Commit 721ee188 authored by Ben Dooks's avatar Ben Dooks Committed by Thierry Reding

pwm: dwc: split pci out of core driver

Moving towards adding non-pci support for the driver, move the pci
parts out of the core into their own module. This is partly due to
the module_driver() code only being allowed once in a module and also
to avoid a number of #ifdef if we build a single file in a system
without pci support.
Signed-off-by: default avatarBen Dooks <ben.dooks@codethink.co.uk>
Acked-by: default avatarUwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230907161242.67190-2-ben.dooks@codethink.co.ukSigned-off-by: default avatarUwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: default avatarThierry Reding <thierry.reding@gmail.com>
parent 6dbf23f5
......@@ -186,9 +186,19 @@ config PWM_CROS_EC
PWM driver for exposing a PWM attached to the ChromeOS Embedded
Controller.
config PWM_DWC_CORE
tristate
depends on HAS_IOMEM
help
PWM driver for Synopsys DWC PWM Controller.
To compile this driver as a module, build the dependecies as
modules, this will be called pwm-dwc-core.
config PWM_DWC
tristate "DesignWare PWM Controller"
depends on PCI
tristate "DesignWare PWM Controller (PCI bus)"
depends on HAS_IOMEM && PCI
select PWM_DWC_CORE
help
PWM driver for Synopsys DWC PWM Controller attached to a PCI bus.
......
......@@ -15,6 +15,7 @@ obj-$(CONFIG_PWM_CLK) += pwm-clk.o
obj-$(CONFIG_PWM_CLPS711X) += pwm-clps711x.o
obj-$(CONFIG_PWM_CRC) += pwm-crc.o
obj-$(CONFIG_PWM_CROS_EC) += pwm-cros-ec.o
obj-$(CONFIG_PWM_DWC_CORE) += pwm-dwc-core.o
obj-$(CONFIG_PWM_DWC) += pwm-dwc.o
obj-$(CONFIG_PWM_EP93XX) += pwm-ep93xx.o
obj-$(CONFIG_PWM_FSL_FTM) += pwm-fsl-ftm.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* DesignWare PWM Controller driver core
*
* Copyright (C) 2018-2020 Intel Corporation
*
* Author: Felipe Balbi (Intel)
* Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
* Author: Raymond Tan <raymond.tan@intel.com>
*/
#define DEFAULT_SYMBOL_NAMESPACE dwc_pwm
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include "pwm-dwc.h"
static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
{
u32 reg;
reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
if (enabled)
reg |= DWC_TIM_CTRL_EN;
else
reg &= ~DWC_TIM_CTRL_EN;
dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
}
static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
struct pwm_device *pwm,
const struct pwm_state *state)
{
u64 tmp;
u32 ctrl;
u32 high;
u32 low;
/*
* Calculate width of low and high period in terms of input clock
* periods and check are the result within HW limits between 1 and
* 2^32 periods.
*/
tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
if (tmp < 1 || tmp > (1ULL << 32))
return -ERANGE;
low = tmp - 1;
tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
DWC_CLK_PERIOD_NS);
if (tmp < 1 || tmp > (1ULL << 32))
return -ERANGE;
high = tmp - 1;
/*
* Specification says timer usage flow is to disable timer, then
* program it followed by enable. It also says Load Count is loaded
* into timer after it is enabled - either after a disable or
* a reset. Based on measurements it happens also without disable
* whenever Load Count is updated. But follow the specification.
*/
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
/*
* Write Load Count and Load Count 2 registers. Former defines the
* width of low period and latter the width of high period in terms
* multiple of input clock periods:
* Width = ((Count + 1) * input clock period).
*/
dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
/*
* Set user-defined mode, timer reloads from Load Count registers
* when it counts down to 0.
* Set PWM mode, it makes output to toggle and width of low and high
* periods are set by Load Count registers.
*/
ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
/*
* Enable timer. Output starts from low period.
*/
__dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
return 0;
}
static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct dwc_pwm *dwc = to_dwc_pwm(chip);
if (state->polarity != PWM_POLARITY_INVERSED)
return -EINVAL;
if (state->enabled) {
if (!pwm->state.enabled)
pm_runtime_get_sync(chip->dev);
return __dwc_pwm_configure_timer(dwc, pwm, state);
} else {
if (pwm->state.enabled) {
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
pm_runtime_put_sync(chip->dev);
}
}
return 0;
}
static int dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct dwc_pwm *dwc = to_dwc_pwm(chip);
u64 duty, period;
pm_runtime_get_sync(chip->dev);
state->enabled = !!(dwc_pwm_readl(dwc,
DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
duty += 1;
duty *= DWC_CLK_PERIOD_NS;
state->duty_cycle = duty;
period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
period += 1;
period *= DWC_CLK_PERIOD_NS;
period += duty;
state->period = period;
state->polarity = PWM_POLARITY_INVERSED;
pm_runtime_put_sync(chip->dev);
return 0;
}
static const struct pwm_ops dwc_pwm_ops = {
.apply = dwc_pwm_apply,
.get_state = dwc_pwm_get_state,
};
struct dwc_pwm *dwc_pwm_alloc(struct device *dev)
{
struct dwc_pwm *dwc;
dwc = devm_kzalloc(dev, sizeof(*dwc), GFP_KERNEL);
if (!dwc)
return NULL;
dwc->chip.dev = dev;
dwc->chip.ops = &dwc_pwm_ops;
dwc->chip.npwm = DWC_TIMERS_TOTAL;
dev_set_drvdata(dev, dwc);
return dwc;
}
EXPORT_SYMBOL_GPL(dwc_pwm_alloc);
MODULE_AUTHOR("Felipe Balbi (Intel)");
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
MODULE_DESCRIPTION("DesignWare PWM Controller");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0
/*
* DesignWare PWM Controller driver
* DesignWare PWM Controller driver (PCI part)
*
* Copyright (C) 2018-2020 Intel Corporation
*
......@@ -13,6 +13,8 @@
* periods are one or more input clock periods long.
*/
#define DEFAULT_MOUDLE_NAMESPACE dwc_pwm
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kernel.h>
......@@ -21,197 +23,7 @@
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#define DWC_TIM_LD_CNT(n) ((n) * 0x14)
#define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
#define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
#define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
#define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
#define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
#define DWC_TIMERS_INT_STS 0xa0
#define DWC_TIMERS_EOI 0xa4
#define DWC_TIMERS_RAW_INT_STS 0xa8
#define DWC_TIMERS_COMP_VERSION 0xac
#define DWC_TIMERS_TOTAL 8
#define DWC_CLK_PERIOD_NS 10
/* Timer Control Register */
#define DWC_TIM_CTRL_EN BIT(0)
#define DWC_TIM_CTRL_MODE BIT(1)
#define DWC_TIM_CTRL_MODE_FREE (0 << 1)
#define DWC_TIM_CTRL_MODE_USER (1 << 1)
#define DWC_TIM_CTRL_INT_MASK BIT(2)
#define DWC_TIM_CTRL_PWM BIT(3)
struct dwc_pwm_ctx {
u32 cnt;
u32 cnt2;
u32 ctrl;
};
struct dwc_pwm {
struct pwm_chip chip;
void __iomem *base;
struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
};
#define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
{
return readl(dwc->base + offset);
}
static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
{
writel(value, dwc->base + offset);
}
static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
{
u32 reg;
reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
if (enabled)
reg |= DWC_TIM_CTRL_EN;
else
reg &= ~DWC_TIM_CTRL_EN;
dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
}
static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
struct pwm_device *pwm,
const struct pwm_state *state)
{
u64 tmp;
u32 ctrl;
u32 high;
u32 low;
/*
* Calculate width of low and high period in terms of input clock
* periods and check are the result within HW limits between 1 and
* 2^32 periods.
*/
tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
if (tmp < 1 || tmp > (1ULL << 32))
return -ERANGE;
low = tmp - 1;
tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
DWC_CLK_PERIOD_NS);
if (tmp < 1 || tmp > (1ULL << 32))
return -ERANGE;
high = tmp - 1;
/*
* Specification says timer usage flow is to disable timer, then
* program it followed by enable. It also says Load Count is loaded
* into timer after it is enabled - either after a disable or
* a reset. Based on measurements it happens also without disable
* whenever Load Count is updated. But follow the specification.
*/
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
/*
* Write Load Count and Load Count 2 registers. Former defines the
* width of low period and latter the width of high period in terms
* multiple of input clock periods:
* Width = ((Count + 1) * input clock period).
*/
dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
/*
* Set user-defined mode, timer reloads from Load Count registers
* when it counts down to 0.
* Set PWM mode, it makes output to toggle and width of low and high
* periods are set by Load Count registers.
*/
ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
/*
* Enable timer. Output starts from low period.
*/
__dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
return 0;
}
static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct dwc_pwm *dwc = to_dwc_pwm(chip);
if (state->polarity != PWM_POLARITY_INVERSED)
return -EINVAL;
if (state->enabled) {
if (!pwm->state.enabled)
pm_runtime_get_sync(chip->dev);
return __dwc_pwm_configure_timer(dwc, pwm, state);
} else {
if (pwm->state.enabled) {
__dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
pm_runtime_put_sync(chip->dev);
}
}
return 0;
}
static int dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct dwc_pwm *dwc = to_dwc_pwm(chip);
u64 duty, period;
pm_runtime_get_sync(chip->dev);
state->enabled = !!(dwc_pwm_readl(dwc,
DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
duty += 1;
duty *= DWC_CLK_PERIOD_NS;
state->duty_cycle = duty;
period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
period += 1;
period *= DWC_CLK_PERIOD_NS;
period += duty;
state->period = period;
state->polarity = PWM_POLARITY_INVERSED;
pm_runtime_put_sync(chip->dev);
return 0;
}
static const struct pwm_ops dwc_pwm_ops = {
.apply = dwc_pwm_apply,
.get_state = dwc_pwm_get_state,
};
static struct dwc_pwm *dwc_pwm_alloc(struct device *dev)
{
struct dwc_pwm *dwc;
dwc = devm_kzalloc(dev, sizeof(*dwc), GFP_KERNEL);
if (!dwc)
return NULL;
dwc->chip.dev = dev;
dwc->chip.ops = &dwc_pwm_ops;
dwc->chip.npwm = DWC_TIMERS_TOTAL;
dev_set_drvdata(dev, dwc);
return dwc;
}
#include "pwm-dwc.h"
static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
{
......
// SPDX-License-Identifier: GPL-2.0
/*
* DesignWare PWM Controller driver
*
* Copyright (C) 2018-2020 Intel Corporation
*
* Author: Felipe Balbi (Intel)
* Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
* Author: Raymond Tan <raymond.tan@intel.com>
*/
MODULE_IMPORT_NS(dwc_pwm);
#define DWC_TIM_LD_CNT(n) ((n) * 0x14)
#define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
#define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
#define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
#define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
#define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
#define DWC_TIMERS_INT_STS 0xa0
#define DWC_TIMERS_EOI 0xa4
#define DWC_TIMERS_RAW_INT_STS 0xa8
#define DWC_TIMERS_COMP_VERSION 0xac
#define DWC_TIMERS_TOTAL 8
#define DWC_CLK_PERIOD_NS 10
/* Timer Control Register */
#define DWC_TIM_CTRL_EN BIT(0)
#define DWC_TIM_CTRL_MODE BIT(1)
#define DWC_TIM_CTRL_MODE_FREE (0 << 1)
#define DWC_TIM_CTRL_MODE_USER (1 << 1)
#define DWC_TIM_CTRL_INT_MASK BIT(2)
#define DWC_TIM_CTRL_PWM BIT(3)
struct dwc_pwm_ctx {
u32 cnt;
u32 cnt2;
u32 ctrl;
};
struct dwc_pwm {
struct pwm_chip chip;
void __iomem *base;
struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
};
#define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
{
return readl(dwc->base + offset);
}
static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
{
writel(value, dwc->base + offset);
}
extern struct dwc_pwm *dwc_pwm_alloc(struct device *dev);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment