
a compatibility layer called `nobootmem` that translates bootmem
allocation interfaces to memblock calls.
physical page allocator.
The selection of the early allocator is done using
``CONFIG_NO_BOOTMEM`` and ``CONFIG_HAVE_MEMBLOCK`` kernel
configuration options. These options are enabled or disabled
statically by the architectures' Kconfig files.
* Architectures that rely only on bootmem select
``CONFIG_NO_BOOTMEM=n && CONFIG_HAVE_MEMBLOCK=n``.
* The users of memblock with the nobootmem compatibility layer set
``CONFIG_NO_BOOTMEM=y && CONFIG_HAVE_MEMBLOCK=y``.
* And for those that use both memblock and bootmem the configuration
includes ``CONFIG_NO_BOOTMEM=n && CONFIG_HAVE_MEMBLOCK=y``.
Whichever allocator is used, it is the responsibility of the
architecture specific initialization to set it up in
:c:func:`setup_arch` and tear it down in :c:func:`mem_init` functions.
A specialized allocator called ``memblock`` performs the
boot time memory management. The architecture specific initialization
must set it up in :c:func:`setup_arch` and tear it down in
:c:func:`mem_init` functions.
Once the early memory management is available it offers a variety of
functions and macros for memory allocations. The allocation request
may be directed to the first (and probably the only) node or to a
particular node in a NUMA system. There are API variants that panic
when an allocation fails and those that don't. And more recent and
advanced memblock even allows controlling its own behaviour.
.. _bootmem:
Bootmem
=======
(mostly stolen from Mel Gorman's "Understanding the Linux Virtual
Memory Manager" `book`_)
.. _book: https://www.kernel.org/doc/gorman/
.. kernel-doc:: mm/bootmem.c
:doc: bootmem overview
when an allocation fails and those that don't.
.. _memblock:
Memblock also offers a variety of APIs that control its own behaviour.
Memblock
========
Memblock Overview
=================
.. kernel-doc:: mm/memblock.c
:doc: memblock overview
......@@ -61,26 +30,6 @@ Memblock
Functions and structures
========================
Common API
----------
The functions that are described in this section are available
regardless of what early memory manager is enabled.
.. kernel-doc:: mm/nobootmem.c
Bootmem specific API
--------------------
These interfaces available only with bootmem, i.e when ``CONFIG_NO_BOOTMEM=n``
.. kernel-doc:: include/linux/bootmem.h
.. kernel-doc:: mm/bootmem.c
:nodocs:
Memblock specific API
---------------------
Here is the description of memblock data structures, functions and
macros. Some of them are actually internal, but since they are
documented it would be silly to omit them. Besides, reading the
......@@ -89,4 +38,4 @@ really happens under the hood.
.. kernel-doc:: include/linux/memblock.h
.. kernel-doc:: mm/memblock.c
:nodocs:
:functions:
.. _gfp_mask_from_fs_io:
=================================
GFP masks used from FS/IO context
=================================
......
.. SPDX-License-Identifier: CC-BY-SA-4.0
.. SPDX-License-Identifier: GPL-2.0+
=============
ID Allocation
......
......@@ -21,16 +21,20 @@ Core utilities
local_ops
workqueue
genericirq
xarray
flexible-arrays
librs
genalloc
errseq
printk-formats
circular-buffers
memory-allocation
mm-api
gfp_mask-from-fs-io
timekeeping
boot-time-mm
memory-hotplug
Interfaces for kernel debugging
===============================
......
=======================
Memory Allocation Guide
=======================
Linux provides a variety of APIs for memory allocation. You can
allocate small chunks using `kmalloc` or `kmem_cache_alloc` families,
large virtually contiguous areas using `vmalloc` and its derivatives,
or you can directly request pages from the page allocator with
`alloc_pages`. It is also possible to use more specialized allocators,
for instance `cma_alloc` or `zs_malloc`.
Most of the memory allocation APIs use GFP flags to express how that
memory should be allocated. The GFP acronym stands for "get free
pages", the underlying memory allocation function.
Diversity of the allocation APIs combined with the numerous GFP flags
makes the question "How should I allocate memory?" not that easy to
answer, although very likely you should use
::
kzalloc(<size>, GFP_KERNEL);
Of course there are cases when other allocation APIs and different GFP
flags must be used.
Get Free Page flags
===================
The GFP flags control the allocators behavior. They tell what memory
zones can be used, how hard the allocator should try to find free
memory, whether the memory can be accessed by the userspace etc. The
:ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` provides
reference documentation for the GFP flags and their combinations and
here we briefly outline their recommended usage:
* Most of the time ``GFP_KERNEL`` is what you need. Memory for the
kernel data structures, DMAable memory, inode cache, all these and
many other allocations types can use ``GFP_KERNEL``. Note, that
using ``GFP_KERNEL`` implies ``GFP_RECLAIM``, which means that
direct reclaim may be triggered under memory pressure; the calling
context must be allowed to sleep.
* If the allocation is performed from an atomic context, e.g interrupt
handler, use ``GFP_NOWAIT``. This flag prevents direct reclaim and
IO or filesystem operations. Consequently, under memory pressure
``GFP_NOWAIT`` allocation is likely to fail. Allocations which
have a reasonable fallback should be using ``GFP_NOWARN``.
* If you think that accessing memory reserves is justified and the kernel
will be stressed unless allocation succeeds, you may use ``GFP_ATOMIC``.
* Untrusted allocations triggered from userspace should be a subject
of kmem accounting and must have ``__GFP_ACCOUNT`` bit set. There
is the handy ``GFP_KERNEL_ACCOUNT`` shortcut for ``GFP_KERNEL``
allocations that should be accounted.
* Userspace allocations should use either of the ``GFP_USER``,
``GFP_HIGHUSER`` or ``GFP_HIGHUSER_MOVABLE`` flags. The longer
the flag name the less restrictive it is.
``GFP_HIGHUSER_MOVABLE`` does not require that allocated memory
will be directly accessible by the kernel and implies that the
data is movable.
``GFP_HIGHUSER`` means that the allocated memory is not movable,
but it is not required to be directly accessible by the kernel. An
example may be a hardware allocation that maps data directly into
userspace but has no addressing limitations.
``GFP_USER`` means that the allocated memory is not movable and it
must be directly accessible by the kernel.
You may notice that quite a few allocations in the existing code
specify ``GFP_NOIO`` or ``GFP_NOFS``. Historically, they were used to
prevent recursion deadlocks caused by direct memory reclaim calling
back into the FS or IO paths and blocking on already held
resources. Since 4.12 the preferred way to address this issue is to
use new scope APIs described in
:ref:`Documentation/core-api/gfp_mask-from-fs-io.rst <gfp_mask_from_fs_io>`.
Other legacy GFP flags are ``GFP_DMA`` and ``GFP_DMA32``. They are
used to ensure that the allocated memory is accessible by hardware
with limited addressing capabilities. So unless you are writing a
driver for a device with such restrictions, avoid using these flags.
And even with hardware with restrictions it is preferable to use
`dma_alloc*` APIs.
Selecting memory allocator
==========================
The most straightforward way to allocate memory is to use a function
from the :c:func:`kmalloc` family. And, to be on the safe size it's
best to use routines that set memory to zero, like
:c:func:`kzalloc`. If you need to allocate memory for an array, there
are :c:func:`kmalloc_array` and :c:func:`kcalloc` helpers.
The maximal size of a chunk that can be allocated with `kmalloc` is
limited. The actual limit depends on the hardware and the kernel
configuration, but it is a good practice to use `kmalloc` for objects
smaller than page size.
For large allocations you can use :c:func:`vmalloc` and
:c:func:`vzalloc`, or directly request pages from the page
allocator. The memory allocated by `vmalloc` and related functions is
not physically contiguous.
If you are not sure whether the allocation size is too large for
`kmalloc`, it is possible to use :c:func:`kvmalloc` and its
derivatives. It will try to allocate memory with `kmalloc` and if the
allocation fails it will be retried with `vmalloc`. There are
restrictions on which GFP flags can be used with `kvmalloc`; please
see :c:func:`kvmalloc_node` reference documentation. Note that
`kvmalloc` may return memory that is not physically contiguous.
If you need to allocate many identical objects you can use the slab
cache allocator. The cache should be set up with
:c:func:`kmem_cache_create` before it can be used. Afterwards
:c:func:`kmem_cache_alloc` and its convenience wrappers can allocate
memory from that cache.
When the allocated memory is no longer needed it must be freed. You
can use :c:func:`kvfree` for the memory allocated with `kmalloc`,
`vmalloc` and `kvmalloc`. The slab caches should be freed with
:c:func:`kmem_cache_free`. And don't forget to destroy the cache with
:c:func:`kmem_cache_destroy`.
.. _memory_hotplug:
==============
Memory hotplug
==============
Memory hotplug event notifier
=============================
Hotplugging events are sent to a notification queue.
There are six types of notification defined in ``include/linux/memory.h``:
MEM_GOING_ONLINE
Generated before new memory becomes available in order to be able to
prepare subsystems to handle memory. The page allocator is still unable
to allocate from the new memory.
MEM_CANCEL_ONLINE
Generated if MEM_GOING_ONLINE fails.
MEM_ONLINE
Generated when memory has successfully brought online. The callback may
allocate pages from the new memory.
MEM_GOING_OFFLINE
Generated to begin the process of offlining memory. Allocations are no
longer possible from the memory but some of the memory to be offlined
is still in use. The callback can be used to free memory known to a
subsystem from the indicated memory block.
MEM_CANCEL_OFFLINE
Generated if MEM_GOING_OFFLINE fails. Memory is available again from
the memory block that we attempted to offline.
MEM_OFFLINE
Generated after offlining memory is complete.
A callback routine can be registered by calling::
hotplug_memory_notifier(callback_func, priority)
Callback functions with higher values of priority are called before callback
functions with lower values.
A callback function must have the following prototype::
int callback_func(
struct notifier_block *self, unsigned long action, void *arg);
The first argument of the callback function (self) is a pointer to the block
of the notifier chain that points to the callback function itself.
The second argument (action) is one of the event types described above.
The third argument (arg) passes a pointer of struct memory_notify::
struct memory_notify {
unsigned long start_pfn;
unsigned long nr_pages;
int status_change_nid_normal;
int status_change_nid_high;
int status_change_nid;
}
- start_pfn is start_pfn of online/offline memory.
- nr_pages is # of pages of online/offline memory.
- status_change_nid_normal is set node id when N_NORMAL_MEMORY of nodemask
is (will be) set/clear, if this is -1, then nodemask status is not changed.
- status_change_nid_high is set node id when N_HIGH_MEMORY of nodemask
is (will be) set/clear, if this is -1, then nodemask status is not changed.
- status_change_nid is set node id when N_MEMORY of nodemask is (will be)
set/clear. It means a new(memoryless) node gets new memory by online and a
node loses all memory. If this is -1, then nodemask status is not changed.
If status_changed_nid* >= 0, callback should create/discard structures for the
node if necessary.
The callback routine shall return one of the values
NOTIFY_DONE, NOTIFY_OK, NOTIFY_BAD, NOTIFY_STOP
defined in ``include/linux/notifier.h``
NOTIFY_DONE and NOTIFY_OK have no effect on the further processing.
NOTIFY_BAD is used as response to the MEM_GOING_ONLINE, MEM_GOING_OFFLINE,
MEM_ONLINE, or MEM_OFFLINE action to cancel hotplugging. It stops
further processing of the notification queue.
NOTIFY_STOP stops further processing of the notification queue.
Locking Internals
=================
When adding/removing memory that uses memory block devices (i.e. ordinary RAM),
the device_hotplug_lock should be held to:
- synchronize against online/offline requests (e.g. via sysfs). This way, memory
block devices can only be accessed (.online/.state attributes) by user
space once memory has been fully added. And when removing memory, we
know nobody is in critical sections.
- synchronize against CPU hotplug and similar (e.g. relevant for ACPI and PPC)
Especially, there is a possible lock inversion that is avoided using
device_hotplug_lock when adding memory and user space tries to online that
memory faster than expected:
- device_online() will first take the device_lock(), followed by
mem_hotplug_lock
- add_memory_resource() will first take the mem_hotplug_lock, followed by
the device_lock() (while creating the devices, during bus_add_device()).
As the device is visible to user space before taking the device_lock(), this
can result in a lock inversion.
onlining/offlining of memory should be done via device_online()/
device_offline() - to make sure it is properly synchronized to actions
via sysfs. Holding device_hotplug_lock is advised (to e.g. protect online_type)
When adding/removing/onlining/offlining memory or adding/removing
heterogeneous/device memory, we should always hold the mem_hotplug_lock in
write mode to serialise memory hotplug (e.g. access to global/zone
variables).
In addition, mem_hotplug_lock (in contrast to device_hotplug_lock) in read
mode allows for a quite efficient get_online_mems/put_online_mems
implementation, so code accessing memory can protect from that memory
vanishing.
......@@ -14,6 +14,8 @@ User Space Memory Access
.. kernel-doc:: mm/util.c
:functions: get_user_pages_fast
.. _mm-api-gfp-flags:
Memory Allocation Controls
==========================
......
......@@ -376,15 +376,15 @@ correctness of the format string and va_list arguments.
Passed by reference.
kobjects
--------
Device tree nodes
-----------------
::
%pOF[fnpPcCF]
For printing kobject based structs (device nodes). Default behaviour is
For printing device tree node structures. Default behaviour is
equivalent to %pOFf.
- f - device node full_name
......@@ -420,9 +420,8 @@ struct clk
%pC pll1
%pCn pll1
For printing struct clk structures. %pC and %pCn print the name
(Common Clock Framework) or address (legacy clock framework) of the
structure.
For printing struct clk structures. %pC and %pCn print the name of the clock
(Common Clock Framework) or a unique 32-bit ID (legacy clock framework).
Passed by reference.
......
This diff is collapsed.
......@@ -86,9 +86,11 @@ transitions.
This will give a fine grained information about all the CPU frequency
transitions. The cat output here is a two dimensional matrix, where an entry
<i,j> (row i, column j) represents the count of number of transitions from
Freq_i to Freq_j. Freq_i is in descending order with increasing rows and
Freq_j is in descending order with increasing columns. The output here also
contains the actual freq values for each row and column for better readability.
Freq_i to Freq_j. Freq_i rows and Freq_j columns follow the sorting order in
which the driver has provided the frequency table initially to the cpufreq core
and so can be sorted (ascending or descending) or unsorted. The output here
also contains the actual freq values for each row and column for better
readability.
If the transition table is bigger than PAGE_SIZE, reading this will
return an -EFBIG error.
......
This diff is collapsed.
This diff is collapsed.
......@@ -159,7 +159,7 @@ Contributing new tests (details)
* If a test needs specific kernel config options enabled, add a config file in
the test directory to enable them.
e.g: tools/testing/selftests/android/ion/config
e.g: tools/testing/selftests/android/config
Test Harness
============
......
......@@ -33,6 +33,10 @@ Optional feature parameters:
All write I/O is silently ignored.
Read I/O is handled correctly.
error_writes:
All write I/O is failed with an error signalled.
Read I/O is handled correctly.
corrupt_bio_byte <Nth_byte> <direction> <value> <flags>:
During <down interval>, replace <Nth_byte> of the data of
each matching bio with <value>.
......
......@@ -38,7 +38,7 @@ inconsistent file system.
Any REQ_FUA requests bypass this flushing mechanism and are logged as soon as
they complete as those requests will obviously bypass the device cache.
Any REQ_DISCARD requests are treated like WRITE requests. Otherwise we would
Any REQ_OP_DISCARD requests are treated like WRITE requests. Otherwise we would
have all the DISCARD requests, and then the WRITE requests and then the FLUSH
request. Consider the following example:
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment