Commit 71086041 authored by Puranjay Mohan's avatar Puranjay Mohan Committed by Alexei Starovoitov

arm32, bpf: add support for 64 bit division instruction

ARM32 doesn't have instructions to do 64-bit/64-bit divisions. So, to
implement the following instructions:
BPF_ALU64 | BPF_DIV
BPF_ALU64 | BPF_MOD
BPF_ALU64 | BPF_SDIV
BPF_ALU64 | BPF_SMOD

We implement the above instructions by doing function calls to div64_u64()
and div64_u64_rem() for unsigned division/mod and calls to div64_s64()
for signed division/mod.
Signed-off-by: default avatarPuranjay Mohan <puranjay12@gmail.com>
Reviewed-by: default avatarRussell King (Oracle) <rmk+kernel@armlinux.org.uk>
Link: https://lore.kernel.org/r/20230907230550.1417590-7-puranjay12@gmail.comSigned-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
parent 5097faa5
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
/* /*
* Just-In-Time compiler for eBPF filters on 32bit ARM * Just-In-Time compiler for eBPF filters on 32bit ARM
* *
* Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
* Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
*/ */
...@@ -15,6 +16,7 @@ ...@@ -15,6 +16,7 @@
#include <linux/string.h> #include <linux/string.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/if_vlan.h> #include <linux/if_vlan.h>
#include <linux/math64.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/hwcap.h> #include <asm/hwcap.h>
...@@ -238,6 +240,34 @@ static s32 jit_smod32(s32 dividend, s32 divisor) ...@@ -238,6 +240,34 @@ static s32 jit_smod32(s32 dividend, s32 divisor)
return dividend % divisor; return dividend % divisor;
} }
/* Wrappers for 64-bit div/mod */
static u64 jit_udiv64(u64 dividend, u64 divisor)
{
return div64_u64(dividend, divisor);
}
static u64 jit_mod64(u64 dividend, u64 divisor)
{
u64 rem;
div64_u64_rem(dividend, divisor, &rem);
return rem;
}
static s64 jit_sdiv64(s64 dividend, s64 divisor)
{
return div64_s64(dividend, divisor);
}
static s64 jit_smod64(s64 dividend, s64 divisor)
{
u64 q;
q = div64_s64(dividend, divisor);
return dividend - q * divisor;
}
static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
{ {
inst |= (cond << 28); inst |= (cond << 28);
...@@ -555,6 +585,78 @@ static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, ...@@ -555,6 +585,78 @@ static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op,
emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
} }
static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
u8 op, u8 sign)
{
u32 dst;
/* Push caller-saved registers on stack */
emit(ARM_PUSH(CALLER_MASK), ctx);
/*
* As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
* R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
* we can recover them later after returning from the function call.
*/
if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
/*
* Move Rm to {R1, R0} if it is not already there.
*/
if (rm[1] != ARM_R0) {
if (rn[1] == ARM_R0)
emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
if (rn[1] == ARM_R0) {
emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
goto cont;
}
}
/*
* Move Rn to {R3, R2} if it is not already there.
*/
if (rn[1] != ARM_R2) {
emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
}
}
cont:
/* Call appropriate function */
if (sign) {
if (op == BPF_DIV)
dst = (u32)jit_sdiv64;
else
dst = (u32)jit_smod64;
} else {
if (op == BPF_DIV)
dst = (u32)jit_udiv64;
else
dst = (u32)jit_mod64;
}
emit_mov_i(ARM_IP, dst, ctx);
emit_blx_r(ARM_IP, ctx);
/* Save return value */
if (rd[1] != ARM_R0) {
emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
}
/* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
emit(ARM_POP(CALLER_MASK), ctx);
} else if (rd[1] != ARM_R0) {
emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
} else {
emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
}
}
/* Is the translated BPF register on stack? */ /* Is the translated BPF register on stack? */
static bool is_stacked(s8 reg) static bool is_stacked(s8 reg)
{ {
...@@ -1582,7 +1684,19 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) ...@@ -1582,7 +1684,19 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X:
goto notyet; rd = arm_bpf_get_reg64(dst, tmp2, ctx);
switch (BPF_SRC(code)) {
case BPF_X:
rs = arm_bpf_get_reg64(src, tmp, ctx);
break;
case BPF_K:
rs = tmp;
emit_a32_mov_se_i64(is64, rs, imm, ctx);
break;
}
emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
arm_bpf_put_reg64(dst, rd, ctx);
break;
/* dst = dst << imm */ /* dst = dst << imm */
/* dst = dst >> imm */ /* dst = dst >> imm */
/* dst = dst >> imm (signed) */ /* dst = dst >> imm (signed) */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment