Commit 52c03291 authored by NeilBrown's avatar NeilBrown Committed by Linus Torvalds

[PATCH] md: split reshape portion of raid5 sync_request into a separate function

... as raid5 sync_request is WAY too big.
Signed-off-by: default avatarNeil Brown <neilb@suse.de>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 5e56341d
...@@ -2696,13 +2696,136 @@ static int make_request(request_queue_t *q, struct bio * bi) ...@@ -2696,13 +2696,136 @@ static int make_request(request_queue_t *q, struct bio * bi)
return 0; return 0;
} }
/* FIXME go_faster isn't used */ static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{ {
/* reshaping is quite different to recovery/resync so it is
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
raid5_conf_t *conf = (raid5_conf_t *) mddev->private; raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
struct stripe_head *sh; struct stripe_head *sh;
int pd_idx; int pd_idx;
sector_t first_sector, last_sector; sector_t first_sector, last_sector;
int raid_disks;
int data_disks;
int i;
int dd_idx;
sector_t writepos, safepos, gap;
if (sector_nr == 0 &&
conf->expand_progress != 0) {
/* restarting in the middle, skip the initial sectors */
sector_nr = conf->expand_progress;
sector_div(sector_nr, conf->raid_disks-1);
*skipped = 1;
return sector_nr;
}
/* we update the metadata when there is more than 3Meg
* in the block range (that is rather arbitrary, should
* probably be time based) or when the data about to be
* copied would over-write the source of the data at
* the front of the range.
* i.e. one new_stripe forward from expand_progress new_maps
* to after where expand_lo old_maps to
*/
writepos = conf->expand_progress +
conf->chunk_size/512*(conf->raid_disks-1);
sector_div(writepos, conf->raid_disks-1);
safepos = conf->expand_lo;
sector_div(safepos, conf->previous_raid_disks-1);
gap = conf->expand_progress - conf->expand_lo;
if (writepos >= safepos ||
gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0);
mddev->reshape_position = conf->expand_progress;
mddev->sb_dirty = 1;
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
kthread_should_stop());
spin_lock_irq(&conf->device_lock);
conf->expand_lo = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
}
for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
int j;
int skipped = 0;
pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
sh = get_active_stripe(conf, sector_nr+i,
conf->raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
s = compute_blocknr(sh, j);
if (s < (mddev->array_size<<1)) {
skipped = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
release_stripe(sh);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
raid_disks = conf->previous_raid_disks;
data_disks = raid_disks - 1;
first_sector =
raid5_compute_sector(sector_nr*(conf->raid_disks-1),
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
last_sector =
raid5_compute_sector((sector_nr+conf->chunk_size/512)
*(conf->raid_disks-1) -1,
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
if (last_sector >= (mddev->size<<1))
last_sector = (mddev->size<<1)-1;
while (first_sector <= last_sector) {
pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
sh = get_active_stripe(conf, first_sector,
conf->previous_raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
return conf->chunk_size>>9;
}
/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
struct stripe_head *sh;
int pd_idx;
int raid_disks = conf->raid_disks; int raid_disks = conf->raid_disks;
int data_disks = raid_disks - conf->max_degraded; int data_disks = raid_disks - conf->max_degraded;
sector_t max_sector = mddev->size << 1; sector_t max_sector = mddev->size << 1;
...@@ -2728,122 +2851,9 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i ...@@ -2728,122 +2851,9 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i
return 0; return 0;
} }
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
/* reshaping is quite different to recovery/resync so it is return reshape_request(mddev, sector_nr, skipped);
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
int i;
int dd_idx;
sector_t writepos, safepos, gap;
if (sector_nr == 0 &&
conf->expand_progress != 0) {
/* restarting in the middle, skip the initial sectors */
sector_nr = conf->expand_progress;
sector_div(sector_nr, conf->raid_disks-1);
*skipped = 1;
return sector_nr;
}
/* we update the metadata when there is more than 3Meg
* in the block range (that is rather arbitrary, should
* probably be time based) or when the data about to be
* copied would over-write the source of the data at
* the front of the range.
* i.e. one new_stripe forward from expand_progress new_maps
* to after where expand_lo old_maps to
*/
writepos = conf->expand_progress +
conf->chunk_size/512*(conf->raid_disks-1);
sector_div(writepos, conf->raid_disks-1);
safepos = conf->expand_lo;
sector_div(safepos, conf->previous_raid_disks-1);
gap = conf->expand_progress - conf->expand_lo;
if (writepos >= safepos ||
gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0);
mddev->reshape_position = conf->expand_progress;
mddev->sb_dirty = 1;
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
kthread_should_stop());
spin_lock_irq(&conf->device_lock);
conf->expand_lo = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
}
for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
int j;
int skipped = 0;
pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
sh = get_active_stripe(conf, sector_nr+i,
conf->raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
s = compute_blocknr(sh, j);
if (s < (mddev->array_size<<1)) {
skipped = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
release_stripe(sh);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
raid_disks = conf->previous_raid_disks;
data_disks = raid_disks - 1;
first_sector =
raid5_compute_sector(sector_nr*(conf->raid_disks-1),
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
last_sector =
raid5_compute_sector((sector_nr+conf->chunk_size/512)
*(conf->raid_disks-1) -1,
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
if (last_sector >= (mddev->size<<1))
last_sector = (mddev->size<<1)-1;
while (first_sector <= last_sector) {
pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
sh = get_active_stripe(conf, first_sector,
conf->previous_raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
return conf->chunk_size>>9;
}
/* if there is too many failed drives and we are trying /* if there is too many failed drives and we are trying
* to resync, then assert that we are finished, because there is * to resync, then assert that we are finished, because there is
* nothing we can do. * nothing we can do.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment