Commit 8520e224 authored by Daniel Borkmann's avatar Daniel Borkmann Committed by Alexei Starovoitov

bpf, cgroups: Fix cgroup v2 fallback on v1/v2 mixed mode

Fix cgroup v1 interference when non-root cgroup v2 BPF programs are used.
Back in the days, commit bd1060a1 ("sock, cgroup: add sock->sk_cgroup")
embedded per-socket cgroup information into sock->sk_cgrp_data and in order
to save 8 bytes in struct sock made both mutually exclusive, that is, when
cgroup v1 socket tagging (e.g. net_cls/net_prio) is used, then cgroup v2
falls back to the root cgroup in sock_cgroup_ptr() (&cgrp_dfl_root.cgrp).

The assumption made was "there is no reason to mix the two and this is in line
with how legacy and v2 compatibility is handled" as stated in bd1060a1.
However, with Kubernetes more widely supporting cgroups v2 as well nowadays,
this assumption no longer holds, and the possibility of the v1/v2 mixed mode
with the v2 root fallback being hit becomes a real security issue.

Many of the cgroup v2 BPF programs are also used for policy enforcement, just
to pick _one_ example, that is, to programmatically deny socket related system
calls like connect(2) or bind(2). A v2 root fallback would implicitly cause
a policy bypass for the affected Pods.

In production environments, we have recently seen this case due to various
circumstances: i) a different 3rd party agent and/or ii) a container runtime
such as [0] in the user's environment configuring legacy cgroup v1 net_cls
tags, which triggered implicitly mentioned root fallback. Another case is
Kubernetes projects like kind [1] which create Kubernetes nodes in a container
and also add cgroup namespaces to the mix, meaning programs which are attached
to the cgroup v2 root of the cgroup namespace get attached to a non-root
cgroup v2 path from init namespace point of view. And the latter's root is
out of reach for agents on a kind Kubernetes node to configure. Meaning, any
entity on the node setting cgroup v1 net_cls tag will trigger the bypass
despite cgroup v2 BPF programs attached to the namespace root.

Generally, this mutual exclusiveness does not hold anymore in today's user
environments and makes cgroup v2 usage from BPF side fragile and unreliable.
This fix adds proper struct cgroup pointer for the cgroup v2 case to struct
sock_cgroup_data in order to address these issues; this implicitly also fixes
the tradeoffs being made back then with regards to races and refcount leaks
as stated in bd1060a1, and removes the fallback, so that cgroup v2 BPF
programs always operate as expected.

  [0] https://github.com/nestybox/sysbox/
  [1] https://kind.sigs.k8s.io/

Fixes: bd1060a1 ("sock, cgroup: add sock->sk_cgroup")
Signed-off-by: default avatarDaniel Borkmann <daniel@iogearbox.net>
Signed-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
Acked-by: default avatarStanislav Fomichev <sdf@google.com>
Acked-by: default avatarTejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20210913230759.2313-1-daniel@iogearbox.net
parent 0e6491b5
......@@ -752,107 +752,54 @@ static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
* sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
* per-socket cgroup information except for memcg association.
*
* On legacy hierarchies, net_prio and net_cls controllers directly set
* attributes on each sock which can then be tested by the network layer.
* On the default hierarchy, each sock is associated with the cgroup it was
* created in and the networking layer can match the cgroup directly.
*
* To avoid carrying all three cgroup related fields separately in sock,
* sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
* On boot, sock_cgroup_data records the cgroup that the sock was created
* in so that cgroup2 matches can be made; however, once either net_prio or
* net_cls starts being used, the area is overridden to carry prioidx and/or
* classid. The two modes are distinguished by whether the lowest bit is
* set. Clear bit indicates cgroup pointer while set bit prioidx and
* classid.
*
* While userland may start using net_prio or net_cls at any time, once
* either is used, cgroup2 matching no longer works. There is no reason to
* mix the two and this is in line with how legacy and v2 compatibility is
* handled. On mode switch, cgroup references which are already being
* pointed to by socks may be leaked. While this can be remedied by adding
* synchronization around sock_cgroup_data, given that the number of leaked
* cgroups is bound and highly unlikely to be high, this seems to be the
* better trade-off.
* On legacy hierarchies, net_prio and net_cls controllers directly
* set attributes on each sock which can then be tested by the network
* layer. On the default hierarchy, each sock is associated with the
* cgroup it was created in and the networking layer can match the
* cgroup directly.
*/
struct sock_cgroup_data {
union {
#ifdef __LITTLE_ENDIAN
struct {
u8 is_data : 1;
u8 no_refcnt : 1;
u8 unused : 6;
u8 padding;
u16 prioidx;
u32 classid;
} __packed;
#else
struct {
u32 classid;
u16 prioidx;
u8 padding;
u8 unused : 6;
u8 no_refcnt : 1;
u8 is_data : 1;
} __packed;
struct cgroup *cgroup; /* v2 */
#ifdef CONFIG_CGROUP_NET_CLASSID
u32 classid; /* v1 */
#endif
#ifdef CONFIG_CGROUP_NET_PRIO
u16 prioidx; /* v1 */
#endif
u64 val;
};
};
/*
* There's a theoretical window where the following accessors race with
* updaters and return part of the previous pointer as the prioidx or
* classid. Such races are short-lived and the result isn't critical.
*/
static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
{
/* fallback to 1 which is always the ID of the root cgroup */
return (skcd->is_data & 1) ? skcd->prioidx : 1;
#ifdef CONFIG_CGROUP_NET_PRIO
return READ_ONCE(skcd->prioidx);
#else
return 1;
#endif
}
static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
{
/* fallback to 0 which is the unconfigured default classid */
return (skcd->is_data & 1) ? skcd->classid : 0;
#ifdef CONFIG_CGROUP_NET_CLASSID
return READ_ONCE(skcd->classid);
#else
return 0;
#endif
}
/*
* If invoked concurrently, the updaters may clobber each other. The
* caller is responsible for synchronization.
*/
static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
u16 prioidx)
{
struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
return;
if (!(skcd_buf.is_data & 1)) {
skcd_buf.val = 0;
skcd_buf.is_data = 1;
}
skcd_buf.prioidx = prioidx;
WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
#ifdef CONFIG_CGROUP_NET_PRIO
WRITE_ONCE(skcd->prioidx, prioidx);
#endif
}
static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
u32 classid)
{
struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
if (sock_cgroup_classid(&skcd_buf) == classid)
return;
if (!(skcd_buf.is_data & 1)) {
skcd_buf.val = 0;
skcd_buf.is_data = 1;
}
skcd_buf.classid = classid;
WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
#ifdef CONFIG_CGROUP_NET_CLASSID
WRITE_ONCE(skcd->classid, classid);
#endif
}
#else /* CONFIG_SOCK_CGROUP_DATA */
......
......@@ -829,33 +829,13 @@ static inline void cgroup_account_cputime_field(struct task_struct *task,
*/
#ifdef CONFIG_SOCK_CGROUP_DATA
#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
extern spinlock_t cgroup_sk_update_lock;
#endif
void cgroup_sk_alloc_disable(void);
void cgroup_sk_alloc(struct sock_cgroup_data *skcd);
void cgroup_sk_clone(struct sock_cgroup_data *skcd);
void cgroup_sk_free(struct sock_cgroup_data *skcd);
static inline struct cgroup *sock_cgroup_ptr(struct sock_cgroup_data *skcd)
{
#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
unsigned long v;
/*
* @skcd->val is 64bit but the following is safe on 32bit too as we
* just need the lower ulong to be written and read atomically.
*/
v = READ_ONCE(skcd->val);
if (v & 3)
return &cgrp_dfl_root.cgrp;
return (struct cgroup *)(unsigned long)v ?: &cgrp_dfl_root.cgrp;
#else
return (struct cgroup *)(unsigned long)skcd->val;
#endif
return skcd->cgroup;
}
#else /* CONFIG_CGROUP_DATA */
......
......@@ -6572,74 +6572,44 @@ int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
*/
#ifdef CONFIG_SOCK_CGROUP_DATA
#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
DEFINE_SPINLOCK(cgroup_sk_update_lock);
static bool cgroup_sk_alloc_disabled __read_mostly;
void cgroup_sk_alloc_disable(void)
{
if (cgroup_sk_alloc_disabled)
return;
pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
cgroup_sk_alloc_disabled = true;
}
#else
#define cgroup_sk_alloc_disabled false
#endif
void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
{
if (cgroup_sk_alloc_disabled) {
skcd->no_refcnt = 1;
return;
}
/* Don't associate the sock with unrelated interrupted task's cgroup. */
if (in_interrupt())
return;
rcu_read_lock();
while (true) {
struct css_set *cset;
cset = task_css_set(current);
if (likely(cgroup_tryget(cset->dfl_cgrp))) {
skcd->val = (unsigned long)cset->dfl_cgrp;
skcd->cgroup = cset->dfl_cgrp;
cgroup_bpf_get(cset->dfl_cgrp);
break;
}
cpu_relax();
}
rcu_read_unlock();
}
void cgroup_sk_clone(struct sock_cgroup_data *skcd)
{
if (skcd->val) {
if (skcd->no_refcnt)
return;
/*
* We might be cloning a socket which is left in an empty
* cgroup and the cgroup might have already been rmdir'd.
* Don't use cgroup_get_live().
*/
cgroup_get(sock_cgroup_ptr(skcd));
cgroup_bpf_get(sock_cgroup_ptr(skcd));
}
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
/*
* We might be cloning a socket which is left in an empty
* cgroup and the cgroup might have already been rmdir'd.
* Don't use cgroup_get_live().
*/
cgroup_get(cgrp);
cgroup_bpf_get(cgrp);
}
void cgroup_sk_free(struct sock_cgroup_data *skcd)
{
struct cgroup *cgrp = sock_cgroup_ptr(skcd);
if (skcd->no_refcnt)
return;
cgroup_bpf_put(cgrp);
cgroup_put(cgrp);
}
......
......@@ -71,11 +71,8 @@ static int update_classid_sock(const void *v, struct file *file, unsigned n)
struct update_classid_context *ctx = (void *)v;
struct socket *sock = sock_from_file(file);
if (sock) {
spin_lock(&cgroup_sk_update_lock);
if (sock)
sock_cgroup_set_classid(&sock->sk->sk_cgrp_data, ctx->classid);
spin_unlock(&cgroup_sk_update_lock);
}
if (--ctx->batch == 0) {
ctx->batch = UPDATE_CLASSID_BATCH;
return n + 1;
......@@ -121,8 +118,6 @@ static int write_classid(struct cgroup_subsys_state *css, struct cftype *cft,
struct css_task_iter it;
struct task_struct *p;
cgroup_sk_alloc_disable();
cs->classid = (u32)value;
css_task_iter_start(css, 0, &it);
......
......@@ -207,8 +207,6 @@ static ssize_t write_priomap(struct kernfs_open_file *of,
if (!dev)
return -ENODEV;
cgroup_sk_alloc_disable();
rtnl_lock();
ret = netprio_set_prio(of_css(of), dev, prio);
......@@ -221,12 +219,10 @@ static ssize_t write_priomap(struct kernfs_open_file *of,
static int update_netprio(const void *v, struct file *file, unsigned n)
{
struct socket *sock = sock_from_file(file);
if (sock) {
spin_lock(&cgroup_sk_update_lock);
if (sock)
sock_cgroup_set_prioidx(&sock->sk->sk_cgrp_data,
(unsigned long)v);
spin_unlock(&cgroup_sk_update_lock);
}
return 0;
}
......@@ -235,8 +231,6 @@ static void net_prio_attach(struct cgroup_taskset *tset)
struct task_struct *p;
struct cgroup_subsys_state *css;
cgroup_sk_alloc_disable();
cgroup_taskset_for_each(p, css, tset) {
void *v = (void *)(unsigned long)css->id;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment