Commit 3e35d303 authored by Mark Rutland's avatar Mark Rutland Committed by Catalin Marinas

arm64: module: rework module VA range selection

Currently, the modules region is 128M in size, which is a problem for
some large modules. Shanker reports [1] that the NVIDIA GPU driver alone
can consume 110M of module space in some configurations. We'd like to
make the modules region a full 2G such that we can always make use of a
2G range.

It's possible to build kernel images which are larger than 128M in some
configurations, such as when many debug options are selected and many
drivers are built in. In these configurations, we can't legitimately
select a base for a 128M module region, though we currently select a
value for which allocation will fail. It would be nicer to have a
diagnostic message in this case.

Similarly, in theory it's possible to build a kernel image which is
larger than 2G and which cannot support modules. While this isn't likely
to be the case for any realistic kernel deplyed in the field, it would
be nice if we could print a diagnostic in this case.

This patch reworks the module VA range selection to use a 2G range, and
improves handling of cases where we cannot select legitimate module
regions. We now attempt to select a 128M region and a 2G region:

* The 128M region is selected such that modules can use direct branches
  (with JUMP26/CALL26 relocations) to branch to kernel code and other
  modules, and so that modules can reference data and text (using PREL32
  relocations) anywhere in the kernel image and other modules.

  This region covers the entire kernel image (rather than just the text)
  to ensure that all PREL32 relocations are in range even when the
  kernel data section is absurdly large. Where we cannot allocate from
  this region, we'll fall back to the full 2G region.

* The 2G region is selected such that modules can use direct branches
  with PLTs to branch to kernel code and other modules, and so that
  modules can use reference data and text (with PREL32 relocations) in
  the kernel image and other modules.

  This region covers the entire kernel image, and the 128M region (if
  one is selected).

The two module regions are randomized independently while ensuring the
constraints described above.

[1] https://lore.kernel.org/linux-arm-kernel/159ceeab-09af-3174-5058-445bc8dcf85b@nvidia.com/Signed-off-by: default avatarMark Rutland <mark.rutland@arm.com>
Reviewed-by: default avatarArd Biesheuvel <ardb@kernel.org>
Cc: Shanker Donthineni <sdonthineni@nvidia.com>
Cc: Will Deacon <will@kernel.org>
Tested-by: default avatarShanker Donthineni <sdonthineni@nvidia.com>
Link: https://lore.kernel.org/r/20230530110328.2213762-7-mark.rutland@arm.comSigned-off-by: default avatarCatalin Marinas <catalin.marinas@arm.com>
parent ea3752ba
...@@ -33,8 +33,8 @@ AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit):: ...@@ -33,8 +33,8 @@ AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
0000000000000000 0000ffffffffffff 256TB user 0000000000000000 0000ffffffffffff 256TB user
ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map
[ffff600000000000 ffff7fffffffffff] 32TB [kasan shadow region] [ffff600000000000 ffff7fffffffffff] 32TB [kasan shadow region]
ffff800000000000 ffff800007ffffff 128MB modules ffff800000000000 ffff80007fffffff 2GB modules
ffff800008000000 fffffbffefffffff 124TB vmalloc ffff800080000000 fffffbffefffffff 124TB vmalloc
fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down) fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
fffffbfffe000000 fffffbfffe7fffff 8MB [guard region] fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
...@@ -50,8 +50,8 @@ AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support): ...@@ -50,8 +50,8 @@ AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support):
0000000000000000 000fffffffffffff 4PB user 0000000000000000 000fffffffffffff 4PB user
fff0000000000000 ffff7fffffffffff ~4PB kernel logical memory map fff0000000000000 ffff7fffffffffff ~4PB kernel logical memory map
[fffd800000000000 ffff7fffffffffff] 512TB [kasan shadow region] [fffd800000000000 ffff7fffffffffff] 512TB [kasan shadow region]
ffff800000000000 ffff800007ffffff 128MB modules ffff800000000000 ffff80007fffffff 2GB modules
ffff800008000000 fffffbffefffffff 124TB vmalloc ffff800080000000 fffffbffefffffff 124TB vmalloc
fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down) fffffbfff0000000 fffffbfffdffffff 224MB fixed mappings (top down)
fffffbfffe000000 fffffbfffe7fffff 8MB [guard region] fffffbfffe000000 fffffbfffe7fffff 8MB [guard region]
fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space fffffbfffe800000 fffffbffff7fffff 16MB PCI I/O space
......
...@@ -46,7 +46,7 @@ ...@@ -46,7 +46,7 @@
#define KIMAGE_VADDR (MODULES_END) #define KIMAGE_VADDR (MODULES_END)
#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) #define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) #define MODULES_VADDR (_PAGE_END(VA_BITS_MIN))
#define MODULES_VSIZE (SZ_128M) #define MODULES_VSIZE (SZ_2G)
#define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT))) #define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
#define PCI_IO_END (VMEMMAP_START - SZ_8M) #define PCI_IO_END (VMEMMAP_START - SZ_8M)
......
...@@ -7,6 +7,8 @@ ...@@ -7,6 +7,8 @@
* Author: Will Deacon <will.deacon@arm.com> * Author: Will Deacon <will.deacon@arm.com>
*/ */
#define pr_fmt(fmt) "Modules: " fmt
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/elf.h> #include <linux/elf.h>
#include <linux/ftrace.h> #include <linux/ftrace.h>
...@@ -24,72 +26,119 @@ ...@@ -24,72 +26,119 @@
#include <asm/scs.h> #include <asm/scs.h>
#include <asm/sections.h> #include <asm/sections.h>
static u64 __ro_after_init module_alloc_base = (u64)_etext - MODULES_VSIZE; static u64 module_direct_base __ro_after_init = 0;
static u64 module_plt_base __ro_after_init = 0;
#ifdef CONFIG_RANDOMIZE_BASE /*
static int __init kaslr_module_init(void) * Choose a random page-aligned base address for a window of 'size' bytes which
* entirely contains the interval [start, end - 1].
*/
static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
{ {
u64 module_range; u64 max_pgoff, pgoff;
u32 seed;
if (!kaslr_enabled()) if ((end - start) >= size)
return 0; return 0;
seed = get_random_u32(); max_pgoff = (size - (end - start)) / PAGE_SIZE;
pgoff = get_random_u32_inclusive(0, max_pgoff);
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { return start - pgoff * PAGE_SIZE;
/* }
* Randomize the module region over a 2 GB window covering the
* kernel. This reduces the risk of modules leaking information /*
* about the address of the kernel itself, but results in * Modules may directly reference data and text anywhere within the kernel
* branches between modules and the core kernel that are * image and other modules. References using PREL32 relocations have a +/-2G
* resolved via PLTs. (Branches between modules will be * range, and so we need to ensure that the entire kernel image and all modules
* resolved normally.) * fall within a 2G window such that these are always within range.
*/ *
module_range = SZ_2G - (u64)(_end - _stext); * Modules may directly branch to functions and code within the kernel text,
module_alloc_base = max((u64)_end - SZ_2G, (u64)MODULES_VADDR); * and to functions and code within other modules. These branches will use
* CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
* that the entire kernel text and all module text falls within a 128M window
* such that these are always within range. With PLTs, we can expand this to a
* 2G window.
*
* We chose the 128M region to surround the entire kernel image (rather than
* just the text) as using the same bounds for the 128M and 2G regions ensures
* by construction that we never select a 128M region that is not a subset of
* the 2G region. For very large and unusual kernel configurations this means
* we may fall back to PLTs where they could have been avoided, but this keeps
* the logic significantly simpler.
*/
static int __init module_init_limits(void)
{
u64 kernel_end = (u64)_end;
u64 kernel_start = (u64)_text;
u64 kernel_size = kernel_end - kernel_start;
/*
* The default modules region is placed immediately below the kernel
* image, and is large enough to use the full 2G relocation range.
*/
BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
if (!kaslr_enabled()) {
if (kernel_size < SZ_128M)
module_direct_base = kernel_end - SZ_128M;
if (kernel_size < SZ_2G)
module_plt_base = kernel_end - SZ_2G;
} else { } else {
/* u64 min = kernel_start;
* Randomize the module region by setting module_alloc_base to u64 max = kernel_end;
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
* _stext) . This guarantees that the resulting region still if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
* covers [_stext, _etext], and that all relative branches can pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
* be resolved without veneers unless this region is exhausted } else {
* and we fall back to a larger 2GB window in module_alloc() module_direct_base = random_bounding_box(SZ_128M, min, max);
* when ARM64_MODULE_PLTS is enabled. if (module_direct_base) {
*/ min = module_direct_base;
module_range = MODULES_VSIZE - (u64)(_etext - _stext); max = module_direct_base + SZ_128M;
}
}
module_plt_base = random_bounding_box(SZ_2G, min, max);
} }
/* use the lower 21 bits to randomize the base of the module region */ pr_info("%llu pages in range for non-PLT usage",
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21; module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
module_alloc_base &= PAGE_MASK; pr_info("%llu pages in range for PLT usage",
module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
return 0; return 0;
} }
subsys_initcall(kaslr_module_init) subsys_initcall(module_init_limits);
#endif
void *module_alloc(unsigned long size) void *module_alloc(unsigned long size)
{ {
u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; void *p = NULL;
void *p;
/* /*
* Where possible, prefer to allocate within direct branch range of the * Where possible, prefer to allocate within direct branch range of the
* kernel such that no PLTs are necessary. This may fail, so we pass * kernel such that no PLTs are necessary.
* __GFP_NOWARN to silence the resulting warning.
*/ */
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, if (module_direct_base) {
module_alloc_end, GFP_KERNEL | __GFP_NOWARN, p = __vmalloc_node_range(size, MODULE_ALIGN,
PAGE_KERNEL, 0, NUMA_NO_NODE, module_direct_base,
__builtin_return_address(0)); module_direct_base + SZ_128M,
GFP_KERNEL | __GFP_NOWARN,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
if (!p && module_plt_base) {
p = __vmalloc_node_range(size, MODULE_ALIGN,
module_plt_base,
module_plt_base + SZ_2G,
GFP_KERNEL | __GFP_NOWARN,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
if (!p) { if (!p) {
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, pr_warn_ratelimited("%s: unable to allocate memory\n",
module_alloc_base + SZ_2G, GFP_KERNEL, __func__);
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
} }
if (p && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) { if (p && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment