Commit 3334a45e authored by Joonsoo Kim's avatar Joonsoo Kim Committed by Linus Torvalds

mm/page_alloc: use ac->high_zoneidx for classzone_idx

Patch series "integrate classzone_idx and high_zoneidx", v5.

This patchset is followup of the problem reported and discussed two years
ago [1, 2].  The problem this patchset solves is related to the
classzone_idx on the NUMA system.  It causes a problem when the lowmem
reserve protection exists for some zones on a node that do not exist on
other nodes.

This problem was reported two years ago, and, at that time, the solution
got general agreements [2].  But it was not upstreamed.

[1]: http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop
[2]: http://lkml.kernel.org/r/1525408246-14768-1-git-send-email-iamjoonsoo.kim@lge.com

This patch (of 2):

Currently, we use classzone_idx to calculate lowmem reserve proetection
for an allocation request.  This classzone_idx causes a problem on NUMA
systems when the lowmem reserve protection exists for some zones on a node
that do not exist on other nodes.

Before further explanation, I should first clarify how to compute the
classzone_idx and the high_zoneidx.

- ac->high_zoneidx is computed via the arcane gfp_zone(gfp_mask) and
  represents the index of the highest zone the allocation can use

- classzone_idx was supposed to be the index of the highest zone on the
  local node that the allocation can use, that is actually available in
  the system

Think about following example.  Node 0 has 4 populated zone,
DMA/DMA32/NORMAL/MOVABLE.  Node 1 has 1 populated zone, NORMAL.  Some
zones, such as MOVABLE, doesn't exist on node 1 and this makes following
difference.

Assume that there is an allocation request whose gfp_zone(gfp_mask) is the
zone, MOVABLE.  Then, it's high_zoneidx is 3.  If this allocation is
initiated on node 0, it's classzone_idx is 3 since actually
available/usable zone on local (node 0) is MOVABLE.  If this allocation is
initiated on node 1, it's classzone_idx is 2 since actually
available/usable zone on local (node 1) is NORMAL.

You can see that classzone_idx of the allocation request are different
according to their starting node, even if their high_zoneidx is the same.

Think more about these two allocation requests.  If they are processed on
local, there is no problem.  However, if allocation is initiated on node 1
are processed on remote, in this example, at the NORMAL zone on node 0,
due to memory shortage, problem occurs.  Their different classzone_idx
leads to different lowmem reserve and then different min watermark.  See
the following example.

root@ubuntu:/sys/devices/system/memory# cat /proc/zoneinfo
Node 0, zone      DMA
  per-node stats
...
  pages free     3965
        min      5
        low      8
        high     11
        spanned  4095
        present  3998
        managed  3977
        protection: (0, 2961, 4928, 5440)
...
Node 0, zone    DMA32
  pages free     757955
        min      1129
        low      1887
        high     2645
        spanned  1044480
        present  782303
        managed  758116
        protection: (0, 0, 1967, 2479)
...
Node 0, zone   Normal
  pages free     459806
        min      750
        low      1253
        high     1756
        spanned  524288
        present  524288
        managed  503620
        protection: (0, 0, 0, 4096)
...
Node 0, zone  Movable
  pages free     130759
        min      195
        low      326
        high     457
        spanned  1966079
        present  131072
        managed  131072
        protection: (0, 0, 0, 0)
...
Node 1, zone      DMA
  pages free     0
        min      0
        low      0
        high     0
        spanned  0
        present  0
        managed  0
        protection: (0, 0, 1006, 1006)
Node 1, zone    DMA32
  pages free     0
        min      0
        low      0
        high     0
        spanned  0
        present  0
        managed  0
        protection: (0, 0, 1006, 1006)
Node 1, zone   Normal
  per-node stats
...
  pages free     233277
        min      383
        low      640
        high     897
        spanned  262144
        present  262144
        managed  257744
        protection: (0, 0, 0, 0)
...
Node 1, zone  Movable
  pages free     0
        min      0
        low      0
        high     0
        spanned  262144
        present  0
        managed  0
        protection: (0, 0, 0, 0)

- static min watermark for the NORMAL zone on node 0 is 750.

- lowmem reserve for the request with classzone idx 3 at the NORMAL on
  node 0 is 4096.

- lowmem reserve for the request with classzone idx 2 at the NORMAL on
  node 0 is 0.

So, overall min watermark is:
allocation initiated on node 0 (classzone_idx 3): 750 + 4096 = 4846
allocation initiated on node 1 (classzone_idx 2): 750 + 0 = 750

Allocation initiated on node 1 will have some precedence than allocation
initiated on node 0 because min watermark of the former allocation is
lower than the other.  So, allocation initiated on node 1 could succeed on
node 0 when allocation initiated on node 0 could not, and, this could
cause too many numa_miss allocation.  Then, performance could be
downgraded.

Recently, there was a regression report about this problem on CMA patches
since CMA memory are placed in ZONE_MOVABLE by those patches.  I checked
that problem is disappeared with this fix that uses high_zoneidx for
classzone_idx.

http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop

Using high_zoneidx for classzone_idx is more consistent way than previous
approach because system's memory layout doesn't affect anything to it.
With this patch, both classzone_idx on above example will be 3 so will
have the same min watermark.

allocation initiated on node 0: 750 + 4096 = 4846
allocation initiated on node 1: 750 + 4096 = 4846

One could wonder if there is a side effect that allocation initiated on
node 1 will use higher bar when allocation is handled on local since
classzone_idx could be higher than before.  It will not happen because the
zone without managed page doesn't contributes lowmem_reserve at all.
Reported-by: default avatarYe Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: default avatarJoonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Tested-by: default avatarYe Xiaolong <xiaolong.ye@intel.com>
Reviewed-by: default avatarBaoquan He <bhe@redhat.com>
Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
Acked-by: default avatarDavid Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1587095923-7515-1-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1587095923-7515-2-git-send-email-iamjoonsoo.kim@lge.comSigned-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 26e7dead
...@@ -144,7 +144,7 @@ struct alloc_context { ...@@ -144,7 +144,7 @@ struct alloc_context {
bool spread_dirty_pages; bool spread_dirty_pages;
}; };
#define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref) #define ac_classzone_idx(ac) (ac->high_zoneidx)
/* /*
* Locate the struct page for both the matching buddy in our * Locate the struct page for both the matching buddy in our
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment