Commit 88f09122 authored by Catalin Marinas's avatar Catalin Marinas

Merge branch 'for-next/stage1-lpa2' into for-next/core

* for-next/stage1-lpa2: (48 commits)
  : Add support for LPA2 and WXN and stage 1
  arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed
  arm64/mm: Use generic __pud_free() helper in pud_free() implementation
  arm64: gitignore: ignore relacheck
  arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange
  arm64: mm: Make PUD folding check in set_pud() a runtime check
  arm64: mm: add support for WXN memory translation attribute
  mm: add arch hook to validate mmap() prot flags
  arm64: defconfig: Enable LPA2 support
  arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs
  arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels
  arm64: ptdump: Deal with translation levels folded at runtime
  arm64: ptdump: Disregard unaddressable VA space
  arm64: mm: Add support for folding PUDs at runtime
  arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging
  arm64: mm: Add 5 level paging support to fixmap and swapper handling
  arm64: Enable LPA2 at boot if supported by the system
  arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion
  arm64: mm: Add definitions to support 5 levels of paging
  arm64: mm: Add LPA2 support to phys<->pte conversion routines
  arm64: mm: Wire up TCR.DS bit to PTE shareability fields
  ...
parents 0c5ade74 27f2b9fc
......@@ -165,7 +165,7 @@ config ARM64
select HAVE_ARCH_HUGE_VMAP
select HAVE_ARCH_JUMP_LABEL
select HAVE_ARCH_JUMP_LABEL_RELATIVE
select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
select HAVE_ARCH_KASAN
select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
......@@ -370,7 +370,9 @@ config PGTABLE_LEVELS
default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
config ARCH_SUPPORTS_UPROBES
def_bool y
......@@ -398,13 +400,13 @@ config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
config KASAN_SHADOW_OFFSET
hex
depends on KASAN_GENERIC || KASAN_SW_TAGS
default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
......@@ -1280,9 +1282,7 @@ endchoice
choice
prompt "Virtual address space size"
default ARM64_VA_BITS_39 if ARM64_4K_PAGES
default ARM64_VA_BITS_47 if ARM64_16K_PAGES
default ARM64_VA_BITS_42 if ARM64_64K_PAGES
default ARM64_VA_BITS_52
help
Allows choosing one of multiple possible virtual address
space sizes. The level of translation table is determined by
......@@ -1309,7 +1309,7 @@ config ARM64_VA_BITS_48
config ARM64_VA_BITS_52
bool "52-bit"
depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
help
Enable 52-bit virtual addressing for userspace when explicitly
requested via a hint to mmap(). The kernel will also use 52-bit
......@@ -1356,10 +1356,11 @@ choice
config ARM64_PA_BITS_48
bool "48-bit"
depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
config ARM64_PA_BITS_52
bool "52-bit (ARMv8.2)"
depends on ARM64_64K_PAGES
bool "52-bit"
depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
help
Enable support for a 52-bit physical address space, introduced as
......@@ -1376,6 +1377,10 @@ config ARM64_PA_BITS
default 48 if ARM64_PA_BITS_48
default 52 if ARM64_PA_BITS_52
config ARM64_LPA2
def_bool y
depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
choice
prompt "Endianness"
default CPU_LITTLE_ENDIAN
......@@ -1602,6 +1607,17 @@ config RODATA_FULL_DEFAULT_ENABLED
This requires the linear region to be mapped down to pages,
which may adversely affect performance in some cases.
config ARM64_WXN
bool "Enable WXN attribute so all writable mappings are non-exec"
help
Set the WXN bit in the SCTLR system register so that all writable
mappings are treated as if the PXN/UXN bit is set as well.
If this is set to Y, it can still be disabled at runtime by
passing 'arm64.nowxn' on the kernel command line.
This should only be set if no software needs to be supported that
relies on being able to execute from writable mappings.
config ARM64_SW_TTBR0_PAN
bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
help
......
......@@ -76,7 +76,6 @@ CONFIG_ARCH_VEXPRESS=y
CONFIG_ARCH_VISCONTI=y
CONFIG_ARCH_XGENE=y
CONFIG_ARCH_ZYNQMP=y
CONFIG_ARM64_VA_BITS_48=y
CONFIG_SCHED_MC=y
CONFIG_SCHED_SMT=y
CONFIG_NUMA=y
......
......@@ -129,6 +129,4 @@ static inline bool __init __early_cpu_has_rndr(void)
return (ftr >> ID_AA64ISAR0_EL1_RNDR_SHIFT) & 0xf;
}
u64 kaslr_early_init(void *fdt);
#endif /* _ASM_ARCHRANDOM_H */
......@@ -341,20 +341,6 @@ alternative_cb_end
bfi \valreg, \t1sz, #TCR_T1SZ_OFFSET, #TCR_TxSZ_WIDTH
.endm
/*
* idmap_get_t0sz - get the T0SZ value needed to cover the ID map
*
* Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
* entire ID map region can be mapped. As T0SZ == (64 - #bits used),
* this number conveniently equals the number of leading zeroes in
* the physical address of _end.
*/
.macro idmap_get_t0sz, reg
adrp \reg, _end
orr \reg, \reg, #(1 << VA_BITS_MIN) - 1
clz \reg, \reg
.endm
/*
* tcr_compute_pa_size - set TCR.(I)PS to the highest supported
* ID_AA64MMFR0_EL1.PARange value
......@@ -586,18 +572,27 @@ alternative_endif
.endm
/*
* Offset ttbr1 to allow for 48-bit kernel VAs set with 52-bit PTRS_PER_PGD.
* If the kernel is built for 52-bit virtual addressing but the hardware only
* supports 48 bits, we cannot program the pgdir address into TTBR1 directly,
* but we have to add an offset so that the TTBR1 address corresponds with the
* pgdir entry that covers the lowest 48-bit addressable VA.
*
* Note that this trick is only used for LVA/64k pages - LPA2/4k pages uses an
* additional paging level, and on LPA2/16k pages, we would end up with a root
* level table with only 2 entries, which is suboptimal in terms of TLB
* utilization, so there we fall back to 47 bits of translation if LPA2 is not
* supported.
*
* orr is used as it can cover the immediate value (and is idempotent).
* In future this may be nop'ed out when dealing with 52-bit kernel VAs.
* ttbr: Value of ttbr to set, modified.
*/
.macro offset_ttbr1, ttbr, tmp
#ifdef CONFIG_ARM64_VA_BITS_52
mrs_s \tmp, SYS_ID_AA64MMFR2_EL1
and \tmp, \tmp, #(0xf << ID_AA64MMFR2_EL1_VARange_SHIFT)
cbnz \tmp, .Lskipoffs_\@
orr \ttbr, \ttbr, #TTBR1_BADDR_4852_OFFSET
.Lskipoffs_\@ :
#if defined(CONFIG_ARM64_VA_BITS_52) && !defined(CONFIG_ARM64_LPA2)
mrs \tmp, tcr_el1
and \tmp, \tmp, #TCR_T1SZ_MASK
cmp \tmp, #TCR_T1SZ(VA_BITS_MIN)
orr \tmp, \ttbr, #TTBR1_BADDR_4852_OFFSET
csel \ttbr, \tmp, \ttbr, eq
#endif
.endm
......@@ -619,25 +614,13 @@ alternative_endif
.macro phys_to_pte, pte, phys
#ifdef CONFIG_ARM64_PA_BITS_52
/*
* We assume \phys is 64K aligned and this is guaranteed by only
* supporting this configuration with 64K pages.
*/
orr \pte, \phys, \phys, lsr #36
and \pte, \pte, #PTE_ADDR_MASK
orr \pte, \phys, \phys, lsr #PTE_ADDR_HIGH_SHIFT
and \pte, \pte, #PHYS_TO_PTE_ADDR_MASK
#else
mov \pte, \phys
#endif
.endm
.macro pte_to_phys, phys, pte
and \phys, \pte, #PTE_ADDR_MASK
#ifdef CONFIG_ARM64_PA_BITS_52
orr \phys, \phys, \phys, lsl #PTE_ADDR_HIGH_SHIFT
and \phys, \phys, GENMASK_ULL(PHYS_MASK_SHIFT - 1, PAGE_SHIFT)
#endif
.endm
/*
* tcr_clear_errata_bits - Clear TCR bits that trigger an errata on this CPU.
*/
......
......@@ -17,6 +17,8 @@
#define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0
#define ARM64_SW_FEATURE_OVERRIDE_HVHE 4
#define ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF 8
#define ARM64_SW_FEATURE_OVERRIDE_NOWXN 12
#ifndef __ASSEMBLY__
......@@ -910,7 +912,9 @@ static inline unsigned int get_vmid_bits(u64 mmfr1)
s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
extern struct arm64_ftr_override id_aa64mmfr0_override;
extern struct arm64_ftr_override id_aa64mmfr1_override;
extern struct arm64_ftr_override id_aa64mmfr2_override;
extern struct arm64_ftr_override id_aa64pfr0_override;
extern struct arm64_ftr_override id_aa64pfr1_override;
extern struct arm64_ftr_override id_aa64zfr0_override;
......@@ -920,9 +924,121 @@ extern struct arm64_ftr_override id_aa64isar2_override;
extern struct arm64_ftr_override arm64_sw_feature_override;
static inline
u64 arm64_apply_feature_override(u64 val, int feat, int width,
const struct arm64_ftr_override *override)
{
u64 oval = override->val;
/*
* When it encounters an invalid override (e.g., an override that
* cannot be honoured due to a missing CPU feature), the early idreg
* override code will set the mask to 0x0 and the value to non-zero for
* the field in question. In order to determine whether the override is
* valid or not for the field we are interested in, we first need to
* disregard bits belonging to other fields.
*/
oval &= GENMASK_ULL(feat + width - 1, feat);
/*
* The override is valid if all value bits are accounted for in the
* mask. If so, replace the masked bits with the override value.
*/
if (oval == (oval & override->mask)) {
val &= ~override->mask;
val |= oval;
}
/* Extract the field from the updated value */
return cpuid_feature_extract_unsigned_field(val, feat);
}
static inline bool arm64_test_sw_feature_override(int feat)
{
/*
* Software features are pseudo CPU features that have no underlying
* CPUID system register value to apply the override to.
*/
return arm64_apply_feature_override(0, feat, 4,
&arm64_sw_feature_override);
}
static inline bool kaslr_disabled_cmdline(void)
{
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOKASLR);
}
static inline bool arm64_wxn_enabled(void)
{
if (!IS_ENABLED(CONFIG_ARM64_WXN))
return false;
return !arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOWXN);
}
u32 get_kvm_ipa_limit(void);
void dump_cpu_features(void);
static inline bool cpu_has_bti(void)
{
if (!IS_ENABLED(CONFIG_ARM64_BTI))
return false;
return arm64_apply_feature_override(read_cpuid(ID_AA64PFR1_EL1),
ID_AA64PFR1_EL1_BT_SHIFT, 4,
&id_aa64pfr1_override);
}
static inline bool cpu_has_pac(void)
{
u64 isar1, isar2;
if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
return false;
isar1 = read_cpuid(ID_AA64ISAR1_EL1);
isar2 = read_cpuid(ID_AA64ISAR2_EL1);
if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_APA_SHIFT, 4,
&id_aa64isar1_override))
return true;
if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_API_SHIFT, 4,
&id_aa64isar1_override))
return true;
return arm64_apply_feature_override(isar2, ID_AA64ISAR2_EL1_APA3_SHIFT, 4,
&id_aa64isar2_override);
}
static inline bool cpu_has_lva(void)
{
u64 mmfr2;
mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
mmfr2 &= ~id_aa64mmfr2_override.mask;
mmfr2 |= id_aa64mmfr2_override.val;
return cpuid_feature_extract_unsigned_field(mmfr2,
ID_AA64MMFR2_EL1_VARange_SHIFT);
}
static inline bool cpu_has_lpa2(void)
{
#ifdef CONFIG_ARM64_LPA2
u64 mmfr0;
int feat;
mmfr0 = read_sysreg(id_aa64mmfr0_el1);
mmfr0 &= ~id_aa64mmfr0_override.mask;
mmfr0 |= id_aa64mmfr0_override.val;
feat = cpuid_feature_extract_signed_field(mmfr0,
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
return feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2;
#else
return false;
#endif
}
#endif /* __ASSEMBLY__ */
#endif
......@@ -117,15 +117,9 @@
#define ESR_ELx_FSC_ACCESS (0x08)
#define ESR_ELx_FSC_FAULT (0x04)
#define ESR_ELx_FSC_PERM (0x0C)
#define ESR_ELx_FSC_SEA_TTW0 (0x14)
#define ESR_ELx_FSC_SEA_TTW1 (0x15)
#define ESR_ELx_FSC_SEA_TTW2 (0x16)
#define ESR_ELx_FSC_SEA_TTW3 (0x17)
#define ESR_ELx_FSC_SEA_TTW(n) (0x14 + (n))
#define ESR_ELx_FSC_SECC (0x18)
#define ESR_ELx_FSC_SECC_TTW0 (0x1c)
#define ESR_ELx_FSC_SECC_TTW1 (0x1d)
#define ESR_ELx_FSC_SECC_TTW2 (0x1e)
#define ESR_ELx_FSC_SECC_TTW3 (0x1f)
#define ESR_ELx_FSC_SECC_TTW(n) (0x1c + (n))
/* ISS field definitions for Data Aborts */
#define ESR_ELx_ISV_SHIFT (24)
......@@ -394,6 +388,9 @@ static inline bool esr_is_data_abort(unsigned long esr)
static inline bool esr_fsc_is_translation_fault(unsigned long esr)
{
/* Translation fault, level -1 */
if ((esr & ESR_ELx_FSC) == 0b101011)
return true;
return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
}
......
......@@ -87,6 +87,7 @@ enum fixed_addresses {
FIX_PTE,
FIX_PMD,
FIX_PUD,
FIX_P4D,
FIX_PGD,
__end_of_fixed_addresses
......@@ -100,7 +101,6 @@ enum fixed_addresses {
#define FIXMAP_PAGE_IO __pgprot(PROT_DEVICE_nGnRE)
void __init early_fixmap_init(void);
void __init fixmap_copy(pgd_t *pgdir);
#define __early_set_fixmap __set_fixmap
......
......@@ -17,11 +17,9 @@
asmlinkage void kasan_early_init(void);
void kasan_init(void);
void kasan_copy_shadow(pgd_t *pgdir);
#else
static inline void kasan_init(void) { }
static inline void kasan_copy_shadow(pgd_t *pgdir) { }
#endif
#endif
......
......@@ -13,28 +13,27 @@
#include <asm/sparsemem.h>
/*
* The linear mapping and the start of memory are both 2M aligned (per
* the arm64 booting.txt requirements). Hence we can use section mapping
* with 4K (section size = 2M) but not with 16K (section size = 32M) or
* 64K (section size = 512M).
* The physical and virtual addresses of the start of the kernel image are
* equal modulo 2 MiB (per the arm64 booting.txt requirements). Hence we can
* use section mapping with 4K (section size = 2M) but not with 16K (section
* size = 32M) or 64K (section size = 512M).
*/
/*
* The idmap and swapper page tables need some space reserved in the kernel
* image. Both require pgd, pud (4 levels only) and pmd tables to (section)
* map the kernel. With the 64K page configuration, swapper and idmap need to
* map to pte level. The swapper also maps the FDT (see __create_page_tables
* for more information). Note that the number of ID map translation levels
* could be increased on the fly if system RAM is out of reach for the default
* VA range, so pages required to map highest possible PA are reserved in all
* cases.
*/
#ifdef CONFIG_ARM64_4K_PAGES
#define SWAPPER_PGTABLE_LEVELS (CONFIG_PGTABLE_LEVELS - 1)
#if defined(PMD_SIZE) && PMD_SIZE <= MIN_KIMG_ALIGN
#define SWAPPER_BLOCK_SHIFT PMD_SHIFT
#define SWAPPER_SKIP_LEVEL 1
#else
#define SWAPPER_PGTABLE_LEVELS (CONFIG_PGTABLE_LEVELS)
#define SWAPPER_BLOCK_SHIFT PAGE_SHIFT
#define SWAPPER_SKIP_LEVEL 0
#endif
#define SWAPPER_BLOCK_SIZE (UL(1) << SWAPPER_BLOCK_SHIFT)
#define SWAPPER_TABLE_SHIFT (SWAPPER_BLOCK_SHIFT + PAGE_SHIFT - 3)
#define SWAPPER_PGTABLE_LEVELS (CONFIG_PGTABLE_LEVELS - SWAPPER_SKIP_LEVEL)
#define INIT_IDMAP_PGTABLE_LEVELS (IDMAP_LEVELS - SWAPPER_SKIP_LEVEL)
#define IDMAP_VA_BITS 48
#define IDMAP_LEVELS ARM64_HW_PGTABLE_LEVELS(IDMAP_VA_BITS)
#define IDMAP_ROOT_LEVEL (4 - IDMAP_LEVELS)
/*
* A relocatable kernel may execute from an address that differs from the one at
......@@ -50,57 +49,39 @@
#define EARLY_ENTRIES(vstart, vend, shift, add) \
(SPAN_NR_ENTRIES(vstart, vend, shift) + (add))
#define EARLY_PGDS(vstart, vend, add) (EARLY_ENTRIES(vstart, vend, PGDIR_SHIFT, add))
#if SWAPPER_PGTABLE_LEVELS > 3
#define EARLY_PUDS(vstart, vend, add) (EARLY_ENTRIES(vstart, vend, PUD_SHIFT, add))
#else
#define EARLY_PUDS(vstart, vend, add) (0)
#endif
#define EARLY_LEVEL(lvl, lvls, vstart, vend, add) \
(lvls > lvl ? EARLY_ENTRIES(vstart, vend, SWAPPER_BLOCK_SHIFT + lvl * (PAGE_SHIFT - 3), add) : 0)
#if SWAPPER_PGTABLE_LEVELS > 2
#define EARLY_PMDS(vstart, vend, add) (EARLY_ENTRIES(vstart, vend, SWAPPER_TABLE_SHIFT, add))
#else
#define EARLY_PMDS(vstart, vend, add) (0)
#endif
#define EARLY_PAGES(lvls, vstart, vend, add) (1 /* PGDIR page */ \
+ EARLY_LEVEL(3, (lvls), (vstart), (vend), add) /* each entry needs a next level page table */ \
+ EARLY_LEVEL(2, (lvls), (vstart), (vend), add) /* each entry needs a next level page table */ \
+ EARLY_LEVEL(1, (lvls), (vstart), (vend), add))/* each entry needs a next level page table */
#define INIT_DIR_SIZE (PAGE_SIZE * (EARLY_PAGES(SWAPPER_PGTABLE_LEVELS, KIMAGE_VADDR, _end, EXTRA_PAGE) \
+ EARLY_SEGMENT_EXTRA_PAGES))
#define EARLY_PAGES(vstart, vend, add) ( 1 /* PGDIR page */ \
+ EARLY_PGDS((vstart), (vend), add) /* each PGDIR needs a next level page table */ \
+ EARLY_PUDS((vstart), (vend), add) /* each PUD needs a next level page table */ \
+ EARLY_PMDS((vstart), (vend), add)) /* each PMD needs a next level page table */
#define INIT_DIR_SIZE (PAGE_SIZE * EARLY_PAGES(KIMAGE_VADDR, _end, EXTRA_PAGE))
#define INIT_IDMAP_DIR_PAGES (EARLY_PAGES(INIT_IDMAP_PGTABLE_LEVELS, KIMAGE_VADDR, _end, 1))
#define INIT_IDMAP_DIR_SIZE ((INIT_IDMAP_DIR_PAGES + EARLY_IDMAP_EXTRA_PAGES) * PAGE_SIZE)
/* the initial ID map may need two extra pages if it needs to be extended */
#if VA_BITS < 48
#define INIT_IDMAP_DIR_SIZE ((INIT_IDMAP_DIR_PAGES + 2) * PAGE_SIZE)
#else
#define INIT_IDMAP_DIR_SIZE (INIT_IDMAP_DIR_PAGES * PAGE_SIZE)
#endif
#define INIT_IDMAP_DIR_PAGES EARLY_PAGES(KIMAGE_VADDR, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE, 1)
#define INIT_IDMAP_FDT_PAGES (EARLY_PAGES(INIT_IDMAP_PGTABLE_LEVELS, 0UL, UL(MAX_FDT_SIZE), 1) - 1)
#define INIT_IDMAP_FDT_SIZE ((INIT_IDMAP_FDT_PAGES + EARLY_IDMAP_EXTRA_FDT_PAGES) * PAGE_SIZE)
/* Initial memory map size */
#ifdef CONFIG_ARM64_4K_PAGES
#define SWAPPER_BLOCK_SHIFT PMD_SHIFT
#define SWAPPER_BLOCK_SIZE PMD_SIZE
#define SWAPPER_TABLE_SHIFT PUD_SHIFT
#else
#define SWAPPER_BLOCK_SHIFT PAGE_SHIFT
#define SWAPPER_BLOCK_SIZE PAGE_SIZE
#define SWAPPER_TABLE_SHIFT PMD_SHIFT
#endif
/* The number of segments in the kernel image (text, rodata, inittext, initdata, data+bss) */
#define KERNEL_SEGMENT_COUNT 5
#if SWAPPER_BLOCK_SIZE > SEGMENT_ALIGN
#define EARLY_SEGMENT_EXTRA_PAGES (KERNEL_SEGMENT_COUNT + 1)
/*
* Initial memory map attributes.
* The initial ID map consists of the kernel image, mapped as two separate
* segments, and may appear misaligned wrt the swapper block size. This means
* we need 3 additional pages. The DT could straddle a swapper block boundary,
* so it may need 2.
*/
#define SWAPPER_PTE_FLAGS (PTE_TYPE_PAGE | PTE_AF | PTE_SHARED | PTE_UXN)
#define SWAPPER_PMD_FLAGS (PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S | PTE_UXN)
#ifdef CONFIG_ARM64_4K_PAGES
#define SWAPPER_RW_MMUFLAGS (PMD_ATTRINDX(MT_NORMAL) | SWAPPER_PMD_FLAGS | PTE_WRITE)
#define SWAPPER_RX_MMUFLAGS (SWAPPER_RW_MMUFLAGS | PMD_SECT_RDONLY)
#define EARLY_IDMAP_EXTRA_PAGES 3
#define EARLY_IDMAP_EXTRA_FDT_PAGES 2
#else
#define SWAPPER_RW_MMUFLAGS (PTE_ATTRINDX(MT_NORMAL) | SWAPPER_PTE_FLAGS | PTE_WRITE)
#define SWAPPER_RX_MMUFLAGS (SWAPPER_RW_MMUFLAGS | PTE_RDONLY)
#define EARLY_SEGMENT_EXTRA_PAGES 0
#define EARLY_IDMAP_EXTRA_PAGES 0
#define EARLY_IDMAP_EXTRA_FDT_PAGES 0
#endif
#endif /* __ASM_KERNEL_PGTABLE_H */
......@@ -425,15 +425,9 @@ static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
{
switch (kvm_vcpu_trap_get_fault(vcpu)) {
case ESR_ELx_FSC_EXTABT:
case ESR_ELx_FSC_SEA_TTW0:
case ESR_ELx_FSC_SEA_TTW1:
case ESR_ELx_FSC_SEA_TTW2:
case ESR_ELx_FSC_SEA_TTW3:
case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3):
case ESR_ELx_FSC_SECC:
case ESR_ELx_FSC_SECC_TTW0:
case ESR_ELx_FSC_SECC_TTW1:
case ESR_ELx_FSC_SECC_TTW2:
case ESR_ELx_FSC_SECC_TTW3:
case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3):
return true;
default:
return false;
......
......@@ -54,7 +54,11 @@
#define FIXADDR_TOP (-UL(SZ_8M))
#if VA_BITS > 48
#ifdef CONFIG_ARM64_16K_PAGES
#define VA_BITS_MIN (47)
#else
#define VA_BITS_MIN (48)
#endif
#else
#define VA_BITS_MIN (VA_BITS)
#endif
......@@ -209,9 +213,20 @@
#include <asm/boot.h>
#include <asm/bug.h>
#include <asm/sections.h>
#include <asm/sysreg.h>
static inline u64 __pure read_tcr(void)
{
u64 tcr;
// read_sysreg() uses asm volatile, so avoid it here
asm("mrs %0, tcr_el1" : "=r"(tcr));
return tcr;
}
#if VA_BITS > 48
extern u64 vabits_actual;
// For reasons of #include hell, we can't use TCR_T1SZ_OFFSET/TCR_T1SZ_MASK here
#define vabits_actual (64 - ((read_tcr() >> 16) & 63))
#else
#define vabits_actual ((u64)VA_BITS)
#endif
......
......@@ -35,11 +35,40 @@ static inline unsigned long arch_calc_vm_flag_bits(unsigned long flags)
}
#define arch_calc_vm_flag_bits(flags) arch_calc_vm_flag_bits(flags)
static inline bool arm64_check_wx_prot(unsigned long prot,
struct task_struct *tsk)
{
/*
* When we are running with SCTLR_ELx.WXN==1, writable mappings are
* implicitly non-executable. This means we should reject such mappings
* when user space attempts to create them using mmap() or mprotect().
*/
if (arm64_wxn_enabled() &&
((prot & (PROT_WRITE | PROT_EXEC)) == (PROT_WRITE | PROT_EXEC))) {
/*
* User space libraries such as libffi carry elaborate
* heuristics to decide whether it is worth it to even attempt
* to create writable executable mappings, as PaX or selinux
* enabled systems will outright reject it. They will usually
* fall back to something else (e.g., two separate shared
* mmap()s of a temporary file) on failure.
*/
pr_info_ratelimited(
"process %s (%d) attempted to create PROT_WRITE+PROT_EXEC mapping\n",
tsk->comm, tsk->pid);
return false;
}
return true;
}
static inline bool arch_validate_prot(unsigned long prot,
unsigned long addr __always_unused)
{
unsigned long supported = PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM;
if (!arm64_check_wx_prot(prot, current))
return false;
if (system_supports_bti())
supported |= PROT_BTI;
......@@ -50,6 +79,13 @@ static inline bool arch_validate_prot(unsigned long prot,
}
#define arch_validate_prot(prot, addr) arch_validate_prot(prot, addr)
static inline bool arch_validate_mmap_prot(unsigned long prot,
unsigned long addr)
{
return arm64_check_wx_prot(prot, current);
}
#define arch_validate_mmap_prot arch_validate_mmap_prot
static inline bool arch_validate_flags(unsigned long vm_flags)
{
if (!system_supports_mte())
......
......@@ -71,10 +71,46 @@ extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
pgprot_t prot, bool page_mappings_only);
extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot);
extern void mark_linear_text_alias_ro(void);
extern bool kaslr_requires_kpti(void);
/*
* This check is triggered during the early boot before the cpufeature
* is initialised. Checking the status on the local CPU allows the boot
* CPU to detect the need for non-global mappings and thus avoiding a
* pagetable re-write after all the CPUs are booted. This check will be
* anyway run on individual CPUs, allowing us to get the consistent
* state once the SMP CPUs are up and thus make the switch to non-global
* mappings if required.
*/
static inline bool kaslr_requires_kpti(void)
{
/*
* E0PD does a similar job to KPTI so can be used instead
* where available.
*/
if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
if (cpuid_feature_extract_unsigned_field(mmfr2,
ID_AA64MMFR2_EL1_E0PD_SHIFT))
return false;
}
/*
* Systems affected by Cavium erratum 24756 are incompatible
* with KPTI.
*/
if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
extern const struct midr_range cavium_erratum_27456_cpus[];
if (is_midr_in_range_list(read_cpuid_id(),
cavium_erratum_27456_cpus))
return false;
}
return true;
}
#define INIT_MM_CONTEXT(name) \
.pgd = init_pg_dir,
.pgd = swapper_pg_dir,
#endif /* !__ASSEMBLY__ */
#endif
......@@ -20,13 +20,41 @@
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/proc-fns.h>
#include <asm-generic/mm_hooks.h>
#include <asm/cputype.h>
#include <asm/sysreg.h>
#include <asm/tlbflush.h>
extern bool rodata_full;
static inline int arch_dup_mmap(struct mm_struct *oldmm,
struct mm_struct *mm)
{
return 0;
}
static inline void arch_exit_mmap(struct mm_struct *mm)
{
}
static inline void arch_unmap(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
}
static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
bool write, bool execute, bool foreign)
{
if (IS_ENABLED(CONFIG_ARM64_WXN) && execute &&
(vma->vm_flags & (VM_WRITE | VM_EXEC)) == (VM_WRITE | VM_EXEC)) {
pr_warn_ratelimited(
"process %s (%d) attempted to execute from writable memory\n",
current->comm, current->pid);
/* disallow unless the nowxn override is set */
return !arm64_wxn_enabled();
}
return true;
}
static inline void contextidr_thread_switch(struct task_struct *next)
{
if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR))
......@@ -61,11 +89,9 @@ static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm)
}
/*
* TCR.T0SZ value to use when the ID map is active. Usually equals
* TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in
* physical memory, in which case it will be smaller.
* TCR.T0SZ value to use when the ID map is active.
*/
extern int idmap_t0sz;
#define idmap_t0sz TCR_T0SZ(IDMAP_VA_BITS)
/*
* Ensure TCR.T0SZ is set to the provided value.
......@@ -110,18 +136,13 @@ static inline void cpu_uninstall_idmap(void)
cpu_switch_mm(mm->pgd, mm);
}
static inline void __cpu_install_idmap(pgd_t *idmap)
static inline void cpu_install_idmap(void)
{
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
cpu_set_idmap_tcr_t0sz();
cpu_switch_mm(lm_alias(idmap), &init_mm);
}
static inline void cpu_install_idmap(void)
{
__cpu_install_idmap(idmap_pg_dir);
cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm);
}
/*
......@@ -148,51 +169,21 @@ static inline void cpu_install_ttbr0(phys_addr_t ttbr0, unsigned long t0sz)
isb();
}
/*
* Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
* avoiding the possibility of conflicting TLB entries being allocated.
*/
static inline void __cpu_replace_ttbr1(pgd_t *pgdp, pgd_t *idmap, bool cnp)
{
typedef void (ttbr_replace_func)(phys_addr_t);
extern ttbr_replace_func idmap_cpu_replace_ttbr1;
ttbr_replace_func *replace_phys;
unsigned long daif;
/* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
if (cnp)
ttbr1 |= TTBR_CNP_BIT;
replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
__cpu_install_idmap(idmap);
/*
* We really don't want to take *any* exceptions while TTBR1 is
* in the process of being replaced so mask everything.
*/
daif = local_daif_save();
replace_phys(ttbr1);
local_daif_restore(daif);
cpu_uninstall_idmap();
}
void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp);
static inline void cpu_enable_swapper_cnp(void)
{
__cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir, true);
__cpu_replace_ttbr1(lm_alias(swapper_pg_dir), true);
}
static inline void cpu_replace_ttbr1(pgd_t *pgdp, pgd_t *idmap)
static inline void cpu_replace_ttbr1(pgd_t *pgdp)
{
/*
* Only for early TTBR1 replacement before cpucaps are finalized and
* before we've decided whether to use CNP.
*/
WARN_ON(system_capabilities_finalized());
__cpu_replace_ttbr1(pgdp, idmap, false);
__cpu_replace_ttbr1(pgdp, false);
}
/*
......
......@@ -14,6 +14,7 @@
#include <asm/tlbflush.h>
#define __HAVE_ARCH_PGD_FREE
#define __HAVE_ARCH_PUD_FREE
#include <asm-generic/pgalloc.h>
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
......@@ -43,7 +44,8 @@ static inline void __pud_populate(pud_t *pudp, phys_addr_t pmdp, pudval_t prot)
static inline void __p4d_populate(p4d_t *p4dp, phys_addr_t pudp, p4dval_t prot)
{
set_p4d(p4dp, __p4d(__phys_to_p4d_val(pudp) | prot));
if (pgtable_l4_enabled())
set_p4d(p4dp, __p4d(__phys_to_p4d_val(pudp) | prot));
}
static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4dp, pud_t *pudp)
......@@ -53,6 +55,13 @@ static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4dp, pud_t *pudp)
p4dval |= (mm == &init_mm) ? P4D_TABLE_UXN : P4D_TABLE_PXN;
__p4d_populate(p4dp, __pa(pudp), p4dval);
}
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
{
if (!pgtable_l4_enabled())
return;
__pud_free(mm, pud);
}
#else
static inline void __p4d_populate(p4d_t *p4dp, phys_addr_t pudp, p4dval_t prot)
{
......@@ -60,6 +69,47 @@ static inline void __p4d_populate(p4d_t *p4dp, phys_addr_t pudp, p4dval_t prot)
}
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#if CONFIG_PGTABLE_LEVELS > 4
static inline void __pgd_populate(pgd_t *pgdp, phys_addr_t p4dp, pgdval_t prot)
{
if (pgtable_l5_enabled())
set_pgd(pgdp, __pgd(__phys_to_pgd_val(p4dp) | prot));
}
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgdp, p4d_t *p4dp)
{
pgdval_t pgdval = PGD_TYPE_TABLE;
pgdval |= (mm == &init_mm) ? PGD_TABLE_UXN : PGD_TABLE_PXN;
__pgd_populate(pgdp, __pa(p4dp), pgdval);
}
static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr)
{
gfp_t gfp = GFP_PGTABLE_USER;
if (mm == &init_mm)
gfp = GFP_PGTABLE_KERNEL;
return (p4d_t *)get_zeroed_page(gfp);
}
static inline void p4d_free(struct mm_struct *mm, p4d_t *p4d)
{
if (!pgtable_l5_enabled())
return;
BUG_ON((unsigned long)p4d & (PAGE_SIZE-1));
free_page((unsigned long)p4d);
}
#define __p4d_free_tlb(tlb, p4d, addr) p4d_free((tlb)->mm, p4d)
#else
static inline void __pgd_populate(pgd_t *pgdp, phys_addr_t p4dp, pgdval_t prot)
{
BUILD_BUG();
}
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
extern pgd_t *pgd_alloc(struct mm_struct *mm);
extern void pgd_free(struct mm_struct *mm, pgd_t *pgdp);
......
......@@ -26,10 +26,10 @@
#define ARM64_HW_PGTABLE_LEVELS(va_bits) (((va_bits) - 4) / (PAGE_SHIFT - 3))
/*
* Size mapped by an entry at level n ( 0 <= n <= 3)
* Size mapped by an entry at level n ( -1 <= n <= 3)
* We map (PAGE_SHIFT - 3) at all translation levels and PAGE_SHIFT bits
* in the final page. The maximum number of translation levels supported by
* the architecture is 4. Hence, starting at level n, we have further
* the architecture is 5. Hence, starting at level n, we have further
* ((4 - n) - 1) levels of translation excluding the offset within the page.
* So, the total number of bits mapped by an entry at level n is :
*
......@@ -62,9 +62,16 @@
#define PTRS_PER_PUD (1 << (PAGE_SHIFT - 3))
#endif
#if CONFIG_PGTABLE_LEVELS > 4
#define P4D_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(0)
#define P4D_SIZE (_AC(1, UL) << P4D_SHIFT)
#define P4D_MASK (~(P4D_SIZE-1))
#define PTRS_PER_P4D (1 << (PAGE_SHIFT - 3))
#endif
/*
* PGDIR_SHIFT determines the size a top-level page table entry can map
* (depending on the configuration, this level can be 0, 1 or 2).
* (depending on the configuration, this level can be -1, 0, 1 or 2).
*/
#define PGDIR_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - CONFIG_PGTABLE_LEVELS)
#define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT)
......@@ -87,6 +94,15 @@
/*
* Hardware page table definitions.
*
* Level -1 descriptor (PGD).
*/
#define PGD_TYPE_TABLE (_AT(pgdval_t, 3) << 0)
#define PGD_TABLE_BIT (_AT(pgdval_t, 1) << 1)
#define PGD_TYPE_MASK (_AT(pgdval_t, 3) << 0)
#define PGD_TABLE_PXN (_AT(pgdval_t, 1) << 59)
#define PGD_TABLE_UXN (_AT(pgdval_t, 1) << 60)
/*
* Level 0 descriptor (P4D).
*/
#define P4D_TYPE_TABLE (_AT(p4dval_t, 3) << 0)
......@@ -155,13 +171,17 @@
#define PTE_PXN (_AT(pteval_t, 1) << 53) /* Privileged XN */
#define PTE_UXN (_AT(pteval_t, 1) << 54) /* User XN */
#define PTE_ADDR_LOW (((_AT(pteval_t, 1) << (48 - PAGE_SHIFT)) - 1) << PAGE_SHIFT)
#define PTE_ADDR_LOW (((_AT(pteval_t, 1) << (50 - PAGE_SHIFT)) - 1) << PAGE_SHIFT)
#ifdef CONFIG_ARM64_PA_BITS_52
#ifdef CONFIG_ARM64_64K_PAGES
#define PTE_ADDR_HIGH (_AT(pteval_t, 0xf) << 12)
#define PTE_ADDR_MASK (PTE_ADDR_LOW | PTE_ADDR_HIGH)
#define PTE_ADDR_HIGH_SHIFT 36
#define PHYS_TO_PTE_ADDR_MASK (PTE_ADDR_LOW | PTE_ADDR_HIGH)
#else
#define PTE_ADDR_MASK PTE_ADDR_LOW
#define PTE_ADDR_HIGH (_AT(pteval_t, 0x3) << 8)
#define PTE_ADDR_HIGH_SHIFT 42
#define PHYS_TO_PTE_ADDR_MASK GENMASK_ULL(49, 8)
#endif
#endif
/*
......@@ -284,6 +304,7 @@
#define TCR_E0PD1 (UL(1) << 56)
#define TCR_TCMA0 (UL(1) << 57)
#define TCR_TCMA1 (UL(1) << 58)
#define TCR_DS (UL(1) << 59)
/*
* TTBR.
......
......@@ -30,8 +30,8 @@
#define _PROT_DEFAULT (PTE_TYPE_PAGE | PTE_AF | PTE_SHARED)
#define _PROT_SECT_DEFAULT (PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S)
#define PROT_DEFAULT (_PROT_DEFAULT | PTE_MAYBE_NG)
#define PROT_SECT_DEFAULT (_PROT_SECT_DEFAULT | PMD_MAYBE_NG)
#define PROT_DEFAULT (PTE_TYPE_PAGE | PTE_MAYBE_NG | PTE_MAYBE_SHARED | PTE_AF)
#define PROT_SECT_DEFAULT (PMD_TYPE_SECT | PMD_MAYBE_NG | PMD_MAYBE_SHARED | PMD_SECT_AF)
#define PROT_DEVICE_nGnRnE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRnE))
#define PROT_DEVICE_nGnRE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRE))
......@@ -57,10 +57,6 @@
#define _PAGE_READONLY_EXEC (_PAGE_DEFAULT | PTE_USER | PTE_RDONLY | PTE_NG | PTE_PXN)
#define _PAGE_EXECONLY (_PAGE_DEFAULT | PTE_RDONLY | PTE_NG | PTE_PXN)
#ifdef __ASSEMBLY__
#define PTE_MAYBE_NG 0
#endif
#ifndef __ASSEMBLY__
#include <asm/cpufeature.h>
......@@ -71,7 +67,19 @@ extern bool arm64_use_ng_mappings;
#define PTE_MAYBE_NG (arm64_use_ng_mappings ? PTE_NG : 0)
#define PMD_MAYBE_NG (arm64_use_ng_mappings ? PMD_SECT_NG : 0)
#ifndef CONFIG_ARM64_LPA2
#define lpa2_is_enabled() false
#define PTE_MAYBE_SHARED PTE_SHARED
#define PMD_MAYBE_SHARED PMD_SECT_S
#else
static inline bool __pure lpa2_is_enabled(void)
{
return read_tcr() & TCR_DS;
}
#define PTE_MAYBE_SHARED (lpa2_is_enabled() ? 0 : PTE_SHARED)
#define PMD_MAYBE_SHARED (lpa2_is_enabled() ? 0 : PMD_SECT_S)
#endif
/*
* If we have userspace only BTI we don't want to mark kernel pages
......
......@@ -36,6 +36,12 @@ typedef struct { pudval_t pud; } pud_t;
#define __pud(x) ((pud_t) { (x) } )
#endif
#if CONFIG_PGTABLE_LEVELS > 4
typedef struct { p4dval_t p4d; } p4d_t;
#define p4d_val(x) ((x).p4d)
#define __p4d(x) ((p4d_t) { (x) } )
#endif
typedef struct { pgdval_t pgd; } pgd_t;
#define pgd_val(x) ((x).pgd)
#define __pgd(x) ((pgd_t) { (x) } )
......
......@@ -80,15 +80,16 @@ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#ifdef CONFIG_ARM64_PA_BITS_52
static inline phys_addr_t __pte_to_phys(pte_t pte)
{
pte_val(pte) &= ~PTE_MAYBE_SHARED;
return (pte_val(pte) & PTE_ADDR_LOW) |
((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
}
static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
{
return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
}
#else
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW)
#define __phys_to_pte_val(phys) (phys)
#endif
......@@ -620,12 +621,12 @@ static inline bool pud_table(pud_t pud) { return true; }
PUD_TYPE_TABLE)
#endif
extern pgd_t init_pg_dir[PTRS_PER_PGD];
extern pgd_t init_pg_dir[];
extern pgd_t init_pg_end[];
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
extern pgd_t swapper_pg_dir[];
extern pgd_t idmap_pg_dir[];
extern pgd_t tramp_pg_dir[];
extern pgd_t reserved_pg_dir[];
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
......@@ -698,14 +699,14 @@ static inline unsigned long pmd_page_vaddr(pmd_t pmd)
#define pud_user(pud) pte_user(pud_pte(pud))
#define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
static inline bool pgtable_l4_enabled(void);
static inline void set_pud(pud_t *pudp, pud_t pud)
{
#ifdef __PAGETABLE_PUD_FOLDED
if (in_swapper_pgdir(pudp)) {
if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
return;
}
#endif /* __PAGETABLE_PUD_FOLDED */
WRITE_ONCE(*pudp, pud);
......@@ -758,12 +759,27 @@ static inline pmd_t *pud_pgtable(pud_t pud)
#if CONFIG_PGTABLE_LEVELS > 3
static __always_inline bool pgtable_l4_enabled(void)
{
if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
return true;
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
return vabits_actual == VA_BITS;
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}
static inline bool mm_pud_folded(const struct mm_struct *mm)
{
return !pgtable_l4_enabled();
}
#define mm_pud_folded mm_pud_folded
#define pud_ERROR(e) \
pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
#define p4d_none(p4d) (!p4d_val(p4d))
#define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
#define p4d_present(p4d) (p4d_val(p4d))
#define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
#define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
#define p4d_present(p4d) (!p4d_none(p4d))
static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
{
......@@ -779,7 +795,8 @@ static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
static inline void p4d_clear(p4d_t *p4dp)
{
set_p4d(p4dp, __p4d(0));
if (pgtable_l4_enabled())
set_p4d(p4dp, __p4d(0));
}
static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
......@@ -787,27 +804,75 @@ static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
return __p4d_to_phys(p4d);
}
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
{
return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
}
static inline pud_t *p4d_pgtable(p4d_t p4d)
{
return (pud_t *)__va(p4d_page_paddr(p4d));
}
/* Find an entry in the first-level page table. */
#define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
{
BUG_ON(!pgtable_l4_enabled());
#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
#define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
#define pud_clear_fixmap() clear_fixmap(FIX_PUD)
return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
}
#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
static inline
pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
}
#define pud_offset_lockless pud_offset_lockless
static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
{
return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
}
#define pud_offset pud_offset
static inline pud_t *pud_set_fixmap(unsigned long addr)
{
if (!pgtable_l4_enabled())
return NULL;
return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
}
static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return pud_set_fixmap(pud_offset_phys(p4dp, addr));
}
static inline void pud_clear_fixmap(void)
{
if (pgtable_l4_enabled())
clear_fixmap(FIX_PUD);
}
/* use ONLY for statically allocated translation tables */
#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
}
#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
#else
static inline bool pgtable_l4_enabled(void) { return false; }
#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
#define pud_set_fixmap(addr) NULL
......@@ -818,6 +883,122 @@ static inline pud_t *p4d_pgtable(p4d_t p4d)
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#if CONFIG_PGTABLE_LEVELS > 4
static __always_inline bool pgtable_l5_enabled(void)
{
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
return vabits_actual == VA_BITS;
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}
static inline bool mm_p4d_folded(const struct mm_struct *mm)
{
return !pgtable_l5_enabled();
}
#define mm_p4d_folded mm_p4d_folded
#define p4d_ERROR(e) \
pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
#define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
#define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
#define pgd_present(pgd) (!pgd_none(pgd))
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
if (in_swapper_pgdir(pgdp)) {
set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
return;
}
WRITE_ONCE(*pgdp, pgd);
dsb(ishst);
isb();
}
static inline void pgd_clear(pgd_t *pgdp)
{
if (pgtable_l5_enabled())
set_pgd(pgdp, __pgd(0));
}
static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
{
return __pgd_to_phys(pgd);
}
#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
{
return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
}
static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
{
BUG_ON(!pgtable_l5_enabled());
return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
}
static inline
p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
}
#define p4d_offset_lockless p4d_offset_lockless
static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
{
return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
}
static inline p4d_t *p4d_set_fixmap(unsigned long addr)
{
if (!pgtable_l5_enabled())
return NULL;
return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
}
static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
}
static inline void p4d_clear_fixmap(void)
{
if (pgtable_l5_enabled())
clear_fixmap(FIX_P4D);
}
/* use ONLY for statically allocated translation tables */
static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
}
#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
#else
static inline bool pgtable_l5_enabled(void) { return false; }
/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
#define p4d_set_fixmap(addr) NULL
#define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
#define p4d_clear_fixmap()
#define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
......
......@@ -33,37 +33,11 @@
#include <asm/cpufeature.h>
#ifdef CONFIG_UNWIND_PATCH_PAC_INTO_SCS
static inline bool should_patch_pac_into_scs(void)
{
u64 reg;
/*
* We only enable the shadow call stack dynamically if we are running
* on a system that does not implement PAC or BTI. PAC and SCS provide
* roughly the same level of protection, and BTI relies on the PACIASP
* instructions serving as landing pads, preventing us from patching
* those instructions into something else.
*/
reg = read_sysreg_s(SYS_ID_AA64ISAR1_EL1);
if (SYS_FIELD_GET(ID_AA64ISAR1_EL1, APA, reg) |
SYS_FIELD_GET(ID_AA64ISAR1_EL1, API, reg))
return false;
reg = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
if (SYS_FIELD_GET(ID_AA64ISAR2_EL1, APA3, reg))
return false;
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) {
reg = read_sysreg_s(SYS_ID_AA64PFR1_EL1);
if (reg & (0xf << ID_AA64PFR1_EL1_BT_SHIFT))
return false;
}
return true;
}
static inline void dynamic_scs_init(void)
{
if (should_patch_pac_into_scs()) {
extern bool __pi_dynamic_scs_is_enabled;
if (__pi_dynamic_scs_is_enabled) {
pr_info("Enabling dynamic shadow call stack\n");
static_branch_enable(&dynamic_scs_enabled);
}
......@@ -72,8 +46,8 @@ static inline void dynamic_scs_init(void)
static inline void dynamic_scs_init(void) {}
#endif
int scs_patch(const u8 eh_frame[], int size);
asmlinkage void scs_patch_vmlinux(void);
int __pi_scs_patch(const u8 eh_frame[], int size);
asmlinkage void __pi_scs_patch_vmlinux(void);
#endif /* __ASSEMBLY __ */
......
......@@ -7,9 +7,6 @@
#include <uapi/asm/setup.h>
void *get_early_fdt_ptr(void);
void early_fdt_map(u64 dt_phys);
/*
* These two variables are used in the head.S file.
*/
......
......@@ -103,6 +103,9 @@ static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pudp,
{
struct ptdesc *ptdesc = virt_to_ptdesc(pudp);
if (!pgtable_l4_enabled())
return;
pagetable_pud_dtor(ptdesc);
tlb_remove_ptdesc(tlb, ptdesc);
}
......
......@@ -33,8 +33,7 @@ obj-y := debug-monitors.o entry.o irq.o fpsimd.o \
return_address.o cpuinfo.o cpu_errata.o \
cpufeature.o alternative.o cacheinfo.o \
smp.o smp_spin_table.o topology.o smccc-call.o \
syscall.o proton-pack.o idreg-override.o idle.o \
patching.o
syscall.o proton-pack.o idle.o patching.o pi/
obj-$(CONFIG_COMPAT) += sys32.o signal32.o \
sys_compat.o
......@@ -57,7 +56,7 @@ obj-$(CONFIG_ACPI) += acpi.o
obj-$(CONFIG_ACPI_NUMA) += acpi_numa.o
obj-$(CONFIG_ARM64_ACPI_PARKING_PROTOCOL) += acpi_parking_protocol.o
obj-$(CONFIG_PARAVIRT) += paravirt.o
obj-$(CONFIG_RANDOMIZE_BASE) += kaslr.o pi/
obj-$(CONFIG_RANDOMIZE_BASE) += kaslr.o
obj-$(CONFIG_HIBERNATION) += hibernate.o hibernate-asm.o
obj-$(CONFIG_ELF_CORE) += elfcore.o
obj-$(CONFIG_KEXEC_CORE) += machine_kexec.o relocate_kernel.o \
......@@ -72,14 +71,6 @@ obj-$(CONFIG_ARM64_PTR_AUTH) += pointer_auth.o
obj-$(CONFIG_ARM64_MTE) += mte.o
obj-y += vdso-wrap.o
obj-$(CONFIG_COMPAT_VDSO) += vdso32-wrap.o
obj-$(CONFIG_UNWIND_PATCH_PAC_INTO_SCS) += patch-scs.o
# We need to prevent the SCS patching code from patching itself. Using
# -mbranch-protection=none here to avoid the patchable PAC opcodes from being
# generated triggers an issue with full LTO on Clang, which stops emitting PAC
# instructions altogether. So disable LTO as well for the compilation unit.
CFLAGS_patch-scs.o += -mbranch-protection=none
CFLAGS_REMOVE_patch-scs.o += $(CC_FLAGS_LTO)
# Force dependency (vdso*-wrap.S includes vdso.so through incbin)
$(obj)/vdso-wrap.o: $(obj)/vdso/vdso.so
......
......@@ -688,13 +688,15 @@ static const struct arm64_ftr_bits ftr_raz[] = {
#define ARM64_FTR_REG(id, table) \
__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
struct arm64_ftr_override id_aa64mmfr0_override;
struct arm64_ftr_override id_aa64mmfr1_override;
struct arm64_ftr_override id_aa64mmfr2_override;
struct arm64_ftr_override id_aa64pfr0_override;
struct arm64_ftr_override id_aa64pfr1_override;
struct arm64_ftr_override id_aa64zfr0_override;
struct arm64_ftr_override id_aa64smfr0_override;
struct arm64_ftr_override id_aa64isar1_override;
struct arm64_ftr_override id_aa64isar2_override;
struct arm64_ftr_override arm64_sw_feature_override;
......@@ -755,10 +757,12 @@ static const struct __ftr_reg_entry {
ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
/* Op1 = 0, CRn = 0, CRm = 7 */
ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
&id_aa64mmfr0_override),
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
&id_aa64mmfr1_override),
ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
&id_aa64mmfr2_override),
ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
/* Op1 = 1, CRn = 0, CRm = 0 */
......@@ -1669,46 +1673,6 @@ has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
return has_cpuid_feature(entry, scope);
}
/*
* This check is triggered during the early boot before the cpufeature
* is initialised. Checking the status on the local CPU allows the boot
* CPU to detect the need for non-global mappings and thus avoiding a
* pagetable re-write after all the CPUs are booted. This check will be
* anyway run on individual CPUs, allowing us to get the consistent
* state once the SMP CPUs are up and thus make the switch to non-global
* mappings if required.
*/
bool kaslr_requires_kpti(void)
{
if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
return false;
/*
* E0PD does a similar job to KPTI so can be used instead
* where available.
*/
if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
if (cpuid_feature_extract_unsigned_field(mmfr2,
ID_AA64MMFR2_EL1_E0PD_SHIFT))
return false;
}
/*
* Systems affected by Cavium erratum 24756 are incompatible
* with KPTI.
*/
if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
extern const struct midr_range cavium_erratum_27456_cpus[];
if (is_midr_in_range_list(read_cpuid_id(),
cavium_erratum_27456_cpus))
return false;
}
return kaslr_enabled();
}
static bool __meltdown_safe = true;
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
......@@ -1761,7 +1725,7 @@ static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
}
/* Useful for KASLR robustness */
if (kaslr_requires_kpti()) {
if (kaslr_enabled() && kaslr_requires_kpti()) {
if (!__kpti_forced) {
str = "KASLR";
__kpti_forced = 1;
......@@ -1850,6 +1814,11 @@ static int __init __kpti_install_ng_mappings(void *__unused)
pgd_t *kpti_ng_temp_pgd;
u64 alloc = 0;
if (levels == 5 && !pgtable_l5_enabled())
levels = 4;
else if (levels == 4 && !pgtable_l4_enabled())
levels = 3;
remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
if (!cpu) {
......@@ -1863,9 +1832,9 @@ static int __init __kpti_install_ng_mappings(void *__unused)
//
// The physical pages are laid out as follows:
//
// +--------+-/-------+-/------ +-\\--------+
// : PTE[] : | PMD[] : | PUD[] : || PGD[] :
// +--------+-\-------+-\------ +-//--------+
// +--------+-/-------+-/------ +-/------ +-\\\--------+
// : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
// +--------+-\-------+-\------ +-\------ +-///--------+
// ^
// The first page is mapped into this hierarchy at a PMD_SHIFT
// aligned virtual address, so that we can manipulate the PTE
......@@ -2091,14 +2060,7 @@ static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
int __unused)
{
u64 val;
val = read_sysreg(id_aa64mmfr1_el1);
if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
return false;
val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
}
#ifdef CONFIG_ARM64_PAN
......@@ -2796,6 +2758,24 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
.cpu_enable = cpu_enable_fpmr,
ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
},
#ifdef CONFIG_ARM64_VA_BITS_52
{
.capability = ARM64_HAS_VA52,
.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
.matches = has_cpuid_feature,
#ifdef CONFIG_ARM64_64K_PAGES
.desc = "52-bit Virtual Addressing (LVA)",
ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
#else
.desc = "52-bit Virtual Addressing (LPA2)",
#ifdef CONFIG_ARM64_4K_PAGES
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
#else
ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
#endif
#endif
},
#endif
{},
};
......
This diff is collapsed.
......@@ -36,7 +36,40 @@ PROVIDE(__pi___memcpy = __pi_memcpy);
PROVIDE(__pi___memmove = __pi_memmove);
PROVIDE(__pi___memset = __pi_memset);
PROVIDE(__pi_vabits_actual = vabits_actual);
PROVIDE(__pi_id_aa64isar1_override = id_aa64isar1_override);
PROVIDE(__pi_id_aa64isar2_override = id_aa64isar2_override);
PROVIDE(__pi_id_aa64mmfr0_override = id_aa64mmfr0_override);
PROVIDE(__pi_id_aa64mmfr1_override = id_aa64mmfr1_override);
PROVIDE(__pi_id_aa64mmfr2_override = id_aa64mmfr2_override);
PROVIDE(__pi_id_aa64pfr0_override = id_aa64pfr0_override);
PROVIDE(__pi_id_aa64pfr1_override = id_aa64pfr1_override);
PROVIDE(__pi_id_aa64smfr0_override = id_aa64smfr0_override);
PROVIDE(__pi_id_aa64zfr0_override = id_aa64zfr0_override);
PROVIDE(__pi_arm64_sw_feature_override = arm64_sw_feature_override);
PROVIDE(__pi_arm64_use_ng_mappings = arm64_use_ng_mappings);
#ifdef CONFIG_CAVIUM_ERRATUM_27456
PROVIDE(__pi_cavium_erratum_27456_cpus = cavium_erratum_27456_cpus);
#endif
PROVIDE(__pi__ctype = _ctype);
PROVIDE(__pi_memstart_offset_seed = memstart_offset_seed);
PROVIDE(__pi_init_idmap_pg_dir = init_idmap_pg_dir);
PROVIDE(__pi_init_idmap_pg_end = init_idmap_pg_end);
PROVIDE(__pi_init_pg_dir = init_pg_dir);
PROVIDE(__pi_init_pg_end = init_pg_end);
PROVIDE(__pi_swapper_pg_dir = swapper_pg_dir);
PROVIDE(__pi__text = _text);
PROVIDE(__pi__stext = _stext);
PROVIDE(__pi__etext = _etext);
PROVIDE(__pi___start_rodata = __start_rodata);
PROVIDE(__pi___inittext_begin = __inittext_begin);
PROVIDE(__pi___inittext_end = __inittext_end);
PROVIDE(__pi___initdata_begin = __initdata_begin);
PROVIDE(__pi___initdata_end = __initdata_end);
PROVIDE(__pi__data = _data);
PROVIDE(__pi___bss_start = __bss_start);
PROVIDE(__pi__end = _end);
#ifdef CONFIG_KVM
......
......@@ -16,9 +16,7 @@ bool __ro_after_init __kaslr_is_enabled = false;
void __init kaslr_init(void)
{
if (cpuid_feature_extract_unsigned_field(arm64_sw_feature_override.val &
arm64_sw_feature_override.mask,
ARM64_SW_FEATURE_OVERRIDE_NOKASLR)) {
if (kaslr_disabled_cmdline()) {
pr_info("KASLR disabled on command line\n");
return;
}
......
......@@ -595,7 +595,7 @@ int module_finalize(const Elf_Ehdr *hdr,
if (scs_is_dynamic()) {
s = find_section(hdr, sechdrs, ".init.eh_frame");
if (s)
scs_patch((void *)s->sh_addr, s->sh_size);
__pi_scs_patch((void *)s->sh_addr, s->sh_size);
}
return module_init_ftrace_plt(hdr, sechdrs, me);
......
# SPDX-License-Identifier: GPL-2.0-only
relacheck
......@@ -11,6 +11,9 @@ KBUILD_CFLAGS := $(subst $(CC_FLAGS_FTRACE),,$(KBUILD_CFLAGS)) -fpie \
-fno-asynchronous-unwind-tables -fno-unwind-tables \
$(call cc-option,-fno-addrsig)
# this code may run with the MMU off so disable unaligned accesses
CFLAGS_map_range.o += -mstrict-align
# remove SCS flags from all objects in this directory
KBUILD_CFLAGS := $(filter-out $(CC_FLAGS_SCS), $(KBUILD_CFLAGS))
# disable LTO
......@@ -22,14 +25,26 @@ KCSAN_SANITIZE := n
UBSAN_SANITIZE := n
KCOV_INSTRUMENT := n
hostprogs := relacheck
quiet_cmd_piobjcopy = $(quiet_cmd_objcopy)
cmd_piobjcopy = $(cmd_objcopy) && $(obj)/relacheck $(@) $(<)
$(obj)/%.pi.o: OBJCOPYFLAGS := --prefix-symbols=__pi_ \
--remove-section=.note.gnu.property \
--prefix-alloc-sections=.init
$(obj)/%.pi.o: $(obj)/%.o FORCE
$(call if_changed,objcopy)
--remove-section=.note.gnu.property
$(obj)/%.pi.o: $(obj)/%.o $(obj)/relacheck FORCE
$(call if_changed,piobjcopy)
# ensure that all the lib- code ends up as __init code and data
$(obj)/lib-%.pi.o: OBJCOPYFLAGS += --prefix-alloc-sections=.init
$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
$(call if_changed_rule,cc_o_c)
obj-y := kaslr_early.pi.o lib-fdt.pi.o lib-fdt_ro.pi.o
extra-y := $(patsubst %.pi.o,%.o,$(obj-y))
obj-y := idreg-override.pi.o \
map_kernel.pi.o map_range.pi.o \
lib-fdt.pi.o lib-fdt_ro.pi.o
obj-$(CONFIG_RELOCATABLE) += relocate.pi.o
obj-$(CONFIG_RANDOMIZE_BASE) += kaslr_early.pi.o
obj-$(CONFIG_UNWIND_PATCH_PAC_INTO_SCS) += patch-scs.pi.o
extra-y := $(patsubst %.pi.o,%.o,$(obj-y))
......@@ -14,6 +14,8 @@
#include <asm/cpufeature.h>
#include <asm/setup.h>
#include "pi.h"
#define FTR_DESC_NAME_LEN 20
#define FTR_DESC_FIELD_LEN 10
#define FTR_ALIAS_NAME_LEN 30
......@@ -21,15 +23,6 @@
static u64 __boot_status __initdata;
// temporary __prel64 related definitions
// to be removed when this code is moved under pi/
#define __prel64_initconst __initconst
#define PREL64(type, name) union { type *name; }
#define prel64_pointer(__d) (__d)
typedef bool filter_t(u64 val);
struct ftr_set_desc {
......@@ -66,6 +59,35 @@ static const struct ftr_set_desc mmfr1 __prel64_initconst = {
},
};
static bool __init mmfr2_varange_filter(u64 val)
{
int __maybe_unused feat;
if (val)
return false;
#ifdef CONFIG_ARM64_LPA2
feat = cpuid_feature_extract_signed_field(read_sysreg(id_aa64mmfr0_el1),
ID_AA64MMFR0_EL1_TGRAN_SHIFT);
if (feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2) {
id_aa64mmfr0_override.val |=
(ID_AA64MMFR0_EL1_TGRAN_LPA2 - 1) << ID_AA64MMFR0_EL1_TGRAN_SHIFT;
id_aa64mmfr0_override.mask |= 0xfU << ID_AA64MMFR0_EL1_TGRAN_SHIFT;
}
#endif
return true;
}
static const struct ftr_set_desc mmfr2 __prel64_initconst = {
.name = "id_aa64mmfr2",
.override = &id_aa64mmfr2_override,
.fields = {
FIELD("varange", ID_AA64MMFR2_EL1_VARange_SHIFT, mmfr2_varange_filter),
{}
},
};
static bool __init pfr0_sve_filter(u64 val)
{
/*
......@@ -166,6 +188,8 @@ static const struct ftr_set_desc sw_features __prel64_initconst = {
.fields = {
FIELD("nokaslr", ARM64_SW_FEATURE_OVERRIDE_NOKASLR, NULL),
FIELD("hvhe", ARM64_SW_FEATURE_OVERRIDE_HVHE, hvhe_filter),
FIELD("rodataoff", ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF, NULL),
FIELD("nowxn", ARM64_SW_FEATURE_OVERRIDE_NOWXN, NULL),
{}
},
};
......@@ -173,6 +197,7 @@ static const struct ftr_set_desc sw_features __prel64_initconst = {
static const
PREL64(const struct ftr_set_desc, reg) regs[] __prel64_initconst = {
{ &mmfr1 },
{ &mmfr2 },
{ &pfr0 },
{ &pfr1 },
{ &isar1 },
......@@ -197,6 +222,9 @@ static const struct {
{ "arm64.nomops", "id_aa64isar2.mops=0" },
{ "arm64.nomte", "id_aa64pfr1.mte=0" },
{ "nokaslr", "arm64_sw.nokaslr=1" },
{ "rodata=off", "arm64_sw.rodataoff=1 arm64_sw.nowxn=1" },
{ "arm64.nolva", "id_aa64mmfr2.varange=0" },
{ "arm64.nowxn", "arm64_sw.nowxn=1" },
};
static int __init parse_hexdigit(const char *p, u64 *v)
......@@ -313,42 +341,35 @@ static __init void __parse_cmdline(const char *cmdline, bool parse_aliases)
} while (1);
}
static __init const u8 *get_bootargs_cmdline(void)
static __init const u8 *get_bootargs_cmdline(const void *fdt, int node)
{
static char const bootargs[] __initconst = "bootargs";
const u8 *prop;
void *fdt;
int node;
fdt = get_early_fdt_ptr();
if (!fdt)
return NULL;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0)
return NULL;
prop = fdt_getprop(fdt, node, "bootargs", NULL);
prop = fdt_getprop(fdt, node, bootargs, NULL);
if (!prop)
return NULL;
return strlen(prop) ? prop : NULL;
}
static __init void parse_cmdline(void)
static __init void parse_cmdline(const void *fdt, int chosen)
{
const u8 *prop = get_bootargs_cmdline();
static char const cmdline[] __initconst = CONFIG_CMDLINE;
const u8 *prop = get_bootargs_cmdline(fdt, chosen);
if (IS_ENABLED(CONFIG_CMDLINE_FORCE) || !prop)
__parse_cmdline(CONFIG_CMDLINE, true);
__parse_cmdline(cmdline, true);
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && prop)
__parse_cmdline(prop, true);
}
/* Keep checkers quiet */
void init_feature_override(u64 boot_status);
asmlinkage void __init init_feature_override(u64 boot_status)
void __init init_feature_override(u64 boot_status, const void *fdt,
int chosen)
{
struct arm64_ftr_override *override;
const struct ftr_set_desc *reg;
......@@ -364,7 +385,7 @@ asmlinkage void __init init_feature_override(u64 boot_status)
__boot_status = boot_status;
parse_cmdline();
parse_cmdline(fdt, chosen);
for (i = 0; i < ARRAY_SIZE(regs); i++) {
reg = prel64_pointer(regs[i].reg);
......@@ -373,3 +394,10 @@ asmlinkage void __init init_feature_override(u64 boot_status)
(unsigned long)(override + 1));
}
}
char * __init skip_spaces(const char *str)
{
while (isspace(*str))
++str;
return (char *)str;
}
......@@ -16,68 +16,21 @@
#include <asm/memory.h>
#include <asm/pgtable.h>
/* taken from lib/string.c */
static char *__strstr(const char *s1, const char *s2)
{
size_t l1, l2;
l2 = strlen(s2);
if (!l2)
return (char *)s1;
l1 = strlen(s1);
while (l1 >= l2) {
l1--;
if (!memcmp(s1, s2, l2))
return (char *)s1;
s1++;
}
return NULL;
}
static bool cmdline_contains_nokaslr(const u8 *cmdline)
{
const u8 *str;
str = __strstr(cmdline, "nokaslr");
return str == cmdline || (str > cmdline && *(str - 1) == ' ');
}
static bool is_kaslr_disabled_cmdline(void *fdt)
{
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
int node;
const u8 *prop;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0)
goto out;
prop = fdt_getprop(fdt, node, "bootargs", NULL);
if (!prop)
goto out;
if (cmdline_contains_nokaslr(prop))
return true;
#include "pi.h"
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND))
goto out;
extern u16 memstart_offset_seed;
return false;
}
out:
return cmdline_contains_nokaslr(CONFIG_CMDLINE);
}
static u64 get_kaslr_seed(void *fdt)
static u64 __init get_kaslr_seed(void *fdt, int node)
{
int node, len;
static char const seed_str[] __initconst = "kaslr-seed";
fdt64_t *prop;
u64 ret;
int len;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0)
return 0;
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
prop = fdt_getprop_w(fdt, node, seed_str, &len);
if (!prop || len != sizeof(u64))
return 0;
......@@ -86,20 +39,22 @@ static u64 get_kaslr_seed(void *fdt)
return ret;
}
asmlinkage u64 kaslr_early_init(void *fdt)
u64 __init kaslr_early_init(void *fdt, int chosen)
{
u64 seed, range;
if (is_kaslr_disabled_cmdline(fdt))
if (kaslr_disabled_cmdline())
return 0;
seed = get_kaslr_seed(fdt);
seed = get_kaslr_seed(fdt, chosen);
if (!seed) {
if (!__early_cpu_has_rndr() ||
!__arm64_rndr((unsigned long *)&seed))
return 0;
}
memstart_offset_seed = seed & U16_MAX;
/*
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
* kernel image offset from the seed. Let's place the kernel in the
......
// SPDX-License-Identifier: GPL-2.0-only
// Copyright 2023 Google LLC
// Author: Ard Biesheuvel <ardb@google.com>
#include <linux/init.h>
#include <linux/libfdt.h>
#include <linux/linkage.h>
#include <linux/types.h>
#include <linux/sizes.h>
#include <linux/string.h>
#include <asm/memory.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include "pi.h"
extern const u8 __eh_frame_start[], __eh_frame_end[];
extern void idmap_cpu_replace_ttbr1(void *pgdir);
static void __init map_segment(pgd_t *pg_dir, u64 *pgd, u64 va_offset,
void *start, void *end, pgprot_t prot,
bool may_use_cont, int root_level)
{
map_range(pgd, ((u64)start + va_offset) & ~PAGE_OFFSET,
((u64)end + va_offset) & ~PAGE_OFFSET, (u64)start,
prot, root_level, (pte_t *)pg_dir, may_use_cont, 0);
}
static void __init unmap_segment(pgd_t *pg_dir, u64 va_offset, void *start,
void *end, int root_level)
{
map_segment(pg_dir, NULL, va_offset, start, end, __pgprot(0),
false, root_level);
}
static void __init map_kernel(u64 kaslr_offset, u64 va_offset, int root_level)
{
bool enable_scs = IS_ENABLED(CONFIG_UNWIND_PATCH_PAC_INTO_SCS);
bool twopass = IS_ENABLED(CONFIG_RELOCATABLE);
u64 pgdp = (u64)init_pg_dir + PAGE_SIZE;
pgprot_t text_prot = PAGE_KERNEL_ROX;
pgprot_t data_prot = PAGE_KERNEL;
pgprot_t prot;
/*
* External debuggers may need to write directly to the text mapping to
* install SW breakpoints. Allow this (only) when explicitly requested
* with rodata=off.
*/
if (arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF))
text_prot = PAGE_KERNEL_EXEC;
/*
* We only enable the shadow call stack dynamically if we are running
* on a system that does not implement PAC or BTI. PAC and SCS provide
* roughly the same level of protection, and BTI relies on the PACIASP
* instructions serving as landing pads, preventing us from patching
* those instructions into something else.
*/
if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) && cpu_has_pac())
enable_scs = false;
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && cpu_has_bti()) {
enable_scs = false;
/*
* If we have a CPU that supports BTI and a kernel built for
* BTI then mark the kernel executable text as guarded pages
* now so we don't have to rewrite the page tables later.
*/
text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
}
/* Map all code read-write on the first pass if needed */
twopass |= enable_scs;
prot = twopass ? data_prot : text_prot;
map_segment(init_pg_dir, &pgdp, va_offset, _stext, _etext, prot,
!twopass, root_level);
map_segment(init_pg_dir, &pgdp, va_offset, __start_rodata,
__inittext_begin, data_prot, false, root_level);
map_segment(init_pg_dir, &pgdp, va_offset, __inittext_begin,
__inittext_end, prot, false, root_level);
map_segment(init_pg_dir, &pgdp, va_offset, __initdata_begin,
__initdata_end, data_prot, false, root_level);
map_segment(init_pg_dir, &pgdp, va_offset, _data, _end, data_prot,
true, root_level);
dsb(ishst);
idmap_cpu_replace_ttbr1(init_pg_dir);
if (twopass) {
if (IS_ENABLED(CONFIG_RELOCATABLE))
relocate_kernel(kaslr_offset);
if (enable_scs) {
scs_patch(__eh_frame_start + va_offset,
__eh_frame_end - __eh_frame_start);
asm("ic ialluis");
dynamic_scs_is_enabled = true;
}
/*
* Unmap the text region before remapping it, to avoid
* potential TLB conflicts when creating the contiguous
* descriptors.
*/
unmap_segment(init_pg_dir, va_offset, _stext, _etext,
root_level);
dsb(ishst);
isb();
__tlbi(vmalle1);
isb();
/*
* Remap these segments with different permissions
* No new page table allocations should be needed
*/
map_segment(init_pg_dir, NULL, va_offset, _stext, _etext,
text_prot, true, root_level);
map_segment(init_pg_dir, NULL, va_offset, __inittext_begin,
__inittext_end, text_prot, false, root_level);
}
/* Copy the root page table to its final location */
memcpy((void *)swapper_pg_dir + va_offset, init_pg_dir, PAGE_SIZE);
dsb(ishst);
idmap_cpu_replace_ttbr1(swapper_pg_dir);
}
static void noinline __section(".idmap.text") disable_wxn(void)
{
u64 sctlr = read_sysreg(sctlr_el1) & ~SCTLR_ELx_WXN;
/*
* We cannot safely clear the WXN bit while the MMU and caches are on,
* so turn the MMU off, flush the TLBs and turn it on again but with
* the WXN bit cleared this time.
*/
asm(" msr sctlr_el1, %0 ;"
" isb ;"
" tlbi vmalle1 ;"
" dsb nsh ;"
" isb ;"
" msr sctlr_el1, %1 ;"
" isb ;"
:: "r"(sctlr & ~SCTLR_ELx_M), "r"(sctlr));
}
static void noinline __section(".idmap.text") set_ttbr0_for_lpa2(u64 ttbr)
{
u64 sctlr = read_sysreg(sctlr_el1);
u64 tcr = read_sysreg(tcr_el1) | TCR_DS;
asm(" msr sctlr_el1, %0 ;"
" isb ;"
" msr ttbr0_el1, %1 ;"
" msr tcr_el1, %2 ;"
" isb ;"
" tlbi vmalle1 ;"
" dsb nsh ;"
" isb ;"
" msr sctlr_el1, %3 ;"
" isb ;"
:: "r"(sctlr & ~SCTLR_ELx_M), "r"(ttbr), "r"(tcr), "r"(sctlr));
}
static void __init remap_idmap_for_lpa2(void)
{
/* clear the bits that change meaning once LPA2 is turned on */
pteval_t mask = PTE_SHARED;
/*
* We have to clear bits [9:8] in all block or page descriptors in the
* initial ID map, as otherwise they will be (mis)interpreted as
* physical address bits once we flick the LPA2 switch (TCR.DS). Since
* we cannot manipulate live descriptors in that way without creating
* potential TLB conflicts, let's create another temporary ID map in a
* LPA2 compatible fashion, and update the initial ID map while running
* from that.
*/
create_init_idmap(init_pg_dir, mask);
dsb(ishst);
set_ttbr0_for_lpa2((u64)init_pg_dir);
/*
* Recreate the initial ID map with the same granularity as before.
* Don't bother with the FDT, we no longer need it after this.
*/
memset(init_idmap_pg_dir, 0,
(u64)init_idmap_pg_dir - (u64)init_idmap_pg_end);
create_init_idmap(init_idmap_pg_dir, mask);
dsb(ishst);
/* switch back to the updated initial ID map */
set_ttbr0_for_lpa2((u64)init_idmap_pg_dir);
/* wipe the temporary ID map from memory */
memset(init_pg_dir, 0, (u64)init_pg_end - (u64)init_pg_dir);
}
static void __init map_fdt(u64 fdt)
{
static u8 ptes[INIT_IDMAP_FDT_SIZE] __initdata __aligned(PAGE_SIZE);
u64 efdt = fdt + MAX_FDT_SIZE;
u64 ptep = (u64)ptes;
/*
* Map up to MAX_FDT_SIZE bytes, but avoid overlap with
* the kernel image.
*/
map_range(&ptep, fdt, (u64)_text > fdt ? min((u64)_text, efdt) : efdt,
fdt, PAGE_KERNEL, IDMAP_ROOT_LEVEL,
(pte_t *)init_idmap_pg_dir, false, 0);
dsb(ishst);
}
asmlinkage void __init early_map_kernel(u64 boot_status, void *fdt)
{
static char const chosen_str[] __initconst = "/chosen";
u64 va_base, pa_base = (u64)&_text;
u64 kaslr_offset = pa_base % MIN_KIMG_ALIGN;
int root_level = 4 - CONFIG_PGTABLE_LEVELS;
int va_bits = VA_BITS;
int chosen;
map_fdt((u64)fdt);
/* Clear BSS and the initial page tables */
memset(__bss_start, 0, (u64)init_pg_end - (u64)__bss_start);
/* Parse the command line for CPU feature overrides */
chosen = fdt_path_offset(fdt, chosen_str);
init_feature_override(boot_status, fdt, chosen);
if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && !cpu_has_lva()) {
va_bits = VA_BITS_MIN;
} else if (IS_ENABLED(CONFIG_ARM64_LPA2) && !cpu_has_lpa2()) {
va_bits = VA_BITS_MIN;
root_level++;
}
if (va_bits > VA_BITS_MIN)
sysreg_clear_set(tcr_el1, TCR_T1SZ_MASK, TCR_T1SZ(va_bits));
if (IS_ENABLED(CONFIG_ARM64_WXN) &&
arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOWXN))
disable_wxn();
/*
* The virtual KASLR displacement modulo 2MiB is decided by the
* physical placement of the image, as otherwise, we might not be able
* to create the early kernel mapping using 2 MiB block descriptors. So
* take the low bits of the KASLR offset from the physical address, and
* fill in the high bits from the seed.
*/
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
u64 kaslr_seed = kaslr_early_init(fdt, chosen);
if (kaslr_seed && kaslr_requires_kpti())
arm64_use_ng_mappings = true;
kaslr_offset |= kaslr_seed & ~(MIN_KIMG_ALIGN - 1);
}
if (IS_ENABLED(CONFIG_ARM64_LPA2) && va_bits > VA_BITS_MIN)
remap_idmap_for_lpa2();
va_base = KIMAGE_VADDR + kaslr_offset;
map_kernel(kaslr_offset, va_base - pa_base, root_level);
}
// SPDX-License-Identifier: GPL-2.0-only
// Copyright 2023 Google LLC
// Author: Ard Biesheuvel <ardb@google.com>
#include <linux/types.h>
#include <linux/sizes.h>
#include <asm/memory.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include "pi.h"
/**
* map_range - Map a contiguous range of physical pages into virtual memory
*
* @pte: Address of physical pointer to array of pages to
* allocate page tables from
* @start: Virtual address of the start of the range
* @end: Virtual address of the end of the range (exclusive)
* @pa: Physical address of the start of the range
* @prot: Access permissions of the range
* @level: Translation level for the mapping
* @tbl: The level @level page table to create the mappings in
* @may_use_cont: Whether the use of the contiguous attribute is allowed
* @va_offset: Offset between a physical page and its current mapping
* in the VA space
*/
void __init map_range(u64 *pte, u64 start, u64 end, u64 pa, pgprot_t prot,
int level, pte_t *tbl, bool may_use_cont, u64 va_offset)
{
u64 cmask = (level == 3) ? CONT_PTE_SIZE - 1 : U64_MAX;
u64 protval = pgprot_val(prot) & ~PTE_TYPE_MASK;
int lshift = (3 - level) * (PAGE_SHIFT - 3);
u64 lmask = (PAGE_SIZE << lshift) - 1;
start &= PAGE_MASK;
pa &= PAGE_MASK;
/* Advance tbl to the entry that covers start */
tbl += (start >> (lshift + PAGE_SHIFT)) % PTRS_PER_PTE;
/*
* Set the right block/page bits for this level unless we are
* clearing the mapping
*/
if (protval)
protval |= (level < 3) ? PMD_TYPE_SECT : PTE_TYPE_PAGE;
while (start < end) {
u64 next = min((start | lmask) + 1, PAGE_ALIGN(end));
if (level < 3 && (start | next | pa) & lmask) {
/*
* This chunk needs a finer grained mapping. Create a
* table mapping if necessary and recurse.
*/
if (pte_none(*tbl)) {
*tbl = __pte(__phys_to_pte_val(*pte) |
PMD_TYPE_TABLE | PMD_TABLE_UXN);
*pte += PTRS_PER_PTE * sizeof(pte_t);
}
map_range(pte, start, next, pa, prot, level + 1,
(pte_t *)(__pte_to_phys(*tbl) + va_offset),
may_use_cont, va_offset);
} else {
/*
* Start a contiguous range if start and pa are
* suitably aligned
*/
if (((start | pa) & cmask) == 0 && may_use_cont)
protval |= PTE_CONT;
/*
* Clear the contiguous attribute if the remaining
* range does not cover a contiguous block
*/
if ((end & ~cmask) <= start)
protval &= ~PTE_CONT;
/* Put down a block or page mapping */
*tbl = __pte(__phys_to_pte_val(pa) | protval);
}
pa += next - start;
start = next;
tbl++;
}
}
asmlinkage u64 __init create_init_idmap(pgd_t *pg_dir, pteval_t clrmask)
{
u64 ptep = (u64)pg_dir + PAGE_SIZE;
pgprot_t text_prot = PAGE_KERNEL_ROX;
pgprot_t data_prot = PAGE_KERNEL;
pgprot_val(text_prot) &= ~clrmask;
pgprot_val(data_prot) &= ~clrmask;
map_range(&ptep, (u64)_stext, (u64)__initdata_begin, (u64)_stext,
text_prot, IDMAP_ROOT_LEVEL, (pte_t *)pg_dir, false, 0);
map_range(&ptep, (u64)__initdata_begin, (u64)_end, (u64)__initdata_begin,
data_prot, IDMAP_ROOT_LEVEL, (pte_t *)pg_dir, false, 0);
return ptep;
}
......@@ -4,16 +4,17 @@
* Author: Ard Biesheuvel <ardb@google.com>
*/
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/linkage.h>
#include <linux/printk.h>
#include <linux/types.h>
#include <asm/cacheflush.h>
#include <asm/scs.h>
#include "pi.h"
bool dynamic_scs_is_enabled;
//
// This minimal DWARF CFI parser is partially based on the code in
// arch/arc/kernel/unwind.c, and on the document below:
......@@ -49,8 +50,6 @@
#define DW_CFA_GNU_negative_offset_extended 0x2f
#define DW_CFA_hi_user 0x3f
extern const u8 __eh_frame_start[], __eh_frame_end[];
enum {
PACIASP = 0xd503233f,
AUTIASP = 0xd50323bf,
......@@ -81,7 +80,11 @@ static void __always_inline scs_patch_loc(u64 loc)
*/
return;
}
dcache_clean_pou(loc, loc + sizeof(u32));
if (IS_ENABLED(CONFIG_ARM64_WORKAROUND_CLEAN_CACHE))
asm("dc civac, %0" :: "r"(loc));
else
asm(ALTERNATIVE("dc cvau, %0", "nop", ARM64_HAS_CACHE_IDC)
:: "r"(loc));
}
/*
......@@ -128,10 +131,10 @@ struct eh_frame {
};
};
static int noinstr scs_handle_fde_frame(const struct eh_frame *frame,
bool fde_has_augmentation_data,
int code_alignment_factor,
bool dry_run)
static int scs_handle_fde_frame(const struct eh_frame *frame,
bool fde_has_augmentation_data,
int code_alignment_factor,
bool dry_run)
{
int size = frame->size - offsetof(struct eh_frame, opcodes) + 4;
u64 loc = (u64)offset_to_ptr(&frame->initial_loc);
......@@ -198,14 +201,13 @@ static int noinstr scs_handle_fde_frame(const struct eh_frame *frame,
break;
default:
pr_err("unhandled opcode: %02x in FDE frame %lx\n", opcode[-1], (uintptr_t)frame);
return -ENOEXEC;
}
}
return 0;
}
int noinstr scs_patch(const u8 eh_frame[], int size)
int scs_patch(const u8 eh_frame[], int size)
{
const u8 *p = eh_frame;
......@@ -250,13 +252,3 @@ int noinstr scs_patch(const u8 eh_frame[], int size)
}
return 0;
}
asmlinkage void __init scs_patch_vmlinux(void)
{
if (!should_patch_pac_into_scs())
return;
WARN_ON(scs_patch(__eh_frame_start, __eh_frame_end - __eh_frame_start));
icache_inval_all_pou();
isb();
}
// SPDX-License-Identifier: GPL-2.0-only
// Copyright 2023 Google LLC
// Author: Ard Biesheuvel <ardb@google.com>
#include <linux/types.h>
#define __prel64_initconst __section(".init.rodata.prel64")
#define PREL64(type, name) union { type *name; prel64_t name ## _prel; }
#define prel64_pointer(__d) (typeof(__d))prel64_to_pointer(&__d##_prel)
typedef volatile signed long prel64_t;
static inline void *prel64_to_pointer(const prel64_t *offset)
{
if (!*offset)
return NULL;
return (void *)offset + *offset;
}
extern bool dynamic_scs_is_enabled;
extern pgd_t init_idmap_pg_dir[], init_idmap_pg_end[];
void init_feature_override(u64 boot_status, const void *fdt, int chosen);
u64 kaslr_early_init(void *fdt, int chosen);
void relocate_kernel(u64 offset);
int scs_patch(const u8 eh_frame[], int size);
void map_range(u64 *pgd, u64 start, u64 end, u64 pa, pgprot_t prot,
int level, pte_t *tbl, bool may_use_cont, u64 va_offset);
asmlinkage void early_map_kernel(u64 boot_status, void *fdt);
asmlinkage u64 create_init_idmap(pgd_t *pgd, pteval_t clrmask);
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2023 - Google LLC
* Author: Ard Biesheuvel <ardb@google.com>
*/
#include <elf.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define HOST_ORDER ELFDATA2LSB
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define HOST_ORDER ELFDATA2MSB
#endif
static Elf64_Ehdr *ehdr;
static Elf64_Shdr *shdr;
static const char *strtab;
static bool swap;
static uint64_t swab_elfxword(uint64_t val)
{
return swap ? __builtin_bswap64(val) : val;
}
static uint32_t swab_elfword(uint32_t val)
{
return swap ? __builtin_bswap32(val) : val;
}
static uint16_t swab_elfhword(uint16_t val)
{
return swap ? __builtin_bswap16(val) : val;
}
int main(int argc, char *argv[])
{
struct stat stat;
int fd, ret;
if (argc < 3) {
fprintf(stderr, "file arguments missing\n");
exit(EXIT_FAILURE);
}
fd = open(argv[1], O_RDWR);
if (fd < 0) {
fprintf(stderr, "failed to open %s\n", argv[1]);
exit(EXIT_FAILURE);
}
ret = fstat(fd, &stat);
if (ret < 0) {
fprintf(stderr, "failed to stat() %s\n", argv[1]);
exit(EXIT_FAILURE);
}
ehdr = mmap(0, stat.st_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (ehdr == MAP_FAILED) {
fprintf(stderr, "failed to mmap() %s\n", argv[1]);
exit(EXIT_FAILURE);
}
swap = ehdr->e_ident[EI_DATA] != HOST_ORDER;
shdr = (void *)ehdr + swab_elfxword(ehdr->e_shoff);
strtab = (void *)ehdr +
swab_elfxword(shdr[swab_elfhword(ehdr->e_shstrndx)].sh_offset);
for (int i = 0; i < swab_elfhword(ehdr->e_shnum); i++) {
unsigned long info, flags;
bool prel64 = false;
Elf64_Rela *rela;
int numrela;
if (swab_elfword(shdr[i].sh_type) != SHT_RELA)
continue;
/* only consider RELA sections operating on data */
info = swab_elfword(shdr[i].sh_info);
flags = swab_elfxword(shdr[info].sh_flags);
if ((flags & (SHF_ALLOC | SHF_EXECINSTR)) != SHF_ALLOC)
continue;
/*
* We generally don't permit ABS64 relocations in the code that
* runs before relocation processing occurs. If statically
* initialized absolute symbol references are unavoidable, they
* may be emitted into a *.rodata.prel64 section and they will
* be converted to place-relative 64-bit references. This
* requires special handling in the referring code.
*/
if (strstr(strtab + swab_elfword(shdr[info].sh_name),
".rodata.prel64")) {
prel64 = true;
}
rela = (void *)ehdr + swab_elfxword(shdr[i].sh_offset);
numrela = swab_elfxword(shdr[i].sh_size) / sizeof(*rela);
for (int j = 0; j < numrela; j++) {
uint64_t info = swab_elfxword(rela[j].r_info);
if (ELF64_R_TYPE(info) != R_AARCH64_ABS64)
continue;
if (prel64) {
/* convert ABS64 into PREL64 */
info ^= R_AARCH64_ABS64 ^ R_AARCH64_PREL64;
rela[j].r_info = swab_elfxword(info);
} else {
fprintf(stderr,
"Unexpected absolute relocations detected in %s\n",
argv[2]);
close(fd);
unlink(argv[1]);
exit(EXIT_FAILURE);
}
}
}
close(fd);
return 0;
}
// SPDX-License-Identifier: GPL-2.0-only
// Copyright 2023 Google LLC
// Authors: Ard Biesheuvel <ardb@google.com>
// Peter Collingbourne <pcc@google.com>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/types.h>
#include "pi.h"
extern const Elf64_Rela rela_start[], rela_end[];
extern const u64 relr_start[], relr_end[];
void __init relocate_kernel(u64 offset)
{
u64 *place = NULL;
for (const Elf64_Rela *rela = rela_start; rela < rela_end; rela++) {
if (ELF64_R_TYPE(rela->r_info) != R_AARCH64_RELATIVE)
continue;
*(u64 *)(rela->r_offset + offset) = rela->r_addend + offset;
}
if (!IS_ENABLED(CONFIG_RELR) || !offset)
return;
/*
* Apply RELR relocations.
*
* RELR is a compressed format for storing relative relocations. The
* encoded sequence of entries looks like:
* [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
*
* i.e. start with an address, followed by any number of bitmaps. The
* address entry encodes 1 relocation. The subsequent bitmap entries
* encode up to 63 relocations each, at subsequent offsets following
* the last address entry.
*
* The bitmap entries must have 1 in the least significant bit. The
* assumption here is that an address cannot have 1 in lsb. Odd
* addresses are not supported. Any odd addresses are stored in the
* RELA section, which is handled above.
*
* With the exception of the least significant bit, each bit in the
* bitmap corresponds with a machine word that follows the base address
* word, and the bit value indicates whether or not a relocation needs
* to be applied to it. The second least significant bit represents the
* machine word immediately following the initial address, and each bit
* that follows represents the next word, in linear order. As such, a
* single bitmap can encode up to 63 relocations in a 64-bit object.
*/
for (const u64 *relr = relr_start; relr < relr_end; relr++) {
if ((*relr & 1) == 0) {
place = (u64 *)(*relr + offset);
*place++ += offset;
} else {
for (u64 *p = place, r = *relr >> 1; r; p++, r >>= 1)
if (r & 1)
*p += offset;
place += 63;
}
}
}
......@@ -166,21 +166,6 @@ static void __init smp_build_mpidr_hash(void)
pr_warn("Large number of MPIDR hash buckets detected\n");
}
static void *early_fdt_ptr __initdata;
void __init *get_early_fdt_ptr(void)
{
return early_fdt_ptr;
}
asmlinkage void __init early_fdt_map(u64 dt_phys)
{
int fdt_size;
early_fixmap_init();
early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
}
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
int size;
......@@ -298,13 +283,6 @@ void __init __no_sanitize_address setup_arch(char **cmdline_p)
kaslr_init();
/*
* If know now we are going to need KPTI then use non-global
* mappings from the start, avoiding the cost of rewriting
* everything later.
*/
arm64_use_ng_mappings = kaslr_requires_kpti();
early_fixmap_init();
early_ioremap_init();
......
......@@ -102,9 +102,6 @@ SYM_CODE_START(cpu_resume)
mov x0, xzr
bl init_kernel_el
mov x19, x0 // preserve boot mode
#if VA_BITS > 48
ldr_l x0, vabits_actual
#endif
bl __cpu_setup
/* enable the MMU early - so we can access sleep_save_stash by va */
adrp x1, swapper_pg_dir
......
......@@ -126,9 +126,9 @@ jiffies = jiffies_64;
#ifdef CONFIG_UNWIND_TABLES
#define UNWIND_DATA_SECTIONS \
.eh_frame : { \
__eh_frame_start = .; \
__pi___eh_frame_start = .; \
*(.eh_frame) \
__eh_frame_end = .; \
__pi___eh_frame_end = .; \
}
#else
#define UNWIND_DATA_SECTIONS
......@@ -270,15 +270,15 @@ SECTIONS
HYPERVISOR_RELOC_SECTION
.rela.dyn : ALIGN(8) {
__rela_start = .;
__pi_rela_start = .;
*(.rela .rela*)
__rela_end = .;
__pi_rela_end = .;
}
.relr.dyn : ALIGN(8) {
__relr_start = .;
__pi_relr_start = .;
*(.relr.dyn)
__relr_end = .;
__pi_relr_end = .;
}
. = ALIGN(SEGMENT_ALIGN);
......@@ -311,12 +311,17 @@ SECTIONS
__pecoff_data_rawsize = ABSOLUTE(. - __initdata_begin);
_edata = .;
/* start of zero-init region */
BSS_SECTION(SBSS_ALIGN, 0, 0)
. = ALIGN(PAGE_SIZE);
init_pg_dir = .;
. += INIT_DIR_SIZE;
init_pg_end = .;
/* end of zero-init region */
. += SZ_4K; /* stack for the early C runtime */
early_init_stack = .;
. = ALIGN(SEGMENT_ALIGN);
__pecoff_data_size = ABSOLUTE(. - __initdata_begin);
......
......@@ -805,7 +805,7 @@ static int get_user_mapping_size(struct kvm *kvm, u64 addr)
.pgd = (kvm_pteref_t)kvm->mm->pgd,
.ia_bits = vabits_actual,
.start_level = (KVM_PGTABLE_LAST_LEVEL -
CONFIG_PGTABLE_LEVELS + 1),
ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
.mm_ops = &kvm_user_mm_ops,
};
unsigned long flags;
......@@ -1874,16 +1874,9 @@ int __init kvm_mmu_init(u32 *hyp_va_bits)
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
/*
* The ID map may be configured to use an extended virtual address
* range. This is only the case if system RAM is out of range for the
* currently configured page size and VA_BITS_MIN, in which case we will
* also need the extended virtual range for the HYP ID map, or we won't
* be able to enable the EL2 MMU.
*
* However, in some cases the ID map may be configured for fewer than
* the number of VA bits used by the regular kernel stage 1. This
* happens when VA_BITS=52 and the kernel image is placed in PA space
* below 48 bits.
* The ID map is always configured for 48 bits of translation, which
* may be fewer than the number of VA bits used by the regular kernel
* stage 1, when VA_BITS=52.
*
* At EL2, there is only one TTBR register, and we can't switch between
* translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
......@@ -1894,7 +1887,7 @@ int __init kvm_mmu_init(u32 *hyp_va_bits)
* 1 VA bits to assure that the hypervisor can both ID map its code page
* and map any kernel memory.
*/
idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
idmap_bits = IDMAP_VA_BITS;
kernel_bits = vabits_actual;
*hyp_va_bits = max(idmap_bits, kernel_bits);
......
......@@ -257,16 +257,14 @@ static bool is_el1_data_abort(unsigned long esr)
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
return false;
if (fsc_type == ESR_ELx_FSC_PERM)
if (esr_fsc_is_permission_fault(esr))
return true;
if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
return fsc_type == ESR_ELx_FSC_FAULT &&
return esr_fsc_is_translation_fault(esr) &&
(regs->pstate & PSR_PAN_BIT);
return false;
......@@ -279,8 +277,7 @@ static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
unsigned long flags;
u64 par, dfsc;
if (!is_el1_data_abort(esr) ||
(esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
return false;
local_irq_save(flags);
......@@ -301,7 +298,7 @@ static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
* treat the translation fault as spurious.
*/
dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
return !esr_fsc_is_translation_fault(dfsc);
}
static void die_kernel_fault(const char *msg, unsigned long addr,
......@@ -368,11 +365,6 @@ static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
return false;
}
static bool is_translation_fault(unsigned long esr)
{
return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
}
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
struct pt_regs *regs)
{
......@@ -405,7 +397,7 @@ static void __do_kernel_fault(unsigned long addr, unsigned long esr,
} else if (addr < PAGE_SIZE) {
msg = "NULL pointer dereference";
} else {
if (is_translation_fault(esr) &&
if (esr_fsc_is_translation_fault(esr) &&
kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
return;
......@@ -782,18 +774,18 @@ static const struct fault_info fault_info[] = {
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
{ do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
{ do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
{ do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
......@@ -801,7 +793,7 @@ static const struct fault_info fault_info[] = {
{ do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
{ do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
{ do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
{ do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
......@@ -815,9 +807,9 @@ static const struct fault_info fault_info[] = {
{ do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
{ do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
{ do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
......
......@@ -104,7 +104,7 @@ void __init early_fixmap_init(void)
unsigned long end = FIXADDR_TOP;
pgd_t *pgdp = pgd_offset_k(addr);
p4d_t *p4dp = p4d_offset(pgdp, addr);
p4d_t *p4dp = p4d_offset_kimg(pgdp, addr);
early_fixmap_init_pud(p4dp, addr, end);
}
......@@ -170,37 +170,3 @@ void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
return dt_virt;
}
/*
* Copy the fixmap region into a new pgdir.
*/
void __init fixmap_copy(pgd_t *pgdir)
{
if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdir, FIXADDR_TOT_START)))) {
/*
* The fixmap falls in a separate pgd to the kernel, and doesn't
* live in the carveout for the swapper_pg_dir. We can simply
* re-use the existing dir for the fixmap.
*/
set_pgd(pgd_offset_pgd(pgdir, FIXADDR_TOT_START),
READ_ONCE(*pgd_offset_k(FIXADDR_TOT_START)));
} else if (CONFIG_PGTABLE_LEVELS > 3) {
pgd_t *bm_pgdp;
p4d_t *bm_p4dp;
pud_t *bm_pudp;
/*
* The fixmap shares its top level pgd entry with the kernel
* mapping. This can really only occur when we are running
* with 16k/4 levels, so we can simply reuse the pud level
* entry instead.
*/
BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
bm_pgdp = pgd_offset_pgd(pgdir, FIXADDR_TOT_START);
bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_TOT_START);
bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_TOT_START);
pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
pud_clear_fixmap();
} else {
BUG();
}
}
......@@ -238,7 +238,7 @@ void __init arm64_memblock_init(void)
* physical address of PAGE_OFFSET, we have to *subtract* from it.
*/
if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
/*
* Apply the memory limit if it was set. Since the kernel may be loaded
......
......@@ -23,7 +23,7 @@
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
static pgd_t tmp_pg_dir[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
static pgd_t tmp_pg_dir[PTRS_PER_PTE] __initdata __aligned(PAGE_SIZE);
/*
* The p*d_populate functions call virt_to_phys implicitly so they can't be used
......@@ -99,6 +99,19 @@ static pud_t *__init kasan_pud_offset(p4d_t *p4dp, unsigned long addr, int node,
return early ? pud_offset_kimg(p4dp, addr) : pud_offset(p4dp, addr);
}
static p4d_t *__init kasan_p4d_offset(pgd_t *pgdp, unsigned long addr, int node,
bool early)
{
if (pgd_none(READ_ONCE(*pgdp))) {
phys_addr_t p4d_phys = early ?
__pa_symbol(kasan_early_shadow_p4d)
: kasan_alloc_zeroed_page(node);
__pgd_populate(pgdp, p4d_phys, PGD_TYPE_TABLE);
}
return early ? p4d_offset_kimg(pgdp, addr) : p4d_offset(pgdp, addr);
}
static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
unsigned long end, int node, bool early)
{
......@@ -144,12 +157,12 @@ static void __init kasan_p4d_populate(pgd_t *pgdp, unsigned long addr,
unsigned long end, int node, bool early)
{
unsigned long next;
p4d_t *p4dp = p4d_offset(pgdp, addr);
p4d_t *p4dp = kasan_p4d_offset(pgdp, addr, node, early);
do {
next = p4d_addr_end(addr, end);
kasan_pud_populate(p4dp, addr, next, node, early);
} while (p4dp++, addr = next, addr != end);
} while (p4dp++, addr = next, addr != end && p4d_none(READ_ONCE(*p4dp)));
}
static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
......@@ -165,19 +178,48 @@ static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
} while (pgdp++, addr = next, addr != end);
}
#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS > 4
#define SHADOW_ALIGN P4D_SIZE
#else
#define SHADOW_ALIGN PUD_SIZE
#endif
/*
* Return whether 'addr' is aligned to the size covered by a root level
* descriptor.
*/
static bool __init root_level_aligned(u64 addr)
{
int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 1) * (PAGE_SHIFT - 3);
return (addr % (PAGE_SIZE << shift)) == 0;
}
/* The early shadow maps everything to a single page of zeroes */
asmlinkage void __init kasan_early_init(void)
{
BUILD_BUG_ON(KASAN_SHADOW_OFFSET !=
KASAN_SHADOW_END - (1UL << (64 - KASAN_SHADOW_SCALE_SHIFT)));
/*
* We cannot check the actual value of KASAN_SHADOW_START during build,
* as it depends on vabits_actual. As a best-effort approach, check
* potential values calculated based on VA_BITS and VA_BITS_MIN.
*/
BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), PGDIR_SIZE));
BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), PGDIR_SIZE));
BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, PGDIR_SIZE));
BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS), SHADOW_ALIGN));
BUILD_BUG_ON(!IS_ALIGNED(_KASAN_SHADOW_START(VA_BITS_MIN), SHADOW_ALIGN));
BUILD_BUG_ON(!IS_ALIGNED(KASAN_SHADOW_END, SHADOW_ALIGN));
if (!root_level_aligned(KASAN_SHADOW_START)) {
/*
* The start address is misaligned, and so the next level table
* will be shared with the linear region. This can happen with
* 4 or 5 level paging, so install a generic pte_t[] as the
* next level. This prevents the kasan_pgd_populate call below
* from inserting an entry that refers to the shared KASAN zero
* shadow pud_t[]/p4d_t[], which could end up getting corrupted
* when the linear region is mapped.
*/
static pte_t tbl[PTRS_PER_PTE] __page_aligned_bss;
pgd_t *pgdp = pgd_offset_k(KASAN_SHADOW_START);
set_pgd(pgdp, __pgd(__pa_symbol(tbl) | PGD_TYPE_TABLE));
}
kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, NUMA_NO_NODE,
true);
}
......@@ -190,34 +232,74 @@ static void __init kasan_map_populate(unsigned long start, unsigned long end,
}
/*
* Copy the current shadow region into a new pgdir.
* Return the descriptor index of 'addr' in the root level table
*/
void __init kasan_copy_shadow(pgd_t *pgdir)
static int __init root_level_idx(u64 addr)
{
pgd_t *pgdp, *pgdp_new, *pgdp_end;
/*
* On 64k pages, the TTBR1 range root tables are extended for 52-bit
* virtual addressing, and TTBR1 will simply point to the pgd_t entry
* that covers the start of the 48-bit addressable VA space if LVA is
* not implemented. This means we need to index the table as usual,
* instead of masking off bits based on vabits_actual.
*/
u64 vabits = IS_ENABLED(CONFIG_ARM64_64K_PAGES) ? VA_BITS
: vabits_actual;
int shift = (ARM64_HW_PGTABLE_LEVELS(vabits) - 1) * (PAGE_SHIFT - 3);
pgdp = pgd_offset_k(KASAN_SHADOW_START);
pgdp_end = pgd_offset_k(KASAN_SHADOW_END);
pgdp_new = pgd_offset_pgd(pgdir, KASAN_SHADOW_START);
do {
set_pgd(pgdp_new, READ_ONCE(*pgdp));
} while (pgdp++, pgdp_new++, pgdp != pgdp_end);
return (addr & ~_PAGE_OFFSET(vabits)) >> (shift + PAGE_SHIFT);
}
/*
* Clone a next level table from swapper_pg_dir into tmp_pg_dir
*/
static void __init clone_next_level(u64 addr, pgd_t *tmp_pg_dir, pud_t *pud)
{
int idx = root_level_idx(addr);
pgd_t pgd = READ_ONCE(swapper_pg_dir[idx]);
pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd));
memcpy(pud, pudp, PAGE_SIZE);
tmp_pg_dir[idx] = __pgd(__phys_to_pgd_val(__pa_symbol(pud)) |
PUD_TYPE_TABLE);
}
static void __init clear_pgds(unsigned long start,
unsigned long end)
/*
* Return the descriptor index of 'addr' in the next level table
*/
static int __init next_level_idx(u64 addr)
{
/*
* Remove references to kasan page tables from
* swapper_pg_dir. pgd_clear() can't be used
* here because it's nop on 2,3-level pagetable setups
*/
for (; start < end; start += PGDIR_SIZE)
set_pgd(pgd_offset_k(start), __pgd(0));
int shift = (ARM64_HW_PGTABLE_LEVELS(vabits_actual) - 2) * (PAGE_SHIFT - 3);
return (addr >> (shift + PAGE_SHIFT)) % PTRS_PER_PTE;
}
/*
* Dereference the table descriptor at 'pgd_idx' and clear the entries from
* 'start' to 'end' (exclusive) from the table.
*/
static void __init clear_next_level(int pgd_idx, int start, int end)
{
pgd_t pgd = READ_ONCE(swapper_pg_dir[pgd_idx]);
pud_t *pudp = (pud_t *)__phys_to_kimg(__pgd_to_phys(pgd));
memset(&pudp[start], 0, (end - start) * sizeof(pud_t));
}
static void __init clear_shadow(u64 start, u64 end)
{
int l = root_level_idx(start), m = root_level_idx(end);
if (!root_level_aligned(start))
clear_next_level(l++, next_level_idx(start), PTRS_PER_PTE);
if (!root_level_aligned(end))
clear_next_level(m, 0, next_level_idx(end));
memset(&swapper_pg_dir[l], 0, (m - l) * sizeof(pgd_t));
}
static void __init kasan_init_shadow(void)
{
static pud_t pud[2][PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
u64 kimg_shadow_start, kimg_shadow_end;
u64 mod_shadow_start;
u64 vmalloc_shadow_end;
......@@ -239,10 +321,23 @@ static void __init kasan_init_shadow(void)
* setup will be finished.
*/
memcpy(tmp_pg_dir, swapper_pg_dir, sizeof(tmp_pg_dir));
/*
* If the start or end address of the shadow region is not aligned to
* the root level size, we have to allocate a temporary next-level table
* in each case, clone the next level of descriptors, and install the
* table into tmp_pg_dir. Note that with 5 levels of paging, the next
* level will in fact be p4d_t, but that makes no difference in this
* case.
*/
if (!root_level_aligned(KASAN_SHADOW_START))
clone_next_level(KASAN_SHADOW_START, tmp_pg_dir, pud[0]);
if (!root_level_aligned(KASAN_SHADOW_END))
clone_next_level(KASAN_SHADOW_END, tmp_pg_dir, pud[1]);
dsb(ishst);
cpu_replace_ttbr1(lm_alias(tmp_pg_dir), idmap_pg_dir);
cpu_replace_ttbr1(lm_alias(tmp_pg_dir));
clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
clear_shadow(KASAN_SHADOW_START, KASAN_SHADOW_END);
kasan_map_populate(kimg_shadow_start, kimg_shadow_end,
early_pfn_to_nid(virt_to_pfn(lm_alias(KERNEL_START))));
......@@ -276,7 +371,7 @@ static void __init kasan_init_shadow(void)
PAGE_KERNEL_RO));
memset(kasan_early_shadow_page, KASAN_SHADOW_INIT, PAGE_SIZE);
cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
}
static void __init kasan_init_depth(void)
......
......@@ -73,6 +73,10 @@ static int __init adjust_protection_map(void)
protection_map[VM_EXEC | VM_SHARED] = PAGE_EXECONLY;
}
if (lpa2_is_enabled())
for (int i = 0; i < ARRAY_SIZE(protection_map); i++)
pgprot_val(protection_map[i]) &= ~PTE_SHARED;
return 0;
}
arch_initcall(adjust_protection_map);
......
This diff is collapsed.
......@@ -17,11 +17,22 @@
static struct kmem_cache *pgd_cache __ro_after_init;
static bool pgdir_is_page_size(void)
{
if (PGD_SIZE == PAGE_SIZE)
return true;
if (CONFIG_PGTABLE_LEVELS == 4)
return !pgtable_l4_enabled();
if (CONFIG_PGTABLE_LEVELS == 5)
return !pgtable_l5_enabled();
return false;
}
pgd_t *pgd_alloc(struct mm_struct *mm)
{
gfp_t gfp = GFP_PGTABLE_USER;
if (PGD_SIZE == PAGE_SIZE)
if (pgdir_is_page_size())
return (pgd_t *)__get_free_page(gfp);
else
return kmem_cache_alloc(pgd_cache, gfp);
......@@ -29,7 +40,7 @@ pgd_t *pgd_alloc(struct mm_struct *mm)
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
if (PGD_SIZE == PAGE_SIZE)
if (pgdir_is_page_size())
free_page((unsigned long)pgd);
else
kmem_cache_free(pgd_cache, pgd);
......@@ -37,7 +48,7 @@ void pgd_free(struct mm_struct *mm, pgd_t *pgd)
void __init pgtable_cache_init(void)
{
if (PGD_SIZE == PAGE_SIZE)
if (pgdir_is_page_size())
return;
#ifdef CONFIG_ARM64_PA_BITS_52
......
......@@ -195,27 +195,36 @@ SYM_TYPED_FUNC_START(idmap_cpu_replace_ttbr1)
ret
SYM_FUNC_END(idmap_cpu_replace_ttbr1)
SYM_FUNC_ALIAS(__pi_idmap_cpu_replace_ttbr1, idmap_cpu_replace_ttbr1)
.popsection
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
#define KPTI_NG_PTE_FLAGS (PTE_ATTRINDX(MT_NORMAL) | SWAPPER_PTE_FLAGS | PTE_WRITE)
#define KPTI_NG_PTE_FLAGS (PTE_ATTRINDX(MT_NORMAL) | PTE_TYPE_PAGE | \
PTE_AF | PTE_SHARED | PTE_UXN | PTE_WRITE)
.pushsection ".idmap.text", "a"
.macro pte_to_phys, phys, pte
and \phys, \pte, #PTE_ADDR_LOW
#ifdef CONFIG_ARM64_PA_BITS_52
and \pte, \pte, #PTE_ADDR_HIGH
orr \phys, \phys, \pte, lsl #PTE_ADDR_HIGH_SHIFT
#endif
.endm
.macro kpti_mk_tbl_ng, type, num_entries
add end_\type\()p, cur_\type\()p, #\num_entries * 8
.Ldo_\type:
ldr \type, [cur_\type\()p] // Load the entry
ldr \type, [cur_\type\()p], #8 // Load the entry and advance
tbz \type, #0, .Lnext_\type // Skip invalid and
tbnz \type, #11, .Lnext_\type // non-global entries
orr \type, \type, #PTE_NG // Same bit for blocks and pages
str \type, [cur_\type\()p] // Update the entry
str \type, [cur_\type\()p, #-8] // Update the entry
.ifnc \type, pte
tbnz \type, #1, .Lderef_\type
.endif
.Lnext_\type:
add cur_\type\()p, cur_\type\()p, #8
cmp cur_\type\()p, end_\type\()p
b.ne .Ldo_\type
.endm
......@@ -225,18 +234,18 @@ SYM_FUNC_END(idmap_cpu_replace_ttbr1)
* fixmap slot associated with the current level.
*/
.macro kpti_map_pgtbl, type, level
str xzr, [temp_pte, #8 * (\level + 1)] // break before make
str xzr, [temp_pte, #8 * (\level + 2)] // break before make
dsb nshst
add pte, temp_pte, #PAGE_SIZE * (\level + 1)
add pte, temp_pte, #PAGE_SIZE * (\level + 2)
lsr pte, pte, #12
tlbi vaae1, pte
dsb nsh
isb
phys_to_pte pte, cur_\type\()p
add cur_\type\()p, temp_pte, #PAGE_SIZE * (\level + 1)
add cur_\type\()p, temp_pte, #PAGE_SIZE * (\level + 2)
orr pte, pte, pte_flags
str pte, [temp_pte, #8 * (\level + 1)]
str pte, [temp_pte, #8 * (\level + 2)]
dsb nshst
.endm
......@@ -269,6 +278,8 @@ SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
end_ptep .req x15
pte .req x16
valid .req x17
cur_p4dp .req x19
end_p4dp .req x20
mov x5, x3 // preserve temp_pte arg
mrs swapper_ttb, ttbr1_el1
......@@ -276,6 +287,12 @@ SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
cbnz cpu, __idmap_kpti_secondary
#if CONFIG_PGTABLE_LEVELS > 4
stp x29, x30, [sp, #-32]!
mov x29, sp
stp x19, x20, [sp, #16]
#endif
/* We're the boot CPU. Wait for the others to catch up */
sevl
1: wfe
......@@ -293,9 +310,32 @@ SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
mov_q pte_flags, KPTI_NG_PTE_FLAGS
/* Everybody is enjoying the idmap, so we can rewrite swapper. */
#ifdef CONFIG_ARM64_LPA2
/*
* If LPA2 support is configured, but 52-bit virtual addressing is not
* enabled at runtime, we will fall back to one level of paging less,
* and so we have to walk swapper_pg_dir as if we dereferenced its
* address from a PGD level entry, and terminate the PGD level loop
* right after.
*/
adrp pgd, swapper_pg_dir // walk &swapper_pg_dir at the next level
mov cur_pgdp, end_pgdp // must be equal to terminate the PGD loop
alternative_if_not ARM64_HAS_VA52
b .Lderef_pgd // skip to the next level
alternative_else_nop_endif
/*
* LPA2 based 52-bit virtual addressing requires 52-bit physical
* addressing to be enabled as well. In this case, the shareability
* bits are repurposed as physical address bits, and should not be
* set in pte_flags.
*/
bic pte_flags, pte_flags, #PTE_SHARED
#endif
/* PGD */
adrp cur_pgdp, swapper_pg_dir
kpti_map_pgtbl pgd, 0
kpti_map_pgtbl pgd, -1
kpti_mk_tbl_ng pgd, PTRS_PER_PGD
/* Ensure all the updated entries are visible to secondary CPUs */
......@@ -308,16 +348,33 @@ SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
/* Set the flag to zero to indicate that we're all done */
str wzr, [flag_ptr]
#if CONFIG_PGTABLE_LEVELS > 4
ldp x19, x20, [sp, #16]
ldp x29, x30, [sp], #32
#endif
ret
.Lderef_pgd:
/* P4D */
.if CONFIG_PGTABLE_LEVELS > 4
p4d .req x30
pte_to_phys cur_p4dp, pgd
kpti_map_pgtbl p4d, 0
kpti_mk_tbl_ng p4d, PTRS_PER_P4D
b .Lnext_pgd
.else /* CONFIG_PGTABLE_LEVELS <= 4 */
p4d .req pgd
.set .Lnext_p4d, .Lnext_pgd
.endif
.Lderef_p4d:
/* PUD */
.if CONFIG_PGTABLE_LEVELS > 3
pud .req x10
pte_to_phys cur_pudp, pgd
pte_to_phys cur_pudp, p4d
kpti_map_pgtbl pud, 1
kpti_mk_tbl_ng pud, PTRS_PER_PUD
b .Lnext_pgd
b .Lnext_p4d
.else /* CONFIG_PGTABLE_LEVELS <= 3 */
pud .req pgd
.set .Lnext_pud, .Lnext_pgd
......@@ -361,6 +418,9 @@ SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
.unreq end_ptep
.unreq pte
.unreq valid
.unreq cur_p4dp
.unreq end_p4dp
.unreq p4d
/* Secondary CPUs end up here */
__idmap_kpti_secondary:
......@@ -395,8 +455,6 @@ SYM_FUNC_END(idmap_kpti_install_ng_mappings)
*
* Initialise the processor for turning the MMU on.
*
* Input:
* x0 - actual number of VA bits (ignored unless VA_BITS > 48)
* Output:
* Return in x0 the value of the SCTLR_EL1 register.
*/
......@@ -420,20 +478,21 @@ SYM_FUNC_START(__cpu_setup)
mair .req x17
tcr .req x16
mov_q mair, MAIR_EL1_SET
mov_q tcr, TCR_TxSZ(VA_BITS) | TCR_CACHE_FLAGS | TCR_SMP_FLAGS | \
TCR_TG_FLAGS | TCR_KASLR_FLAGS | TCR_ASID16 | \
TCR_TBI0 | TCR_A1 | TCR_KASAN_SW_FLAGS | TCR_MTE_FLAGS
mov_q tcr, TCR_T0SZ(IDMAP_VA_BITS) | TCR_T1SZ(VA_BITS_MIN) | TCR_CACHE_FLAGS | \
TCR_SMP_FLAGS | TCR_TG_FLAGS | TCR_KASLR_FLAGS | TCR_ASID16 | \
TCR_TBI0 | TCR_A1 | TCR_KASAN_SW_FLAGS | TCR_MTE_FLAGS
tcr_clear_errata_bits tcr, x9, x5
#ifdef CONFIG_ARM64_VA_BITS_52
sub x9, xzr, x0
add x9, x9, #64
mov x9, #64 - VA_BITS
alternative_if ARM64_HAS_VA52
tcr_set_t1sz tcr, x9
#else
idmap_get_t0sz x9
#ifdef CONFIG_ARM64_LPA2
orr tcr, tcr, #TCR_DS
#endif
alternative_else_nop_endif
#endif
tcr_set_t0sz tcr, x9
/*
* Set the IPS bits in TCR_EL1.
......@@ -458,11 +517,26 @@ SYM_FUNC_START(__cpu_setup)
ubfx x1, x1, #ID_AA64MMFR3_EL1_S1PIE_SHIFT, #4
cbz x1, .Lskip_indirection
/*
* The PROT_* macros describing the various memory types may resolve to
* C expressions if they include the PTE_MAYBE_* macros, and so they
* can only be used from C code. The PIE_E* constants below are also
* defined in terms of those macros, but will mask out those
* PTE_MAYBE_* constants, whether they are set or not. So #define them
* as 0x0 here so we can evaluate the PIE_E* constants in asm context.
*/
#define PTE_MAYBE_NG 0
#define PTE_MAYBE_SHARED 0
mov_q x0, PIE_E0
msr REG_PIRE0_EL1, x0
mov_q x0, PIE_E1
msr REG_PIR_EL1, x0
#undef PTE_MAYBE_NG
#undef PTE_MAYBE_SHARED
mov x0, TCR2_EL1x_PIE
msr REG_TCR2_EL1, x0
......@@ -472,6 +546,12 @@ SYM_FUNC_START(__cpu_setup)
* Prepare SCTLR
*/
mov_q x0, INIT_SCTLR_EL1_MMU_ON
#ifdef CONFIG_ARM64_WXN
ldr_l x1, arm64_sw_feature_override + FTR_OVR_VAL_OFFSET
tst x1, #0xf << ARM64_SW_FEATURE_OVERRIDE_NOWXN
orr x1, x0, #SCTLR_ELx_WXN
csel x0, x0, x1, ne
#endif
ret // return to head.S
.unreq mair
......
......@@ -48,6 +48,7 @@ struct pg_state {
struct ptdump_state ptdump;
struct seq_file *seq;
const struct addr_marker *marker;
const struct mm_struct *mm;
unsigned long start_address;
int level;
u64 current_prot;
......@@ -144,12 +145,12 @@ static const struct prot_bits pte_bits[] = {
struct pg_level {
const struct prot_bits *bits;
const char *name;
size_t num;
char name[4];
int num;
u64 mask;
};
static struct pg_level pg_level[] = {
static struct pg_level pg_level[] __ro_after_init = {
{ /* pgd */
.name = "PGD",
.bits = pte_bits,
......@@ -159,11 +160,11 @@ static struct pg_level pg_level[] = {
.bits = pte_bits,
.num = ARRAY_SIZE(pte_bits),
}, { /* pud */
.name = (CONFIG_PGTABLE_LEVELS > 3) ? "PUD" : "PGD",
.name = "PUD",
.bits = pte_bits,
.num = ARRAY_SIZE(pte_bits),
}, { /* pmd */
.name = (CONFIG_PGTABLE_LEVELS > 2) ? "PMD" : "PGD",
.name = "PMD",
.bits = pte_bits,
.num = ARRAY_SIZE(pte_bits),
}, { /* pte */
......@@ -227,6 +228,11 @@ static void note_page(struct ptdump_state *pt_st, unsigned long addr, int level,
static const char units[] = "KMGTPE";
u64 prot = 0;
/* check if the current level has been folded dynamically */
if ((level == 1 && mm_p4d_folded(st->mm)) ||
(level == 2 && mm_pud_folded(st->mm)))
level = 0;
if (level >= 0)
prot = val & pg_level[level].mask;
......@@ -288,6 +294,7 @@ void ptdump_walk(struct seq_file *s, struct ptdump_info *info)
st = (struct pg_state){
.seq = s,
.marker = info->markers,
.mm = info->mm,
.level = -1,
.ptdump = {
.note_page = note_page,
......@@ -313,7 +320,6 @@ static void __init ptdump_initialize(void)
static struct ptdump_info kernel_ptdump_info __ro_after_init = {
.mm = &init_mm,
.base_addr = PAGE_OFFSET,
};
void ptdump_check_wx(void)
......@@ -329,7 +335,7 @@ void ptdump_check_wx(void)
.ptdump = {
.note_page = note_page,
.range = (struct ptdump_range[]) {
{PAGE_OFFSET, ~0UL},
{_PAGE_OFFSET(vabits_actual), ~0UL},
{0, 0}
}
}
......@@ -370,6 +376,7 @@ static int __init ptdump_init(void)
static struct addr_marker address_markers[ARRAY_SIZE(m)] __ro_after_init;
kernel_ptdump_info.markers = memcpy(address_markers, m, sizeof(m));
kernel_ptdump_info.base_addr = page_offset;
ptdump_initialize();
ptdump_debugfs_register(&kernel_ptdump_info, "kernel_page_tables");
......
......@@ -51,6 +51,7 @@ HAS_STAGE2_FWB
HAS_TCR2
HAS_TIDCP1
HAS_TLB_RANGE
HAS_VA52
HAS_VIRT_HOST_EXTN
HAS_WFXT
HW_DBM
......
......@@ -1573,16 +1573,16 @@ Enum 35:32 TGRAN16_2
0b0010 IMP
0b0011 52_BIT
EndEnum
Enum 31:28 TGRAN4
SignedEnum 31:28 TGRAN4
0b0000 IMP
0b0001 52_BIT
0b1111 NI
EndEnum
Enum 27:24 TGRAN64
SignedEnum 27:24 TGRAN64
0b0000 IMP
0b1111 NI
EndEnum
Enum 23:20 TGRAN16
UnsignedEnum 23:20 TGRAN16
0b0000 NI
0b0001 IMP
0b0010 52_BIT
......@@ -1730,7 +1730,7 @@ Enum 23:20 CCIDX
0b0000 32
0b0001 64
EndEnum
Enum 19:16 VARange
UnsignedEnum 19:16 VARange
0b0000 48
0b0001 52
EndEnum
......
......@@ -124,6 +124,21 @@ static inline bool arch_validate_flags(unsigned long flags)
#define arch_validate_flags arch_validate_flags
#endif
#ifndef arch_validate_mmap_prot
/*
* This is called from mmap(), which ignores unknown prot bits so the default
* is to accept anything.
*
* Returns true if the prot flags are valid
*/
static inline bool arch_validate_mmap_prot(unsigned long prot,
unsigned long addr)
{
return true;
}
#define arch_validate_mmap_prot arch_validate_mmap_prot
#endif
/*
* Optimisation macro. It is equivalent to:
* (x & bit1) ? bit2 : 0
......
......@@ -1229,6 +1229,9 @@ unsigned long do_mmap(struct file *file, unsigned long addr,
if (!(file && path_noexec(&file->f_path)))
prot |= PROT_EXEC;
if (!arch_validate_mmap_prot(prot, addr))
return -EACCES;
/* force arch specific MAP_FIXED handling in get_unmapped_area */
if (flags & MAP_FIXED_NOREPLACE)
flags |= MAP_FIXED;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment