Commit 81a0bc39 authored by Roy Franz's avatar Roy Franz Committed by ard

ARM: add UEFI stub support

This patch adds EFI stub support for the ARM Linux kernel.

The EFI stub operates similarly to the x86 and arm64 stubs: it is a
shim between the EFI firmware and the normal zImage entry point, and
sets up the environment that the zImage is expecting. This includes
optionally loading the initrd and device tree from the system partition
based on the kernel command line.
Signed-off-by: default avatarRoy Franz <roy.franz@linaro.org>
Tested-by: default avatarRyan Harkin <ryan.harkin@linaro.org>
Reviewed-by: default avatarMatt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: default avatarArd Biesheuvel <ard.biesheuvel@linaro.org>
parent da58fb65
...@@ -2041,6 +2041,25 @@ config AUTO_ZRELADDR ...@@ -2041,6 +2041,25 @@ config AUTO_ZRELADDR
0xf8000000. This assumes the zImage being placed in the first 128MB 0xf8000000. This assumes the zImage being placed in the first 128MB
from start of memory. from start of memory.
config EFI_STUB
bool
config EFI
bool "UEFI runtime support"
depends on OF && !CPU_BIG_ENDIAN && MMU && AUTO_ZRELADDR && !XIP_KERNEL
select UCS2_STRING
select EFI_PARAMS_FROM_FDT
select EFI_STUB
select EFI_ARMSTUB
select EFI_RUNTIME_WRAPPERS
---help---
This option provides support for runtime services provided
by UEFI firmware (such as non-volatile variables, realtime
clock, and platform reset). A UEFI stub is also provided to
allow the kernel to be booted as an EFI application. This
is only useful for kernels that may run on systems that have
UEFI firmware.
endmenu endmenu
menu "CPU Power Management" menu "CPU Power Management"
......
...@@ -167,9 +167,11 @@ if [ $(words $(ZRELADDR)) -gt 1 -a "$(CONFIG_AUTO_ZRELADDR)" = "" ]; then \ ...@@ -167,9 +167,11 @@ if [ $(words $(ZRELADDR)) -gt 1 -a "$(CONFIG_AUTO_ZRELADDR)" = "" ]; then \
false; \ false; \
fi fi
efi-obj-$(CONFIG_EFI_STUB) := $(objtree)/drivers/firmware/efi/libstub/lib.a
$(obj)/vmlinux: $(obj)/vmlinux.lds $(obj)/$(HEAD) $(obj)/piggy.$(suffix_y).o \ $(obj)/vmlinux: $(obj)/vmlinux.lds $(obj)/$(HEAD) $(obj)/piggy.$(suffix_y).o \
$(addprefix $(obj)/, $(OBJS)) $(lib1funcs) $(ashldi3) \ $(addprefix $(obj)/, $(OBJS)) $(lib1funcs) $(ashldi3) \
$(bswapsdi2) FORCE $(bswapsdi2) $(efi-obj-y) FORCE
@$(check_for_multiple_zreladdr) @$(check_for_multiple_zreladdr)
$(call if_changed,ld) $(call if_changed,ld)
@$(check_for_bad_syms) @$(check_for_bad_syms)
......
/*
* Copyright (C) 2013-2015 Linaro Ltd
* Authors: Roy Franz <roy.franz@linaro.org>
* Ard Biesheuvel <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
.macro __nop
#ifdef CONFIG_EFI_STUB
@ This is almost but not quite a NOP, since it does clobber the
@ condition flags. But it is the best we can do for EFI, since
@ PE/COFF expects the magic string "MZ" at offset 0, while the
@ ARM/Linux boot protocol expects an executable instruction
@ there.
.inst 'M' | ('Z' << 8) | (0x1310 << 16) @ tstne r0, #0x4d000
#else
mov r0, r0
#endif
.endm
.macro __EFI_HEADER
#ifdef CONFIG_EFI_STUB
b __efi_start
.set start_offset, __efi_start - start
.org start + 0x3c
@
@ The PE header can be anywhere in the file, but for
@ simplicity we keep it together with the MSDOS header
@ The offset to the PE/COFF header needs to be at offset
@ 0x3C in the MSDOS header.
@ The only 2 fields of the MSDOS header that are used are this
@ PE/COFF offset, and the "MZ" bytes at offset 0x0.
@
.long pe_header - start @ Offset to the PE header.
pe_header:
.ascii "PE\0\0"
coff_header:
.short 0x01c2 @ ARM or Thumb
.short 2 @ nr_sections
.long 0 @ TimeDateStamp
.long 0 @ PointerToSymbolTable
.long 1 @ NumberOfSymbols
.short section_table - optional_header
@ SizeOfOptionalHeader
.short 0x306 @ Characteristics.
@ IMAGE_FILE_32BIT_MACHINE |
@ IMAGE_FILE_DEBUG_STRIPPED |
@ IMAGE_FILE_EXECUTABLE_IMAGE |
@ IMAGE_FILE_LINE_NUMS_STRIPPED
optional_header:
.short 0x10b @ PE32 format
.byte 0x02 @ MajorLinkerVersion
.byte 0x14 @ MinorLinkerVersion
.long _end - __efi_start @ SizeOfCode
.long 0 @ SizeOfInitializedData
.long 0 @ SizeOfUninitializedData
.long efi_stub_entry - start @ AddressOfEntryPoint
.long start_offset @ BaseOfCode
.long 0 @ data
extra_header_fields:
.long 0 @ ImageBase
.long 0x200 @ SectionAlignment
.long 0x200 @ FileAlignment
.short 0 @ MajorOperatingSystemVersion
.short 0 @ MinorOperatingSystemVersion
.short 0 @ MajorImageVersion
.short 0 @ MinorImageVersion
.short 0 @ MajorSubsystemVersion
.short 0 @ MinorSubsystemVersion
.long 0 @ Win32VersionValue
.long _end - start @ SizeOfImage
.long start_offset @ SizeOfHeaders
.long 0 @ CheckSum
.short 0xa @ Subsystem (EFI application)
.short 0 @ DllCharacteristics
.long 0 @ SizeOfStackReserve
.long 0 @ SizeOfStackCommit
.long 0 @ SizeOfHeapReserve
.long 0 @ SizeOfHeapCommit
.long 0 @ LoaderFlags
.long 0x6 @ NumberOfRvaAndSizes
.quad 0 @ ExportTable
.quad 0 @ ImportTable
.quad 0 @ ResourceTable
.quad 0 @ ExceptionTable
.quad 0 @ CertificationTable
.quad 0 @ BaseRelocationTable
section_table:
@
@ The EFI application loader requires a relocation section
@ because EFI applications must be relocatable. This is a
@ dummy section as far as we are concerned.
@
.ascii ".reloc\0\0"
.long 0 @ VirtualSize
.long 0 @ VirtualAddress
.long 0 @ SizeOfRawData
.long 0 @ PointerToRawData
.long 0 @ PointerToRelocations
.long 0 @ PointerToLineNumbers
.short 0 @ NumberOfRelocations
.short 0 @ NumberOfLineNumbers
.long 0x42100040 @ Characteristics
.ascii ".text\0\0\0"
.long _end - __efi_start @ VirtualSize
.long __efi_start @ VirtualAddress
.long _edata - __efi_start @ SizeOfRawData
.long __efi_start @ PointerToRawData
.long 0 @ PointerToRelocations
.long 0 @ PointerToLineNumbers
.short 0 @ NumberOfRelocations
.short 0 @ NumberOfLineNumbers
.long 0xe0500020 @ Characteristics
.align 9
__efi_start:
#endif
.endm
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
#include <asm/assembler.h> #include <asm/assembler.h>
#include <asm/v7m.h> #include <asm/v7m.h>
#include "efi-header.S"
AR_CLASS( .arch armv7-a ) AR_CLASS( .arch armv7-a )
M_CLASS( .arch armv7-m ) M_CLASS( .arch armv7-m )
...@@ -126,7 +128,7 @@ ...@@ -126,7 +128,7 @@
start: start:
.type start,#function .type start,#function
.rept 7 .rept 7
mov r0, r0 __nop
.endr .endr
ARM( mov r0, r0 ) ARM( mov r0, r0 )
ARM( b 1f ) ARM( b 1f )
...@@ -139,7 +141,8 @@ start: ...@@ -139,7 +141,8 @@ start:
.word 0x04030201 @ endianness flag .word 0x04030201 @ endianness flag
THUMB( .thumb ) THUMB( .thumb )
1: 1: __EFI_HEADER
ARM_BE8( setend be ) @ go BE8 if compiled for BE8 ARM_BE8( setend be ) @ go BE8 if compiled for BE8
AR_CLASS( mrs r9, cpsr ) AR_CLASS( mrs r9, cpsr )
#ifdef CONFIG_ARM_VIRT_EXT #ifdef CONFIG_ARM_VIRT_EXT
...@@ -1353,6 +1356,53 @@ __enter_kernel: ...@@ -1353,6 +1356,53 @@ __enter_kernel:
reloc_code_end: reloc_code_end:
#ifdef CONFIG_EFI_STUB
.align 2
_start: .long start - .
ENTRY(efi_stub_entry)
@ allocate space on stack for passing current zImage address
@ and for the EFI stub to return of new entry point of
@ zImage, as EFI stub may copy the kernel. Pointer address
@ is passed in r2. r0 and r1 are passed through from the
@ EFI firmware to efi_entry
adr ip, _start
ldr r3, [ip]
add r3, r3, ip
stmfd sp!, {r3, lr}
mov r2, sp @ pass zImage address in r2
bl efi_entry
@ Check for error return from EFI stub. r0 has FDT address
@ or error code.
cmn r0, #1
beq efi_load_fail
@ Preserve return value of efi_entry() in r4
mov r4, r0
bl cache_clean_flush
bl cache_off
@ Set parameters for booting zImage according to boot protocol
@ put FDT address in r2, it was returned by efi_entry()
@ r1 is the machine type, and r0 needs to be 0
mov r0, #0
mov r1, #0xFFFFFFFF
mov r2, r4
@ Branch to (possibly) relocated zImage that is in [sp]
ldr lr, [sp]
ldr ip, =start_offset
add lr, lr, ip
mov pc, lr @ no mode switch
efi_load_fail:
@ Return EFI_LOAD_ERROR to EFI firmware on error.
ldr r0, =0x80000001
ldmfd sp!, {ip, pc}
ENDPROC(efi_stub_entry)
#endif
.align .align
.section ".stack", "aw", %nobits .section ".stack", "aw", %nobits
.L_user_stack: .space 4096 .L_user_stack: .space 4096
......
...@@ -48,6 +48,13 @@ SECTIONS ...@@ -48,6 +48,13 @@ SECTIONS
*(.rodata) *(.rodata)
*(.rodata.*) *(.rodata.*)
} }
.data : {
/*
* The EFI stub always executes from RAM, and runs strictly before the
* decompressor, so we can make an exception for its r/w data, and keep it
*/
*(.data.efistub)
}
.piggydata : { .piggydata : {
*(.piggydata) *(.piggydata)
} }
......
...@@ -57,4 +57,27 @@ void efi_virtmap_unload(void); ...@@ -57,4 +57,27 @@ void efi_virtmap_unload(void);
#define efi_init() #define efi_init()
#endif /* CONFIG_EFI */ #endif /* CONFIG_EFI */
/* arch specific definitions used by the stub code */
#define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__)
/*
* A reasonable upper bound for the uncompressed kernel size is 32 MBytes,
* so we will reserve that amount of memory. We have no easy way to tell what
* the actuall size of code + data the uncompressed kernel will use.
* If this is insufficient, the decompressor will relocate itself out of the
* way before performing the decompression.
*/
#define MAX_UNCOMP_KERNEL_SIZE SZ_32M
/*
* The kernel zImage should preferably be located between 32 MB and 128 MB
* from the base of DRAM. The min address leaves space for a maximal size
* uncompressed image, and the max address is due to how the zImage decompressor
* picks a destination address.
*/
#define ZIMAGE_OFFSET_LIMIT SZ_128M
#define MIN_ZIMAGE_OFFSET MAX_UNCOMP_KERNEL_SIZE
#define MAX_FDT_OFFSET ZIMAGE_OFFSET_LIMIT
#endif /* _ASM_ARM_EFI_H */ #endif /* _ASM_ARM_EFI_H */
...@@ -34,6 +34,7 @@ $(obj)/lib-%.o: $(srctree)/lib/%.c FORCE ...@@ -34,6 +34,7 @@ $(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o \ lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o \
$(patsubst %.c,lib-%.o,$(arm-deps)) $(patsubst %.c,lib-%.o,$(arm-deps))
lib-$(CONFIG_ARM) += arm32-stub.o
lib-$(CONFIG_ARM64) += arm64-stub.o lib-$(CONFIG_ARM64) += arm64-stub.o
CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET) CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
...@@ -67,3 +68,11 @@ quiet_cmd_stubcopy = STUBCPY $@ ...@@ -67,3 +68,11 @@ quiet_cmd_stubcopy = STUBCPY $@
$(OBJDUMP) -r $@ | grep $(STUBCOPY_RELOC-y) \ $(OBJDUMP) -r $@ | grep $(STUBCOPY_RELOC-y) \
&& (echo >&2 "$@: absolute symbol references not allowed in the EFI stub"; \ && (echo >&2 "$@: absolute symbol references not allowed in the EFI stub"; \
rm -f $@; /bin/false); else /bin/false; fi rm -f $@; /bin/false); else /bin/false; fi
#
# ARM discards the .data section because it disallows r/w data in the
# decompressor. So move our .data to .data.efistub, which is preserved
# explicitly by the decompressor linker script.
#
STUBCOPY_FLAGS-$(CONFIG_ARM) += --rename-section .data=.data.efistub
STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS
...@@ -303,8 +303,10 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, ...@@ -303,8 +303,10 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
* The value chosen is the largest non-zero power of 2 suitable for this purpose * The value chosen is the largest non-zero power of 2 suitable for this purpose
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
* be mapped efficiently. * be mapped efficiently.
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
* map everything below 1 GB.
*/ */
#define EFI_RT_VIRTUAL_BASE 0x40000000 #define EFI_RT_VIRTUAL_BASE SZ_512M
static int cmp_mem_desc(const void *l, const void *r) static int cmp_mem_desc(const void *l, const void *r)
{ {
......
/*
* Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/efi.h>
#include <asm/efi.h>
efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
unsigned long *image_addr,
unsigned long *image_size,
unsigned long *reserve_addr,
unsigned long *reserve_size,
unsigned long dram_base,
efi_loaded_image_t *image)
{
unsigned long nr_pages;
efi_status_t status;
/* Use alloc_addr to tranlsate between types */
efi_physical_addr_t alloc_addr;
/*
* Verify that the DRAM base address is compatible with the ARM
* boot protocol, which determines the base of DRAM by masking
* off the low 27 bits of the address at which the zImage is
* loaded. These assumptions are made by the decompressor,
* before any memory map is available.
*/
dram_base = round_up(dram_base, SZ_128M);
/*
* Reserve memory for the uncompressed kernel image. This is
* all that prevents any future allocations from conflicting
* with the kernel. Since we can't tell from the compressed
* image how much DRAM the kernel actually uses (due to BSS
* size uncertainty) we allocate the maximum possible size.
* Do this very early, as prints can cause memory allocations
* that may conflict with this.
*/
alloc_addr = dram_base;
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = sys_table->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA,
nr_pages, &alloc_addr);
if (status != EFI_SUCCESS) {
*reserve_size = 0;
pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
return status;
}
*reserve_addr = alloc_addr;
/*
* Relocate the zImage, so that it appears in the lowest 128 MB
* memory window.
*/
*image_size = image->image_size;
status = efi_relocate_kernel(sys_table, image_addr, *image_size,
*image_size,
dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Failed to relocate kernel.\n");
efi_free(sys_table, *reserve_size, *reserve_addr);
*reserve_size = 0;
return status;
}
/*
* Check to see if we were able to allocate memory low enough
* in memory. The kernel determines the base of DRAM from the
* address at which the zImage is loaded.
*/
if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
efi_free(sys_table, *reserve_size, *reserve_addr);
*reserve_size = 0;
efi_free(sys_table, *image_size, *image_addr);
*image_size = 0;
return EFI_LOAD_ERROR;
}
return EFI_SUCCESS;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment