Commit 584f7904 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/staging

* 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/staging:
  hwmon: (max34440) Add driver documentation
  hwmon: (max16064) Add driver documentation
  hwmon: (max8688) Add driver documentation
  hwmon: (pmbus) Documentation updates
  hwmon: (smm665) Fix spelling error in driver documentation
  hwmon: (pmbus) Removed unused variable from struct pmbus_data
  hwmon: Add submitting-patches checklist to documentation
parents 18995ba5 e428d8d3
Kernel driver max16064
======================
Supported chips:
* Maxim MAX16064
Prefix: 'max16064'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX16064.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
This driver supports hardware montoring for Maxim MAX16064 Quad Power-Supply
Controller with Active-Voltage Output Control and PMBus Interface.
The driver is a client driver to the core PMBus driver.
Please see Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in[1-4]_label "vout[1-4]"
in[1-4]_input Measured voltage. From READ_VOUT register.
in[1-4]_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in[1-4]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in[1-4]_lcrit Critical minumum Voltage. VOUT_UV_FAULT_LIMIT register.
in[1-4]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
in[1-4]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in[1-4]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
in[1-4]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
in[1-4]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
temp1_input Measured temperature. From READ_TEMPERATURE_1 register.
temp1_max Maximum temperature. From OT_WARN_LIMIT register.
temp1_crit Critical high temperature. From OT_FAULT_LIMIT register.
temp1_max_alarm Chip temperature high alarm. Set by comparing
READ_TEMPERATURE_1 with OT_WARN_LIMIT if TEMP_OT_WARNING
status is set.
temp1_crit_alarm Chip temperature critical high alarm. Set by comparing
READ_TEMPERATURE_1 with OT_FAULT_LIMIT if TEMP_OT_FAULT
status is set.
Kernel driver max34440
======================
Supported chips:
* Maxim MAX34440
Prefixes: 'max34440'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34440.pdf
* Maxim MAX34441
PMBus 5-Channel Power-Supply Manager and Intelligent Fan Controller
Prefixes: 'max34441'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34441.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
This driver supports hardware montoring for Maxim MAX34440 PMBus 6-Channel
Power-Supply Manager and MAX34441 PMBus 5-Channel Power-Supply Manager
and Intelligent Fan Controller.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in[1-6]_label "vout[1-6]".
in[1-6]_input Measured voltage. From READ_VOUT register.
in[1-6]_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in[1-6]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in[1-6]_lcrit Critical minumum Voltage. VOUT_UV_FAULT_LIMIT register.
in[1-6]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
in[1-6]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in[1-6]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
in[1-6]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
in[1-6]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
curr[1-6]_label "iout[1-6]".
curr[1-6]_input Measured current. From READ_IOUT register.
curr[1-6]_max Maximum current. From IOUT_OC_WARN_LIMIT register.
curr[1-6]_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
curr[1-6]_max_alarm Current high alarm. From IOUT_OC_WARNING status.
curr[1-6]_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
in6 and curr6 attributes only exist for MAX34440.
temp[1-8]_input Measured temperatures. From READ_TEMPERATURE_1 register.
temp1 is the chip's internal temperature. temp2..temp5
are remote I2C temperature sensors. For MAX34441, temp6
is a remote thermal-diode sensor. For MAX34440, temp6..8
are remote I2C temperature sensors.
temp[1-8]_max Maximum temperature. From OT_WARN_LIMIT register.
temp[1-8]_crit Critical high temperature. From OT_FAULT_LIMIT register.
temp[1-8]_max_alarm Temperature high alarm.
temp[1-8]_crit_alarm Temperature critical high alarm.
temp7 and temp8 attributes only exist for MAX34440.
Kernel driver max8688
=====================
Supported chips:
* Maxim MAX8688
Prefix: 'max8688'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX8688.pdf
Author: Guenter Roeck <guenter.roeck@ericsson.com>
Description
-----------
This driver supports hardware montoring for Maxim MAX8688 Digital Power-Supply
Controller/Monitor with PMBus Interface.
The driver is a client driver to the core PMBus driver. Please see
Documentation/hwmon/pmbus for details on PMBus client drivers.
Usage Notes
-----------
This driver does not auto-detect devices. You will have to instantiate the
devices explicitly. Please see Documentation/i2c/instantiating-devices for
details.
Platform data support
---------------------
The driver supports standard PMBus driver platform data.
Sysfs entries
-------------
The following attributes are supported. Limits are read-write; all other
attributes are read-only.
in1_label "vout1"
in1_input Measured voltage. From READ_VOUT register.
in1_min Minumum Voltage. From VOUT_UV_WARN_LIMIT register.
in1_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
in1_lcrit Critical minumum Voltage. VOUT_UV_FAULT_LIMIT register.
in1_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
in1_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
in1_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
in1_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
in1_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
curr1_label "iout1"
curr1_input Measured current. From READ_IOUT register.
curr1_max Maximum current. From IOUT_OC_WARN_LIMIT register.
curr1_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
curr1_max_alarm Current high alarm. From IOUT_OC_WARN_LIMIT register.
curr1_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
temp1_input Measured temperature. From READ_TEMPERATURE_1 register.
temp1_max Maximum temperature. From OT_WARN_LIMIT register.
temp1_crit Critical high temperature. From OT_FAULT_LIMIT register.
temp1_max_alarm Chip temperature high alarm. Set by comparing
READ_TEMPERATURE_1 with OT_WARN_LIMIT if TEMP_OT_WARNING
status is set.
temp1_crit_alarm Chip temperature critical high alarm. Set by comparing
READ_TEMPERATURE_1 with OT_FAULT_LIMIT if TEMP_OT_FAULT
status is set.
...@@ -13,26 +13,6 @@ Supported chips: ...@@ -13,26 +13,6 @@ Supported chips:
Prefix: 'ltc2978' Prefix: 'ltc2978'
Addresses scanned: - Addresses scanned: -
Datasheet: http://cds.linear.com/docs/Datasheet/2978fa.pdf Datasheet: http://cds.linear.com/docs/Datasheet/2978fa.pdf
* Maxim MAX16064
Quad Power-Supply Controller
Prefix: 'max16064'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX16064.pdf
* Maxim MAX34440
PMBus 6-Channel Power-Supply Manager
Prefixes: 'max34440'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34440.pdf
* Maxim MAX34441
PMBus 5-Channel Power-Supply Manager and Intelligent Fan Controller
Prefixes: 'max34441'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34441.pdf
* Maxim MAX8688
Digital Power-Supply Controller/Monitor
Prefix: 'max8688'
Addresses scanned: -
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX8688.pdf
* Generic PMBus devices * Generic PMBus devices
Prefix: 'pmbus' Prefix: 'pmbus'
Addresses scanned: - Addresses scanned: -
...@@ -175,11 +155,13 @@ currX_crit Critical maximum current. ...@@ -175,11 +155,13 @@ currX_crit Critical maximum current.
From IIN_OC_FAULT_LIMIT or IOUT_OC_FAULT_LIMIT register. From IIN_OC_FAULT_LIMIT or IOUT_OC_FAULT_LIMIT register.
currX_alarm Current high alarm. currX_alarm Current high alarm.
From IIN_OC_WARNING or IOUT_OC_WARNING status. From IIN_OC_WARNING or IOUT_OC_WARNING status.
currX_max_alarm Current high alarm.
From IIN_OC_WARN_LIMIT or IOUT_OC_WARN_LIMIT status.
currX_lcrit_alarm Output current critical low alarm. currX_lcrit_alarm Output current critical low alarm.
From IOUT_UC_FAULT status. From IOUT_UC_FAULT status.
currX_crit_alarm Current critical high alarm. currX_crit_alarm Current critical high alarm.
From IIN_OC_FAULT or IOUT_OC_FAULT status. From IIN_OC_FAULT or IOUT_OC_FAULT status.
currX_label "iin" or "vinY" currX_label "iin" or "ioutY"
powerX_input Measured power. From READ_PIN or READ_POUT register. powerX_input Measured power. From READ_PIN or READ_POUT register.
powerX_cap Output power cap. From POUT_MAX register. powerX_cap Output power cap. From POUT_MAX register.
...@@ -193,13 +175,13 @@ powerX_crit_alarm Output power critical high alarm. ...@@ -193,13 +175,13 @@ powerX_crit_alarm Output power critical high alarm.
From POUT_OP_FAULT status. From POUT_OP_FAULT status.
powerX_label "pin" or "poutY" powerX_label "pin" or "poutY"
tempX_input Measured tempererature. tempX_input Measured temperature.
From READ_TEMPERATURE_X register. From READ_TEMPERATURE_X register.
tempX_min Mimimum tempererature. From UT_WARN_LIMIT register. tempX_min Mimimum temperature. From UT_WARN_LIMIT register.
tempX_max Maximum tempererature. From OT_WARN_LIMIT register. tempX_max Maximum temperature. From OT_WARN_LIMIT register.
tempX_lcrit Critical low tempererature. tempX_lcrit Critical low temperature.
From UT_FAULT_LIMIT register. From UT_FAULT_LIMIT register.
tempX_crit Critical high tempererature. tempX_crit Critical high temperature.
From OT_FAULT_LIMIT register. From OT_FAULT_LIMIT register.
tempX_min_alarm Chip temperature low alarm. Set by comparing tempX_min_alarm Chip temperature low alarm. Set by comparing
READ_TEMPERATURE_X with UT_WARN_LIMIT if READ_TEMPERATURE_X with UT_WARN_LIMIT if
......
...@@ -150,8 +150,8 @@ in8_crit_alarm Channel F critical alarm ...@@ -150,8 +150,8 @@ in8_crit_alarm Channel F critical alarm
in9_crit_alarm AIN1 critical alarm in9_crit_alarm AIN1 critical alarm
in10_crit_alarm AIN2 critical alarm in10_crit_alarm AIN2 critical alarm
temp1_input Chip tempererature temp1_input Chip temperature
temp1_min Mimimum chip tempererature temp1_min Mimimum chip temperature
temp1_max Maximum chip tempererature temp1_max Maximum chip temperature
temp1_crit Critical chip tempererature temp1_crit Critical chip temperature
temp1_crit_alarm Temperature critical alarm temp1_crit_alarm Temperature critical alarm
How to Get Your Patch Accepted Into the Hwmon Subsystem
-------------------------------------------------------
This text is is a collection of suggestions for people writing patches or
drivers for the hwmon subsystem. Following these suggestions will greatly
increase the chances of your change being accepted.
1. General
----------
* It should be unnecessary to mention, but please read and follow
Documentation/SubmitChecklist
Documentation/SubmittingDrivers
Documentation/SubmittingPatches
Documentation/CodingStyle
* If your patch generates checkpatch warnings, please refrain from explanations
such as "I don't like that coding style". Keep in mind that each unnecessary
warning helps hiding a real problem. If you don't like the kernel coding
style, don't write kernel drivers.
* Please test your patch thoroughly. We are not your test group.
Sometimes a patch can not or not completely be tested because of missing
hardware. In such cases, you should test-build the code on at least one
architecture. If run-time testing was not achieved, it should be written
explicitly below the patch header.
* If your patch (or the driver) is affected by configuration options such as
CONFIG_SMP or CONFIG_HOTPLUG, make sure it compiles for all configuration
variants.
2. Adding functionality to existing drivers
-------------------------------------------
* Make sure the documentation in Documentation/hwmon/<driver_name> is up to
date.
* Make sure the information in Kconfig is up to date.
* If the added functionality requires some cleanup or structural changes, split
your patch into a cleanup part and the actual addition. This makes it easier
to review your changes, and to bisect any resulting problems.
* Never mix bug fixes, cleanup, and functional enhancements in a single patch.
3. New drivers
--------------
* Running your patch or driver file(s) through checkpatch does not mean its
formatting is clean. If unsure about formatting in your new driver, run it
through Lindent. Lindent is not perfect, and you may have to do some minor
cleanup, but it is a good start.
* Consider adding yourself to MAINTAINERS.
* Document the driver in Documentation/hwmon/<driver_name>.
* Add the driver to Kconfig and Makefile in alphabetical order.
* Make sure that all dependencies are listed in Kconfig. For new drivers, it
is most likely prudent to add a dependency on EXPERIMENTAL.
* Avoid forward declarations if you can. Rearrange the code if necessary.
* Avoid calculations in macros and macro-generated functions. While such macros
may save a line or so in the source, it obfuscates the code and makes code
review more difficult. It may also result in code which is more complicated
than necessary. Use inline functions or just regular functions instead.
* If the driver has a detect function, make sure it is silent. Debug messages
and messages printed after a successful detection are acceptable, but it
must not print messages such as "Chip XXX not found/supported".
Keep in mind that the detect function will run for all drivers supporting an
address if a chip is detected on that address. Unnecessary messages will just
pollute the kernel log and not provide any value.
* Provide a detect function if and only if a chip can be detected reliably.
* Avoid writing to chip registers in the detect function. If you have to write,
only do it after you have already gathered enough data to be certain that the
detection is going to be successful.
Keep in mind that the chip might not be what your driver believes it is, and
writing to it might cause a bad misconfiguration.
* Make sure there are no race conditions in the probe function. Specifically,
completely initialize your chip first, then create sysfs entries and register
with the hwmon subsystem.
* Do not provide support for deprecated sysfs attributes.
* Do not create non-standard attributes unless really needed. If you have to use
non-standard attributes, or you believe you do, discuss it on the mailing list
first. Either case, provide a detailed explanation why you need the
non-standard attribute(s).
Standard attributes are specified in Documentation/hwmon/sysfs-interface.
* When deciding which sysfs attributes to support, look at the chip's
capabilities. While we do not expect your driver to support everything the
chip may offer, it should at least support all limits and alarms.
* Last but not least, please check if a driver for your chip already exists
before starting to write a new driver. Especially for temperature sensors,
new chips are often variants of previously released chips. In some cases,
a presumably new chip may simply have been relabeled.
...@@ -139,7 +139,6 @@ struct pmbus_data { ...@@ -139,7 +139,6 @@ struct pmbus_data {
* A single status register covers multiple attributes, * A single status register covers multiple attributes,
* so we keep them all together. * so we keep them all together.
*/ */
u8 status_bits;
u8 status[PB_NUM_STATUS_REG]; u8 status[PB_NUM_STATUS_REG];
u8 currpage; u8 currpage;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment