Commit 46f73f93 authored by Olivier DANET's avatar Olivier DANET Committed by Mauro Carvalho Chehab

V4L/DVB: Update for MT2060 to use dvb_tuner_ops

new tuner api
minor fixes for tuning
Signed-off-by: default avatarOlivier DANET <odanet@caramail.com>
Signed-off-by: default avatarPatrick Boettcher <pb@linuxtv.org>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@infradead.org>
parent 83fa9079
...@@ -168,40 +168,6 @@ int dibusb_read_eeprom_byte(struct dvb_usb_device *d, u8 offs, u8 *val) ...@@ -168,40 +168,6 @@ int dibusb_read_eeprom_byte(struct dvb_usb_device *d, u8 offs, u8 *val)
} }
EXPORT_SYMBOL(dibusb_read_eeprom_byte); EXPORT_SYMBOL(dibusb_read_eeprom_byte);
static struct mt2060_config stk3000p_mt2060_config = {
.i2c_address = 0x60,
};
static int dibusb_tuner_init(struct dvb_frontend *fe)
{
struct dvb_usb_device *d = fe->dvb->priv;
struct dibusb_state *st = d->priv;
if (d->tuner_pass_ctrl && st->mt2060_present) {
int ret;
d->tuner_pass_ctrl(d->fe, 1, stk3000p_mt2060_config.i2c_address);
ret = mt2060_init(&st->mt2060);
d->tuner_pass_ctrl(d->fe, 0, 0);
return ret;
}
return dvb_usb_pll_init_i2c(fe);
}
static int dibusb_tuner_set(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
{
struct dvb_usb_device *d = fe->dvb->priv;
struct dibusb_state *st = d->priv;
if (d->tuner_pass_ctrl && st->mt2060_present) {
int ret;
d->tuner_pass_ctrl(d->fe, 1, stk3000p_mt2060_config.i2c_address);
ret = mt2060_set(&st->mt2060,fep);
d->tuner_pass_ctrl(d->fe,0,0);
return ret;
}
return dvb_usb_pll_set_i2c(fe,fep);
}
static const struct dib3000p_agc_config dib3000p_agc_panasonic_env57h1xd5 = { static const struct dib3000p_agc_config dib3000p_agc_panasonic_env57h1xd5 = {
{ 0x51, 0x301d, 0x0, 0x1cc7, 0xdc29, 0x570a, { 0x51, 0x301d, 0x0, 0x1cc7, 0xdc29, 0x570a,
0xbae1, 0x8ccd, 0x3b6d, 0x551d, 0xa, 0x951e } 0xbae1, 0x8ccd, 0x3b6d, 0x551d, 0xa, 0x951e }
...@@ -212,64 +178,21 @@ static const struct dib3000p_agc_config dib3000p_agc_microtune_mt2060 = { ...@@ -212,64 +178,21 @@ static const struct dib3000p_agc_config dib3000p_agc_microtune_mt2060 = {
0xa8f6, 0x5eb8, 0x65ff, 0x40ff, 0x8a, 0x1114 } 0xa8f6, 0x5eb8, 0x65ff, 0x40ff, 0x8a, 0x1114 }
}; };
static struct mt2060_config stk3000p_mt2060_config = {
.i2c_address = 0x60,
};
int dibusb_dib3000mc_frontend_attach(struct dvb_usb_device *d) int dibusb_dib3000mc_frontend_attach(struct dvb_usb_device *d)
{ {
struct dib3000_config demod_cfg; struct dib3000_config demod_cfg;
struct dibusb_state *st = d->priv; struct dibusb_state *st = d->priv;
demod_cfg.agc = &dib3000p_agc_panasonic_env57h1xd5;
demod_cfg.pll_set = dibusb_tuner_set;
demod_cfg.pll_init = dibusb_tuner_init;
for (demod_cfg.demod_address = 0x8; demod_cfg.demod_address < 0xd; demod_cfg.demod_address++)
if ((d->fe = dib3000mc_attach(&demod_cfg,&d->i2c_adap,&st->ops)) != NULL) {
d->tuner_pass_ctrl = st->ops.tuner_pass_ctrl;
return 0;
}
return -ENODEV; return -ENODEV;
} }
EXPORT_SYMBOL(dibusb_dib3000mc_frontend_attach); EXPORT_SYMBOL(dibusb_dib3000mc_frontend_attach);
int dibusb_dib3000mc_tuner_attach (struct dvb_usb_device *d) int dibusb_dib3000mc_tuner_attach (struct dvb_usb_device *d)
{ {
int ret; return -ENODEV;
u8 a,b;
u16 if1 = 1220;
if (d->tuner_pass_ctrl) {
struct dibusb_state *st = d->priv;
d->tuner_pass_ctrl(d->fe, 1, stk3000p_mt2060_config.i2c_address);
// First IF calibration for Liteon Sticks
if (d->udev->descriptor.idVendor == USB_VID_LITEON &&
d->udev->descriptor.idProduct == USB_PID_LITEON_DVB_T_WARM) {
dibusb_read_eeprom_byte(d,0x7E,&a);
dibusb_read_eeprom_byte(d,0x7F,&b);
if (a == 0xFF && b == 0xFF)
if1 = 1220;
else if (a == 0x00)
if1 = 1220+b;
else if (a == 0x80)
if1 = 1220-b;
else {
warn("LITE-ON DVB-T Tuner : Strange IF1 calibration :%2X %2X\n",(int)a,(int)b);
if1 = 1220;
}
}
if ((ret = mt2060_attach(&st->mt2060,&stk3000p_mt2060_config, &d->i2c_adap,if1)) != 0) {
/* not found - use panasonic pll parameters */
d->pll_addr = 0x60;
d->pll_desc = &dvb_pll_env57h1xd5;
} else {
st->mt2060_present = 1;
/* set the correct agc parameters for the dib3000p */
dib3000mc_set_agc_config(d->fe, &dib3000p_agc_microtune_mt2060);
}
d->tuner_pass_ctrl(d->fe,0,0);
}
return 0;
} }
EXPORT_SYMBOL(dibusb_dib3000mc_tuner_attach); EXPORT_SYMBOL(dibusb_dib3000mc_tuner_attach);
......
...@@ -97,7 +97,6 @@ ...@@ -97,7 +97,6 @@
struct dibusb_state { struct dibusb_state {
struct dib_fe_xfer_ops ops; struct dib_fe_xfer_ops ops;
struct mt2060_state mt2060;
int mt2060_present; int mt2060_present;
/* for RC5 remote control */ /* for RC5 remote control */
......
...@@ -19,14 +19,16 @@ ...@@ -19,14 +19,16 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/ */
/* See mt2060_priv.h for details */
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
#include <linux/module.h> #include <linux/module.h>
#include <linux/moduleparam.h> #include <linux/moduleparam.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/dvb/frontend.h> #include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "mt2060.h" #include "mt2060.h"
#include "mt2060_priv.h" #include "mt2060_priv.h"
...@@ -34,17 +36,17 @@ static int debug=0; ...@@ -34,17 +36,17 @@ static int debug=0;
module_param(debug, int, 0644); module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "MT2060: " args); printk("\n"); } } while (0) #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
// Reads a single register // Reads a single register
static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val) static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
{ {
struct i2c_msg msg[2] = { struct i2c_msg msg[2] = {
{ .addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1 }, { .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
}; };
if (i2c_transfer(state->i2c, msg, 2) != 2) { if (i2c_transfer(priv->i2c, msg, 2) != 2) {
printk(KERN_WARNING "mt2060 I2C read failed\n"); printk(KERN_WARNING "mt2060 I2C read failed\n");
return -EREMOTEIO; return -EREMOTEIO;
} }
...@@ -52,16 +54,14 @@ static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val) ...@@ -52,16 +54,14 @@ static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
} }
// Writes a single register // Writes a single register
static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val) static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
{ {
u8 buf[2]; u8 buf[2] = { reg, val };
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
}; };
buf[0]=reg;
buf[1]=val;
if (i2c_transfer(state->i2c, &msg, 1) != 1) { if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed\n"); printk(KERN_WARNING "mt2060 I2C write failed\n");
return -EREMOTEIO; return -EREMOTEIO;
} }
...@@ -69,12 +69,12 @@ static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val) ...@@ -69,12 +69,12 @@ static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
} }
// Writes a set of consecutive registers // Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len) static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
{ {
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
}; };
if (i2c_transfer(state->i2c, &msg, 1) != 1) { if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len); printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
return -EREMOTEIO; return -EREMOTEIO;
} }
...@@ -95,20 +95,6 @@ static u8 mt2060_config2[] = { ...@@ -95,20 +95,6 @@ static u8 mt2060_config2[] = {
}; };
// VGAG=3, V1CSE=1 // VGAG=3, V1CSE=1
static u8 mt2060_config3[] = {
REG_VGAG,
0x33
};
int mt2060_init(struct mt2060_state *state)
{
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return -EREMOTEIO;
if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
return -EREMOTEIO;
return 0;
}
EXPORT_SYMBOL(mt2060_init);
#ifdef MT2060_SPURCHECK #ifdef MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2 /* The function below calculates the frequency offset between the output frequency if2
...@@ -167,8 +153,9 @@ static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) ...@@ -167,8 +153,9 @@ static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
#define IF2 36150 // IF2 frequency = 36.150 MHz #define IF2 36150 // IF2 frequency = 36.150 MHz
#define FREF 16000 // Quartz oscillator 16 MHz #define FREF 16000 // Quartz oscillator 16 MHz
int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
{ {
struct mt2060_priv *priv;
int ret=0; int ret=0;
int i=0; int i=0;
u32 freq; u32 freq;
...@@ -178,17 +165,23 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) ...@@ -178,17 +165,23 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
u8 b[8]; u8 b[8];
u32 if1; u32 if1;
if1 = state->if1_freq; priv = fe->tuner_priv;
if1 = priv->if1_freq;
b[0] = REG_LO1B1; b[0] = REG_LO1B1;
b[1] = 0xFF; b[1] = 0xFF;
mt2060_writeregs(state,b,2);
freq = fep->frequency / 1000; // Hz -> kHz mt2060_writeregs(priv,b,2);
f_lo1 = freq + if1 * 1000; freq = params->frequency / 1000; // Hz -> kHz
f_lo1 = (f_lo1/250)*250; priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
f_lo2 = f_lo1 - freq - IF2;
f_lo2 = (f_lo2/50)*50; f_lo1 = freq + if1 * 1000;
f_lo1 = (f_lo1 / 250) * 250;
f_lo2 = f_lo1 - freq - IF2;
// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
f_lo2 = ((f_lo2 + 25) / 50) * 50;
priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
#ifdef MT2060_SPURCHECK #ifdef MT2060_SPURCHECK
// LO-related spurs detection and correction // LO-related spurs detection and correction
...@@ -197,12 +190,14 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) ...@@ -197,12 +190,14 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
f_lo2 += num1; f_lo2 += num1;
#endif #endif
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
div1 = f_lo1 / FREF; num1 = f_lo1 / (FREF / 64);
num1 = (64 * (f_lo1 % FREF) )/FREF; div1 = num1 / 64;
num1 &= 0x3f;
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
div2 = f_lo2 / FREF; num2 = f_lo2 * 64 / (FREF / 128);
num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2; div2 = num2 / 8192;
num2 &= 0x1fff;
if (freq <= 95000) lnaband = 0xB0; else if (freq <= 95000) lnaband = 0xB0; else
if (freq <= 180000) lnaband = 0xA0; else if (freq <= 180000) lnaband = 0xA0; else
...@@ -223,85 +218,144 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) ...@@ -223,85 +218,144 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
b[5] = ((num2 >>12) & 1) | (div2 << 1); b[5] = ((num2 >>12) & 1) | (div2 << 1);
dprintk("IF1: %dMHz",(int)if1); dprintk("IF1: %dMHz",(int)if1);
dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2); dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2); dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
mt2060_writeregs(state,b,6); mt2060_writeregs(priv,b,6);
//Waits for pll lock or timeout //Waits for pll lock or timeout
i=0; i = 0;
do { do {
mt2060_readreg(state,REG_LO_STATUS,b); mt2060_readreg(priv,REG_LO_STATUS,b);
if ((b[0] & 0x88)==0x88) break; if ((b[0] & 0x88)==0x88)
break;
msleep(4); msleep(4);
i++; i++;
} while (i<10); } while (i<10);
return ret; return ret;
} }
EXPORT_SYMBOL(mt2060_set);
/* from usbsnoop.log */ static void mt2060_calibrate(struct mt2060_priv *priv)
static void mt2060_calibrate(struct mt2060_state *state)
{ {
u8 b = 0; u8 b = 0;
int i = 0; int i = 0;
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1))) if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
return; return;
if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2))) if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
return; return;
do { do {
b |= (1 << 6); // FM1SS; b |= (1 << 6); // FM1SS;
mt2060_writereg(state, REG_LO2C1,b); mt2060_writereg(priv, REG_LO2C1,b);
msleep(20); msleep(20);
if (i == 0) { if (i == 0) {
b |= (1 << 7); // FM1CA; b |= (1 << 7); // FM1CA;
mt2060_writereg(state, REG_LO2C1,b); mt2060_writereg(priv, REG_LO2C1,b);
b &= ~(1 << 7); // FM1CA; b &= ~(1 << 7); // FM1CA;
msleep(20); msleep(20);
} }
b &= ~(1 << 6); // FM1SS b &= ~(1 << 6); // FM1SS
mt2060_writereg(state, REG_LO2C1,b); mt2060_writereg(priv, REG_LO2C1,b);
msleep(20); msleep(20);
i++; i++;
} while (i < 9); } while (i < 9);
i = 0; i = 0;
while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
msleep(20); msleep(20);
if (i < 10) { if (i < 10) {
mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :) mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
dprintk("calibration was successful: %d", state->fmfreq); dprintk("calibration was successful: %d", (int)priv->fmfreq);
} else } else
dprintk("FMCAL timed out"); dprintk("FMCAL timed out");
} }
static int mt2060_calc_regs(struct dvb_frontend *fe, struct dvb_frontend_parameters *params, u8 *buf, int buf_len)
{
return -ENODEV;
}
static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct mt2060_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct mt2060_priv *priv = fe->tuner_priv;
*bandwidth = priv->bandwidth;
return 0;
}
static int mt2060_sleep(struct dvb_frontend *fe)
{
struct mt2060_priv *priv = fe->tuner_priv;
return mt2060_writereg(priv, REG_VGAG,0x30);
}
static int mt2060_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops mt2060_tuner_ops = {
.info = {
.name = "Microtune MT2060",
.frequency_min = 48000000,
.frequency_max = 860000000,
.frequency_step = 50000,
},
.release = mt2060_release,
.sleep = mt2060_sleep,
.set_params = mt2060_set_params,
.calc_regs = mt2060_calc_regs,
.get_frequency = mt2060_get_frequency,
.get_bandwidth = mt2060_get_bandwidth
};
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1) int mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
{ {
struct mt2060_priv *priv = NULL;
u8 id = 0; u8 id = 0;
memset(state,0,sizeof(struct mt2060_state));
state->config = config; priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
state->i2c = i2c; if (priv == NULL)
state->if1_freq = if1; return -ENOMEM;
if (mt2060_readreg(state,REG_PART_REV,&id) != 0) priv->cfg = cfg;
return -ENODEV; priv->i2c = i2c;
priv->if1_freq = if1;
if (id != PART_REV) if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
kfree(priv);
return -ENODEV; return -ENODEV;
}
if (id != PART_REV) {
kfree(priv);
return -ENODEV;
}
printk(KERN_INFO "MT2060: successfully identified\n"); printk(KERN_INFO "MT2060: successfully identified\n");
memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = priv;
mt2060_calibrate(state); mt2060_calibrate(priv);
return 0; return 0;
} }
......
...@@ -22,23 +22,14 @@ ...@@ -22,23 +22,14 @@
#ifndef MT2060_H #ifndef MT2060_H
#define MT2060_H #define MT2060_H
#include <linux/i2c.h> struct dvb_frontend;
#include <linux/dvb/frontend.h> struct i2c_adapter;
struct mt2060_config { struct mt2060_config {
u8 i2c_address; u8 i2c_address;
/* Shall we add settings for the discrete outputs ? */ /* Shall we add settings for the discrete outputs ? */
}; };
struct mt2060_state { extern int mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1);
struct mt2060_config *config;
struct i2c_adapter *i2c;
u16 if1_freq;
u8 fmfreq;
};
extern int mt2060_init(struct mt2060_state *state);
extern int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep);
extern int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1);
#endif #endif
...@@ -92,4 +92,14 @@ ...@@ -92,4 +92,14 @@
#define PART_REV 0x63 // The current driver works only with PART=6 and REV=3 chips #define PART_REV 0x63 // The current driver works only with PART=6 and REV=3 chips
struct mt2060_priv {
struct mt2060_config *cfg;
struct i2c_adapter *i2c;
u32 frequency;
u32 bandwidth;
u16 if1_freq;
u8 fmfreq;
};
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment