Commit 8cc92517 authored by Russell King's avatar Russell King

Merge branches 'fixes' and 'misc' into for-next

parents e64ab473 10fce53c
......@@ -45,9 +45,14 @@ fffe8000 fffeffff DTCM mapping area for platforms with
fffe0000 fffe7fff ITCM mapping area for platforms with
ITCM mounted inside the CPU.
ffc00000 ffefffff Fixmap mapping region. Addresses provided
ffc80000 ffefffff Fixmap mapping region. Addresses provided
by fix_to_virt() will be located here.
ffc00000 ffc7ffff Guard region
ff800000 ffbfffff Permanent, fixed read-only mapping of the
firmware provided DT blob
fee00000 feffffff Mapping of PCI I/O space. This is a static
mapping within the vmalloc space.
......@@ -72,6 +77,11 @@ MODULES_VADDR MODULES_END-1 Kernel module space
Kernel modules inserted via insmod are
placed here using dynamic mappings.
TASK_SIZE MODULES_VADDR-1 KASAn shadow memory when KASan is in use.
The range from MODULES_VADDR to the top
of the memory is shadowed here with 1 bit
per byte of memory.
00001000 TASK_SIZE-1 User space mappings
Per-thread mappings are placed here via
the mmap() system call.
......
......@@ -18,8 +18,8 @@ out-of-bounds accesses for global variables is only supported since Clang 11.
Tag-based KASAN is only supported in Clang.
Currently generic KASAN is supported for the x86_64, arm64, xtensa, s390 and
riscv architectures, and tag-based KASAN is supported only for arm64.
Currently generic KASAN is supported for the x86_64, arm, arm64, xtensa, s390
and riscv architectures, and tag-based KASAN is supported only for arm64.
Usage
-----
......
......@@ -8,7 +8,7 @@
-----------------------
| alpha: | TODO |
| arc: | TODO |
| arm: | TODO |
| arm: | ok |
| arm64: | ok |
| c6x: | TODO |
| csky: | TODO |
......
......@@ -67,6 +67,7 @@ config ARM
select HAVE_ARCH_BITREVERSE if (CPU_32v7M || CPU_32v7) && !CPU_32v6
select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL && !CPU_ENDIAN_BE32 && MMU
select HAVE_ARCH_KGDB if !CPU_ENDIAN_BE32 && MMU
select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
select HAVE_ARCH_MMAP_RND_BITS if MMU
select HAVE_ARCH_SECCOMP
select HAVE_ARCH_SECCOMP_FILTER if AEABI && !OABI_COMPAT
......@@ -1323,6 +1324,15 @@ config PAGE_OFFSET
default 0xB0000000 if VMSPLIT_3G_OPT
default 0xC0000000
config KASAN_SHADOW_OFFSET
hex
depends on KASAN
default 0x1f000000 if PAGE_OFFSET=0x40000000
default 0x5f000000 if PAGE_OFFSET=0x80000000
default 0x9f000000 if PAGE_OFFSET=0xC0000000
default 0x8f000000 if PAGE_OFFSET=0xB0000000
default 0xffffffff
config NR_CPUS
int "Maximum number of CPUs (2-32)"
range 2 32
......
......@@ -10,7 +10,7 @@
#
# Copyright (C) 1995-2001 by Russell King
LDFLAGS_vmlinux := --no-undefined -X --pic-veneer
LDFLAGS_vmlinux := --no-undefined -X --pic-veneer -z norelro
ifeq ($(CONFIG_CPU_ENDIAN_BE8),y)
LDFLAGS_vmlinux += --be8
KBUILD_LDFLAGS_MODULE += --be8
......
......@@ -24,6 +24,7 @@ OBJS += hyp-stub.o
endif
GCOV_PROFILE := n
KASAN_SANITIZE := n
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
KCOV_INSTRUMENT := n
......
......@@ -11,6 +11,12 @@
#include "efi-header.S"
#ifdef __ARMEB__
#define OF_DT_MAGIC 0xd00dfeed
#else
#define OF_DT_MAGIC 0xedfe0dd0
#endif
AR_CLASS( .arch armv7-a )
M_CLASS( .arch armv7-m )
......@@ -116,7 +122,7 @@
/*
* Debug print of the final appended DTB location
*/
.macro dbgadtb, begin, end
.macro dbgadtb, begin, size
#ifdef DEBUG
kputc #'D'
kputc #'T'
......@@ -129,7 +135,7 @@
kputc #'('
kputc #'0'
kputc #'x'
kphex \end, 8 /* End of appended DTB */
kphex \size, 8 /* Size of appended DTB */
kputc #')'
kputc #'\n'
#endif
......@@ -165,6 +171,16 @@
orr \res, \res, \tmp1, lsl #24
.endm
.macro be32tocpu, val, tmp
#ifndef __ARMEB__
/* convert to little endian */
eor \tmp, \val, \val, ror #16
bic \tmp, \tmp, #0x00ff0000
mov \val, \val, ror #8
eor \val, \val, \tmp, lsr #8
#endif
.endm
.section ".start", "ax"
/*
* sort out different calling conventions
......@@ -325,11 +341,7 @@ restart: adr r0, LC1
*/
ldr lr, [r6, #0]
#ifndef __ARMEB__
ldr r1, =0xedfe0dd0 @ sig is 0xd00dfeed big endian
#else
ldr r1, =0xd00dfeed
#endif
ldr r1, =OF_DT_MAGIC
cmp lr, r1
bne dtb_check_done @ not found
......@@ -345,13 +357,7 @@ restart: adr r0, LC1
/* Get the initial DTB size */
ldr r5, [r6, #4]
#ifndef __ARMEB__
/* convert to little endian */
eor r1, r5, r5, ror #16
bic r1, r1, #0x00ff0000
mov r5, r5, ror #8
eor r5, r5, r1, lsr #8
#endif
be32tocpu r5, r1
dbgadtb r6, r5
/* 50% DTB growth should be good enough */
add r5, r5, r5, lsr #1
......@@ -403,13 +409,7 @@ restart: adr r0, LC1
/* Get the current DTB size */
ldr r5, [r6, #4]
#ifndef __ARMEB__
/* convert r5 (dtb size) to little endian */
eor r1, r5, r5, ror #16
bic r1, r1, #0x00ff0000
mov r5, r5, ror #8
eor r5, r5, r1, lsr #8
#endif
be32tocpu r5, r1
/* preserve 64-bit alignment */
add r5, r5, #7
......
......@@ -7,6 +7,25 @@
#include <linux/string.h>
/*
* The decompressor is built without KASan but uses the same redirects as the
* rest of the kernel when CONFIG_KASAN is enabled, defining e.g. memcpy()
* to __memcpy() but since we are not linking with the main kernel string
* library in the decompressor, that will lead to link failures.
*
* Undefine KASan's versions, define the wrapped functions and alias them to
* the right names so that when e.g. __memcpy() appear in the code, it will
* still be linked to this local version of memcpy().
*/
#ifdef CONFIG_KASAN
#undef memcpy
#undef memmove
#undef memset
void *__memcpy(void *__dest, __const void *__src, size_t __n) __alias(memcpy);
void *__memmove(void *__dest, __const void *__src, size_t count) __alias(memmove);
void *__memset(void *s, int c, size_t count) __alias(memset);
#endif
void *memcpy(void *__dest, __const void *__src, size_t __n)
{
int i = 0;
......
......@@ -2,7 +2,7 @@
#ifndef _ASM_FIXMAP_H
#define _ASM_FIXMAP_H
#define FIXADDR_START 0xffc00000UL
#define FIXADDR_START 0xffc80000UL
#define FIXADDR_END 0xfff00000UL
#define FIXADDR_TOP (FIXADDR_END - PAGE_SIZE)
......
/* SPDX-License-Identifier: GPL-2.0 */
/*
* arch/arm/include/asm/kasan.h
*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
*
*/
#ifndef __ASM_KASAN_H
#define __ASM_KASAN_H
#ifdef CONFIG_KASAN
#include <asm/kasan_def.h>
#define KASAN_SHADOW_SCALE_SHIFT 3
/*
* The compiler uses a shadow offset assuming that addresses start
* from 0. Kernel addresses don't start from 0, so shadow
* for kernel really starts from 'compiler's shadow offset' +
* ('kernel address space start' >> KASAN_SHADOW_SCALE_SHIFT)
*/
asmlinkage void kasan_early_init(void);
extern void kasan_init(void);
#else
static inline void kasan_init(void) { }
#endif
#endif
/* SPDX-License-Identifier: GPL-2.0 */
/*
* arch/arm/include/asm/kasan_def.h
*
* Copyright (c) 2018 Huawei Technologies Co., Ltd.
*
* Author: Abbott Liu <liuwenliang@huawei.com>
*/
#ifndef __ASM_KASAN_DEF_H
#define __ASM_KASAN_DEF_H
#ifdef CONFIG_KASAN
/*
* Define KASAN_SHADOW_OFFSET,KASAN_SHADOW_START and KASAN_SHADOW_END for
* the Arm kernel address sanitizer. We are "stealing" lowmem (the 4GB
* addressable by a 32bit architecture) out of the virtual address
* space to use as shadow memory for KASan as follows:
*
* +----+ 0xffffffff
* | | \
* | | |-> Static kernel image (vmlinux) BSS and page table
* | |/
* +----+ PAGE_OFFSET
* | | \
* | | |-> Loadable kernel modules virtual address space area
* | |/
* +----+ MODULES_VADDR = KASAN_SHADOW_END
* | | \
* | | |-> The shadow area of kernel virtual address.
* | |/
* +----+-> TASK_SIZE (start of kernel space) = KASAN_SHADOW_START the
* | |\ shadow address of MODULES_VADDR
* | | |
* | | |
* | | |-> The user space area in lowmem. The kernel address
* | | | sanitizer do not use this space, nor does it map it.
* | | |
* | | |
* | | |
* | | |
* | |/
* ------ 0
*
* 1) KASAN_SHADOW_START
* This value begins with the MODULE_VADDR's shadow address. It is the
* start of kernel virtual space. Since we have modules to load, we need
* to cover also that area with shadow memory so we can find memory
* bugs in modules.
*
* 2) KASAN_SHADOW_END
* This value is the 0x100000000's shadow address: the mapping that would
* be after the end of the kernel memory at 0xffffffff. It is the end of
* kernel address sanitizer shadow area. It is also the start of the
* module area.
*
* 3) KASAN_SHADOW_OFFSET:
* This value is used to map an address to the corresponding shadow
* address by the following formula:
*
* shadow_addr = (address >> 3) + KASAN_SHADOW_OFFSET;
*
* As you would expect, >> 3 is equal to dividing by 8, meaning each
* byte in the shadow memory covers 8 bytes of kernel memory, so one
* bit shadow memory per byte of kernel memory is used.
*
* The KASAN_SHADOW_OFFSET is provided in a Kconfig option depending
* on the VMSPLIT layout of the system: the kernel and userspace can
* split up lowmem in different ways according to needs, so we calculate
* the shadow offset depending on this.
*/
#define KASAN_SHADOW_SCALE_SHIFT 3
#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
#define KASAN_SHADOW_END ((UL(1) << (32 - KASAN_SHADOW_SCALE_SHIFT)) \
+ KASAN_SHADOW_OFFSET)
#define KASAN_SHADOW_START ((KASAN_SHADOW_END >> 3) + KASAN_SHADOW_OFFSET)
#endif
#endif
......@@ -18,6 +18,7 @@
#ifdef CONFIG_NEED_MACH_MEMORY_H
#include <mach/memory.h>
#endif
#include <asm/kasan_def.h>
/* PAGE_OFFSET - the virtual address of the start of the kernel image */
#define PAGE_OFFSET UL(CONFIG_PAGE_OFFSET)
......@@ -28,7 +29,11 @@
* TASK_SIZE - the maximum size of a user space task.
* TASK_UNMAPPED_BASE - the lower boundary of the mmap VM area
*/
#ifndef CONFIG_KASAN
#define TASK_SIZE (UL(CONFIG_PAGE_OFFSET) - UL(SZ_16M))
#else
#define TASK_SIZE (KASAN_SHADOW_START)
#endif
#define TASK_UNMAPPED_BASE ALIGN(TASK_SIZE / 3, SZ_16M)
/*
......@@ -67,6 +72,10 @@
*/
#define XIP_VIRT_ADDR(physaddr) (MODULES_VADDR + ((physaddr) & 0x000fffff))
#define FDT_FIXED_BASE UL(0xff800000)
#define FDT_FIXED_SIZE (2 * SECTION_SIZE)
#define FDT_VIRT_BASE(physbase) ((void *)(FDT_FIXED_BASE | (physbase) % SECTION_SIZE))
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
/*
* Allow 16MB-aligned ioremap pages
......@@ -107,6 +116,7 @@ extern unsigned long vectors_base;
#define MODULES_VADDR PAGE_OFFSET
#define XIP_VIRT_ADDR(physaddr) (physaddr)
#define FDT_VIRT_BASE(physbase) ((void *)(physbase))
#endif /* !CONFIG_MMU */
......
......@@ -21,6 +21,7 @@
#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL))
#ifdef CONFIG_ARM_LPAE
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
......@@ -28,14 +29,19 @@ static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
}
#else /* !CONFIG_ARM_LPAE */
#define PGD_SIZE (PAGE_SIZE << 2)
/*
* Since we have only two-level page tables, these are trivial
*/
#define pmd_alloc_one(mm,addr) ({ BUG(); ((pmd_t *)2); })
#define pmd_free(mm, pmd) do { } while (0)
#ifdef CONFIG_KASAN
/* The KASan core unconditionally calls pud_populate() on all architectures */
#define pud_populate(mm,pmd,pte) do { } while (0)
#else
#define pud_populate(mm,pmd,pte) BUG()
#endif
#endif /* CONFIG_ARM_LPAE */
extern pgd_t *pgd_alloc(struct mm_struct *mm);
......
......@@ -177,11 +177,28 @@
* the pud: the pud entry is never bad, always exists, and can't be set or
* cleared.
*/
#define pud_none(pud) (0)
#define pud_bad(pud) (0)
#define pud_present(pud) (1)
#define pud_clear(pudp) do { } while (0)
#define set_pud(pud,pudp) do { } while (0)
static inline int pud_none(pud_t pud)
{
return 0;
}
static inline int pud_bad(pud_t pud)
{
return 0;
}
static inline int pud_present(pud_t pud)
{
return 1;
}
static inline void pud_clear(pud_t *pudp)
{
}
static inline void set_pud(pud_t *pudp, pud_t pud)
{
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
{
......
......@@ -9,12 +9,12 @@
#ifdef CONFIG_OF
extern const struct machine_desc *setup_machine_fdt(unsigned int dt_phys);
extern const struct machine_desc *setup_machine_fdt(void *dt_virt);
extern void __init arm_dt_init_cpu_maps(void);
#else /* CONFIG_OF */
static inline const struct machine_desc *setup_machine_fdt(unsigned int dt_phys)
static inline const struct machine_desc *setup_machine_fdt(void *dt_virt)
{
return NULL;
}
......
......@@ -5,6 +5,9 @@
/*
* We don't do inline string functions, since the
* optimised inline asm versions are not small.
*
* The __underscore versions of some functions are for KASan to be able
* to replace them with instrumented versions.
*/
#define __HAVE_ARCH_STRRCHR
......@@ -15,15 +18,18 @@ extern char * strchr(const char * s, int c);
#define __HAVE_ARCH_MEMCPY
extern void * memcpy(void *, const void *, __kernel_size_t);
extern void *__memcpy(void *dest, const void *src, __kernel_size_t n);
#define __HAVE_ARCH_MEMMOVE
extern void * memmove(void *, const void *, __kernel_size_t);
extern void *__memmove(void *dest, const void *src, __kernel_size_t n);
#define __HAVE_ARCH_MEMCHR
extern void * memchr(const void *, int, __kernel_size_t);
#define __HAVE_ARCH_MEMSET
extern void * memset(void *, int, __kernel_size_t);
extern void *__memset(void *s, int c, __kernel_size_t n);
#define __HAVE_ARCH_MEMSET32
extern void *__memset32(uint32_t *, uint32_t v, __kernel_size_t);
......@@ -39,4 +45,24 @@ static inline void *memset64(uint64_t *p, uint64_t v, __kernel_size_t n)
return __memset64(p, v, n * 8, v >> 32);
}
/*
* For files that are not instrumented (e.g. mm/slub.c) we
* must use non-instrumented versions of the mem*
* functions named __memcpy() etc. All such kernel code has
* been tagged with KASAN_SANITIZE_file.o = n, which means
* that the address sanitization argument isn't passed to the
* compiler, and __SANITIZE_ADDRESS__ is not set. As a result
* these defines kick in.
*/
#if defined(CONFIG_KASAN) && !defined(__SANITIZE_ADDRESS__)
#define memcpy(dst, src, len) __memcpy(dst, src, len)
#define memmove(dst, src, len) __memmove(dst, src, len)
#define memset(s, c, n) __memset(s, c, n)
#ifndef __NO_FORTIFY
#define __NO_FORTIFY /* FORTIFY_SOURCE uses __builtin_memcpy, etc. */
#endif
#endif
#endif
......@@ -13,7 +13,15 @@
#include <asm/fpstate.h>
#include <asm/page.h>
#ifdef CONFIG_KASAN
/*
* KASan uses a lot of extra stack space so the thread size order needs to
* be increased.
*/
#define THREAD_SIZE_ORDER 2
#else
#define THREAD_SIZE_ORDER 1
#endif
#define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)
#define THREAD_START_SP (THREAD_SIZE - 8)
......
......@@ -85,7 +85,7 @@
*/
.macro uaccess_entry, tsk, tmp0, tmp1, tmp2, disable
ldr \tmp1, [\tsk, #TI_ADDR_LIMIT]
mov \tmp2, #TASK_SIZE
ldr \tmp2, =TASK_SIZE
str \tmp2, [\tsk, #TI_ADDR_LIMIT]
DACR( mrc p15, 0, \tmp0, c3, c0, 0)
DACR( str \tmp0, [sp, #SVC_DACR])
......
......@@ -21,6 +21,9 @@ obj-y := elf.o entry-common.o irq.o opcodes.o \
setup.o signal.o sigreturn_codes.o \
stacktrace.o sys_arm.o time.o traps.o
KASAN_SANITIZE_stacktrace.o := n
KASAN_SANITIZE_traps.o := n
ifneq ($(CONFIG_ARM_UNWIND),y)
obj-$(CONFIG_FRAME_POINTER) += return_address.o
endif
......
......@@ -2,11 +2,11 @@
void convert_to_tag_list(struct tag *tags);
#ifdef CONFIG_ATAGS
const struct machine_desc *setup_machine_tags(phys_addr_t __atags_pointer,
const struct machine_desc *setup_machine_tags(void *__atags_vaddr,
unsigned int machine_nr);
#else
static inline const struct machine_desc * __init __noreturn
setup_machine_tags(phys_addr_t __atags_pointer, unsigned int machine_nr)
setup_machine_tags(void *__atags_vaddr, unsigned int machine_nr)
{
early_print("no ATAGS support: can't continue\n");
while (true);
......
......@@ -174,7 +174,7 @@ static void __init squash_mem_tags(struct tag *tag)
}
const struct machine_desc * __init
setup_machine_tags(phys_addr_t __atags_pointer, unsigned int machine_nr)
setup_machine_tags(void *atags_vaddr, unsigned int machine_nr)
{
struct tag *tags = (struct tag *)&default_tags;
const struct machine_desc *mdesc = NULL, *p;
......@@ -195,8 +195,8 @@ setup_machine_tags(phys_addr_t __atags_pointer, unsigned int machine_nr)
if (!mdesc)
return NULL;
if (__atags_pointer)
tags = phys_to_virt(__atags_pointer);
if (atags_vaddr)
tags = atags_vaddr;
else if (mdesc->atag_offset)
tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);
......
......@@ -203,12 +203,12 @@ static const void * __init arch_get_next_mach(const char *const **match)
/**
* setup_machine_fdt - Machine setup when an dtb was passed to the kernel
* @dt_phys: physical address of dt blob
* @dt_virt: virtual address of dt blob
*
* If a dtb was passed to the kernel in r2, then use it to choose the
* correct machine_desc and to setup the system.
*/
const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
const struct machine_desc * __init setup_machine_fdt(void *dt_virt)
{
const struct machine_desc *mdesc, *mdesc_best = NULL;
......@@ -221,7 +221,7 @@ const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
mdesc_best = &__mach_desc_GENERIC_DT;
#endif
if (!dt_phys || !early_init_dt_verify(phys_to_virt(dt_phys)))
if (!dt_virt || !early_init_dt_verify(dt_virt))
return NULL;
mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);
......
......@@ -252,31 +252,10 @@ __und_svc:
#else
svc_entry
#endif
@
@ call emulation code, which returns using r9 if it has emulated
@ the instruction, or the more conventional lr if we are to treat
@ this as a real undefined instruction
@
@ r0 - instruction
@
#ifndef CONFIG_THUMB2_KERNEL
ldr r0, [r4, #-4]
#else
mov r1, #2
ldrh r0, [r4, #-2] @ Thumb instruction at LR - 2
cmp r0, #0xe800 @ 32-bit instruction if xx >= 0
blo __und_svc_fault
ldrh r9, [r4] @ bottom 16 bits
add r4, r4, #2
str r4, [sp, #S_PC]
orr r0, r9, r0, lsl #16
#endif
badr r9, __und_svc_finish
mov r2, r4
bl call_fpe
mov r1, #4 @ PC correction to apply
__und_svc_fault:
THUMB( tst r5, #PSR_T_BIT ) @ exception taken in Thumb mode?
THUMB( movne r1, #2 ) @ if so, fix up PC correction
mov r0, sp @ struct pt_regs *regs
bl __und_fault
......@@ -427,7 +406,8 @@ ENDPROC(__fiq_abt)
@ if it was interrupted in a critical region. Here we
@ perform a quick test inline since it should be false
@ 99.9999% of the time. The rest is done out of line.
cmp r4, #TASK_SIZE
ldr r0, =TASK_SIZE
cmp r4, r0
blhs kuser_cmpxchg64_fixup
#endif
#endif
......
......@@ -50,7 +50,8 @@ __ret_fast_syscall:
UNWIND(.cantunwind )
disable_irq_notrace @ disable interrupts
ldr r2, [tsk, #TI_ADDR_LIMIT]
cmp r2, #TASK_SIZE
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing
tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK
......@@ -87,7 +88,8 @@ __ret_fast_syscall:
#endif
disable_irq_notrace @ disable interrupts
ldr r2, [tsk, #TI_ADDR_LIMIT]
cmp r2, #TASK_SIZE
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS] @ re-check for syscall tracing
tst r1, #_TIF_SYSCALL_WORK | _TIF_WORK_MASK
......@@ -128,7 +130,8 @@ ret_slow_syscall:
disable_irq_notrace @ disable interrupts
ENTRY(ret_to_user_from_irq)
ldr r2, [tsk, #TI_ADDR_LIMIT]
cmp r2, #TASK_SIZE
ldr r1, =TASK_SIZE
cmp r2, r1
blne addr_limit_check_failed
ldr r1, [tsk, #TI_FLAGS]
tst r1, #_TIF_WORK_MASK
......
......@@ -95,7 +95,7 @@ __mmap_switched:
THUMB( ldmia r4!, {r0, r1, r2, r3} )
THUMB( mov sp, r3 )
sub r2, r2, r1
bl memcpy @ copy .data to RAM
bl __memcpy @ copy .data to RAM
#endif
ARM( ldmia r4!, {r0, r1, sp} )
......@@ -103,7 +103,7 @@ __mmap_switched:
THUMB( mov sp, r3 )
sub r2, r1, r0
mov r1, #0
bl memset @ clear .bss
bl __memset @ clear .bss
ldmia r4, {r0, r1, r2, r3}
str r9, [r0] @ Save processor ID
......@@ -111,6 +111,9 @@ __mmap_switched:
str r8, [r2] @ Save atags pointer
cmp r3, #0
strne r10, [r3] @ Save control register values
#ifdef CONFIG_KASAN
bl kasan_early_init
#endif
mov lr, #0
b start_kernel
ENDPROC(__mmap_switched)
......
......@@ -274,11 +274,10 @@ __create_page_tables:
* We map 2 sections in case the ATAGs/DTB crosses a section boundary.
*/
mov r0, r2, lsr #SECTION_SHIFT
movs r0, r0, lsl #SECTION_SHIFT
subne r3, r0, r8
addne r3, r3, #PAGE_OFFSET
addne r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER)
orrne r6, r7, r0
cmp r2, #0
ldrne r3, =FDT_FIXED_BASE >> (SECTION_SHIFT - PMD_ORDER)
addne r3, r3, r4
orrne r6, r7, r0, lsl #SECTION_SHIFT
strne r6, [r3], #1 << PMD_ORDER
addne r6, r6, #1 << SECTION_SHIFT
strne r6, [r3]
......
......@@ -228,12 +228,6 @@ ENTRY(__hyp_soft_restart)
ret lr
ENDPROC(__hyp_soft_restart)
#ifndef ZIMAGE
.align 2
.L__boot_cpu_mode_offset:
.long __boot_cpu_mode - .
#endif
.align 5
ENTRY(__hyp_stub_vectors)
__hyp_stub_reset: W(b) .
......
......@@ -16,6 +16,7 @@
#include <asm/thread_info.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
#include "iwmmxt.h"
#if defined(CONFIG_CPU_PJ4) || defined(CONFIG_CPU_PJ4B)
#define PJ4(code...) code
......@@ -113,33 +114,33 @@ concan_save:
concan_dump:
wstrw wCSSF, [r1, #MMX_WCSSF]
wstrw wCASF, [r1, #MMX_WCASF]
wstrw wCGR0, [r1, #MMX_WCGR0]
wstrw wCGR1, [r1, #MMX_WCGR1]
wstrw wCGR2, [r1, #MMX_WCGR2]
wstrw wCGR3, [r1, #MMX_WCGR3]
wstrw wCSSF, r1, MMX_WCSSF
wstrw wCASF, r1, MMX_WCASF
wstrw wCGR0, r1, MMX_WCGR0
wstrw wCGR1, r1, MMX_WCGR1
wstrw wCGR2, r1, MMX_WCGR2
wstrw wCGR3, r1, MMX_WCGR3
1: @ MUP? wRn
tst r2, #0x2
beq 2f
wstrd wR0, [r1, #MMX_WR0]
wstrd wR1, [r1, #MMX_WR1]
wstrd wR2, [r1, #MMX_WR2]
wstrd wR3, [r1, #MMX_WR3]
wstrd wR4, [r1, #MMX_WR4]
wstrd wR5, [r1, #MMX_WR5]
wstrd wR6, [r1, #MMX_WR6]
wstrd wR7, [r1, #MMX_WR7]
wstrd wR8, [r1, #MMX_WR8]
wstrd wR9, [r1, #MMX_WR9]
wstrd wR10, [r1, #MMX_WR10]
wstrd wR11, [r1, #MMX_WR11]
wstrd wR12, [r1, #MMX_WR12]
wstrd wR13, [r1, #MMX_WR13]
wstrd wR14, [r1, #MMX_WR14]
wstrd wR15, [r1, #MMX_WR15]
wstrd wR0, r1, MMX_WR0
wstrd wR1, r1, MMX_WR1
wstrd wR2, r1, MMX_WR2
wstrd wR3, r1, MMX_WR3
wstrd wR4, r1, MMX_WR4
wstrd wR5, r1, MMX_WR5
wstrd wR6, r1, MMX_WR6
wstrd wR7, r1, MMX_WR7
wstrd wR8, r1, MMX_WR8
wstrd wR9, r1, MMX_WR9
wstrd wR10, r1, MMX_WR10
wstrd wR11, r1, MMX_WR11
wstrd wR12, r1, MMX_WR12
wstrd wR13, r1, MMX_WR13
wstrd wR14, r1, MMX_WR14
wstrd wR15, r1, MMX_WR15
2: teq r0, #0 @ anything to load?
reteq lr @ if not, return
......@@ -147,30 +148,30 @@ concan_dump:
concan_load:
@ Load wRn
wldrd wR0, [r0, #MMX_WR0]
wldrd wR1, [r0, #MMX_WR1]
wldrd wR2, [r0, #MMX_WR2]
wldrd wR3, [r0, #MMX_WR3]
wldrd wR4, [r0, #MMX_WR4]
wldrd wR5, [r0, #MMX_WR5]
wldrd wR6, [r0, #MMX_WR6]
wldrd wR7, [r0, #MMX_WR7]
wldrd wR8, [r0, #MMX_WR8]
wldrd wR9, [r0, #MMX_WR9]
wldrd wR10, [r0, #MMX_WR10]
wldrd wR11, [r0, #MMX_WR11]
wldrd wR12, [r0, #MMX_WR12]
wldrd wR13, [r0, #MMX_WR13]
wldrd wR14, [r0, #MMX_WR14]
wldrd wR15, [r0, #MMX_WR15]
wldrd wR0, r0, MMX_WR0
wldrd wR1, r0, MMX_WR1
wldrd wR2, r0, MMX_WR2
wldrd wR3, r0, MMX_WR3
wldrd wR4, r0, MMX_WR4
wldrd wR5, r0, MMX_WR5
wldrd wR6, r0, MMX_WR6
wldrd wR7, r0, MMX_WR7
wldrd wR8, r0, MMX_WR8
wldrd wR9, r0, MMX_WR9
wldrd wR10, r0, MMX_WR10
wldrd wR11, r0, MMX_WR11
wldrd wR12, r0, MMX_WR12
wldrd wR13, r0, MMX_WR13
wldrd wR14, r0, MMX_WR14
wldrd wR15, r0, MMX_WR15
@ Load wCx
wldrw wCSSF, [r0, #MMX_WCSSF]
wldrw wCASF, [r0, #MMX_WCASF]
wldrw wCGR0, [r0, #MMX_WCGR0]
wldrw wCGR1, [r0, #MMX_WCGR1]
wldrw wCGR2, [r0, #MMX_WCGR2]
wldrw wCGR3, [r0, #MMX_WCGR3]
wldrw wCSSF, r0, MMX_WCSSF
wldrw wCASF, r0, MMX_WCASF
wldrw wCGR0, r0, MMX_WCGR0
wldrw wCGR1, r0, MMX_WCGR1
wldrw wCGR2, r0, MMX_WCGR2
wldrw wCGR3, r0, MMX_WCGR3
@ clear CUP/MUP (only if r1 != 0)
teq r1, #0
......
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __IWMMXT_H__
#define __IWMMXT_H__
.irp b, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
.set .LwR\b, \b
.set .Lr\b, \b
.endr
.set .LwCSSF, 0x2
.set .LwCASF, 0x3
.set .LwCGR0, 0x8
.set .LwCGR1, 0x9
.set .LwCGR2, 0xa
.set .LwCGR3, 0xb
.macro wldrd, reg:req, base:req, offset:req
.inst 0xedd00100 | (.L\reg << 12) | (.L\base << 16) | (\offset >> 2)
.endm
.macro wldrw, reg:req, base:req, offset:req
.inst 0xfd900100 | (.L\reg << 12) | (.L\base << 16) | (\offset >> 2)
.endm
.macro wstrd, reg:req, base:req, offset:req
.inst 0xedc00100 | (.L\reg << 12) | (.L\base << 16) | (\offset >> 2)
.endm
.macro wstrw, reg:req, base:req, offset:req
.inst 0xfd800100 | (.L\reg << 12) | (.L\base << 16) | (\offset >> 2)
.endm
#ifdef __clang__
#define wCon c1
.macro tmrc, dest:req, control:req
mrc p1, 0, \dest, \control, c0, 0
.endm
.macro tmcr, control:req, src:req
mcr p1, 0, \src, \control, c0, 0
.endm
#endif
#endif
......@@ -18,6 +18,7 @@
#include <linux/of_platform.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/libfdt.h>
#include <linux/of_fdt.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
......@@ -58,6 +59,7 @@
#include <asm/unwind.h>
#include <asm/memblock.h>
#include <asm/virt.h>
#include <asm/kasan.h>
#include "atags.h"
......@@ -763,7 +765,7 @@ int __init arm_add_memory(u64 start, u64 size)
#ifndef CONFIG_PHYS_ADDR_T_64BIT
if (aligned_start > ULONG_MAX) {
pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
(long long)start);
start);
return -EINVAL;
}
......@@ -1081,19 +1083,27 @@ void __init hyp_mode_check(void)
void __init setup_arch(char **cmdline_p)
{
const struct machine_desc *mdesc;
const struct machine_desc *mdesc = NULL;
void *atags_vaddr = NULL;
if (__atags_pointer)
atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
setup_processor();
mdesc = setup_machine_fdt(__atags_pointer);
if (atags_vaddr) {
mdesc = setup_machine_fdt(atags_vaddr);
if (mdesc)
memblock_reserve(__atags_pointer,
fdt_totalsize(atags_vaddr));
}
if (!mdesc)
mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
if (!mdesc) {
early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
__atags_pointer);
if (__atags_pointer)
early_print(" r2[]=%*ph\n", 16,
phys_to_virt(__atags_pointer));
early_print(" r2[]=%*ph\n", 16, atags_vaddr);
dump_machine_table();
}
......@@ -1126,7 +1136,7 @@ void __init setup_arch(char **cmdline_p)
efi_init();
/*
* Make sure the calculation for lowmem/highmem is set appropriately
* before reserving/allocating any mmeory
* before reserving/allocating any memory
*/
adjust_lowmem_bounds();
arm_memblock_init(mdesc);
......@@ -1136,6 +1146,7 @@ void __init setup_arch(char **cmdline_p)
early_ioremap_reset();
paging_init(mdesc);
kasan_init();
request_standard_resources(mdesc);
if (mdesc->restart)
......
......@@ -524,14 +524,13 @@ void __init smp_prepare_cpus(unsigned int max_cpus)
}
static const char *ipi_types[NR_IPI] __tracepoint_string = {
#define S(x,s) [x] = s
S(IPI_WAKEUP, "CPU wakeup interrupts"),
S(IPI_TIMER, "Timer broadcast interrupts"),
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
S(IPI_CALL_FUNC, "Function call interrupts"),
S(IPI_CPU_STOP, "CPU stop interrupts"),
S(IPI_IRQ_WORK, "IRQ work interrupts"),
S(IPI_COMPLETION, "completion interrupts"),
[IPI_WAKEUP] = "CPU wakeup interrupts",
[IPI_TIMER] = "Timer broadcast interrupts",
[IPI_RESCHEDULE] = "Rescheduling interrupts",
[IPI_CALL_FUNC] = "Function call interrupts",
[IPI_CPU_STOP] = "CPU stop interrupts",
[IPI_IRQ_WORK] = "IRQ work interrupts",
[IPI_COMPLETION] = "completion interrupts",
};
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
......
......@@ -18,9 +18,6 @@
#warning Your compiler does not have EABI support.
#warning ARM unwind is known to compile only with EABI compilers.
#warning Change compiler or disable ARM_UNWIND option.
#elif (__GNUC__ == 4 && __GNUC_MINOR__ <= 2) && !defined(__clang__)
#warning Your compiler is too buggy; it is known to not compile ARM unwind support.
#warning Change compiler or disable ARM_UNWIND option.
#endif
#endif /* __CHECKER__ */
......@@ -236,7 +233,11 @@ static int unwind_pop_register(struct unwind_ctrl_block *ctrl,
if (*vsp >= (unsigned long *)ctrl->sp_high)
return -URC_FAILURE;
ctrl->vrs[reg] = *(*vsp)++;
/* Use READ_ONCE_NOCHECK here to avoid this memory access
* from being tracked by KASAN.
*/
ctrl->vrs[reg] = READ_ONCE_NOCHECK(*(*vsp));
(*vsp)++;
return URC_OK;
}
......
......@@ -58,10 +58,12 @@
/* Prototype: void *memcpy(void *dest, const void *src, size_t n); */
ENTRY(__memcpy)
ENTRY(mmiocpy)
ENTRY(memcpy)
WEAK(memcpy)
#include "copy_template.S"
ENDPROC(memcpy)
ENDPROC(mmiocpy)
ENDPROC(__memcpy)
......@@ -24,12 +24,13 @@
* occurring in the opposite direction.
*/
ENTRY(memmove)
ENTRY(__memmove)
WEAK(memmove)
UNWIND( .fnstart )
subs ip, r0, r1
cmphi r2, ip
bls memcpy
bls __memcpy
stmfd sp!, {r0, r4, lr}
UNWIND( .fnend )
......@@ -222,3 +223,4 @@ ENTRY(memmove)
18: backward_copy_shift push=24 pull=8
ENDPROC(memmove)
ENDPROC(__memmove)
......@@ -13,8 +13,9 @@
.text
.align 5
ENTRY(__memset)
ENTRY(mmioset)
ENTRY(memset)
WEAK(memset)
UNWIND( .fnstart )
ands r3, r0, #3 @ 1 unaligned?
mov ip, r0 @ preserve r0 as return value
......@@ -132,6 +133,7 @@ UNWIND( .fnstart )
UNWIND( .fnend )
ENDPROC(memset)
ENDPROC(mmioset)
ENDPROC(__memset)
ENTRY(__memset32)
UNWIND( .fnstart )
......
......@@ -743,6 +743,7 @@ config SWP_EMULATE
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
depends on ARCH_SUPPORTS_BIG_ENDIAN
depends on !LD_IS_LLD
help
Say Y if you plan on running a kernel in big-endian mode.
Note that your board must be properly built and your board
......
......@@ -7,6 +7,7 @@ obj-y := extable.o fault.o init.o iomap.o
obj-y += dma-mapping$(MMUEXT).o
obj-$(CONFIG_MMU) += fault-armv.o flush.o idmap.o ioremap.o \
mmap.o pgd.o mmu.o pageattr.o
KASAN_SANITIZE_mmu.o := n
ifneq ($(CONFIG_MMU),y)
obj-y += nommu.o
......@@ -16,6 +17,7 @@ endif
obj-$(CONFIG_ARM_PTDUMP_CORE) += dump.o
obj-$(CONFIG_ARM_PTDUMP_DEBUGFS) += ptdump_debugfs.o
obj-$(CONFIG_MODULES) += proc-syms.o
KASAN_SANITIZE_physaddr.o := n
obj-$(CONFIG_DEBUG_VIRTUAL) += physaddr.o
obj-$(CONFIG_ALIGNMENT_TRAP) += alignment.o
......@@ -111,3 +113,6 @@ obj-$(CONFIG_CACHE_L2X0_PMU) += cache-l2x0-pmu.o
obj-$(CONFIG_CACHE_XSC3L2) += cache-xsc3l2.o
obj-$(CONFIG_CACHE_TAUROS2) += cache-tauros2.o
obj-$(CONFIG_CACHE_UNIPHIER) += cache-uniphier.o
KASAN_SANITIZE_kasan_init.o := n
obj-$(CONFIG_KASAN) += kasan_init.o
......@@ -223,7 +223,6 @@ void __init arm_memblock_init(const struct machine_desc *mdesc)
if (mdesc->reserve)
mdesc->reserve();
early_init_fdt_reserve_self();
early_init_fdt_scan_reserved_mem();
/* reserve memory for DMA contiguous allocations */
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* This file contains kasan initialization code for ARM.
*
* Copyright (c) 2018 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
* Author: Linus Walleij <linus.walleij@linaro.org>
*/
#define pr_fmt(fmt) "kasan: " fmt
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/sched/task.h>
#include <linux/start_kernel.h>
#include <linux/pgtable.h>
#include <asm/cputype.h>
#include <asm/highmem.h>
#include <asm/mach/map.h>
#include <asm/memory.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/procinfo.h>
#include <asm/proc-fns.h>
#include "mm.h"
static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
static __init void *kasan_alloc_block(size_t size)
{
return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
MEMBLOCK_ALLOC_KASAN, NUMA_NO_NODE);
}
static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
unsigned long end, bool early)
{
unsigned long next;
pte_t *ptep = pte_offset_kernel(pmdp, addr);
do {
pte_t entry;
void *p;
next = addr + PAGE_SIZE;
if (!early) {
if (!pte_none(READ_ONCE(*ptep)))
continue;
p = kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow page for address 0x%lx\n",
__func__, addr);
return;
}
memset(p, KASAN_SHADOW_INIT, PAGE_SIZE);
entry = pfn_pte(virt_to_pfn(p),
__pgprot(pgprot_val(PAGE_KERNEL)));
} else if (pte_none(READ_ONCE(*ptep))) {
/*
* The early shadow memory is mapping all KASan
* operations to one and the same page in memory,
* "kasan_early_shadow_page" so that the instrumentation
* will work on a scratch area until we can set up the
* proper KASan shadow memory.
*/
entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page),
__pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN));
} else {
/*
* Early shadow mappings are PMD_SIZE aligned, so if the
* first entry is already set, they must all be set.
*/
return;
}
set_pte_at(&init_mm, addr, ptep, entry);
} while (ptep++, addr = next, addr != end);
}
/*
* The pmd (page middle directory) is only used on LPAE
*/
static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
unsigned long end, bool early)
{
unsigned long next;
pmd_t *pmdp = pmd_offset(pudp, addr);
do {
if (pmd_none(*pmdp)) {
/*
* We attempt to allocate a shadow block for the PMDs
* used by the PTEs for this address if it isn't already
* allocated.
*/
void *p = early ? kasan_early_shadow_pte :
kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow block for address 0x%lx\n",
__func__, addr);
return;
}
pmd_populate_kernel(&init_mm, pmdp, p);
flush_pmd_entry(pmdp);
}
next = pmd_addr_end(addr, end);
kasan_pte_populate(pmdp, addr, next, early);
} while (pmdp++, addr = next, addr != end);
}
static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
bool early)
{
unsigned long next;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pgdp = pgd_offset_k(addr);
do {
/*
* Allocate and populate the shadow block of p4d folded into
* pud folded into pmd if it doesn't already exist
*/
if (!early && pgd_none(*pgdp)) {
void *p = kasan_alloc_block(PAGE_SIZE);
if (!p) {
panic("%s failed to allocate shadow block for address 0x%lx\n",
__func__, addr);
return;
}
pgd_populate(&init_mm, pgdp, p);
}
next = pgd_addr_end(addr, end);
/*
* We just immediately jump over the p4d and pud page
* directories since we believe ARM32 will never gain four
* nor five level page tables.
*/
p4dp = p4d_offset(pgdp, addr);
pudp = pud_offset(p4dp, addr);
kasan_pmd_populate(pudp, addr, next, early);
} while (pgdp++, addr = next, addr != end);
}
extern struct proc_info_list *lookup_processor_type(unsigned int);
void __init kasan_early_init(void)
{
struct proc_info_list *list;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc-*.S
*/
list = lookup_processor_type(read_cpuid_id());
if (list) {
#ifdef MULTI_CPU
processor = *list->proc;
#endif
}
BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET);
/*
* We walk the page table and set all of the shadow memory to point
* to the scratch page.
*/
kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true);
}
static void __init clear_pgds(unsigned long start,
unsigned long end)
{
for (; start && start < end; start += PMD_SIZE)
pmd_clear(pmd_off_k(start));
}
static int __init create_mapping(void *start, void *end)
{
void *shadow_start, *shadow_end;
shadow_start = kasan_mem_to_shadow(start);
shadow_end = kasan_mem_to_shadow(end);
pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n",
start, end, shadow_start, shadow_end);
kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK,
PAGE_ALIGN((unsigned long)shadow_end), false);
return 0;
}
void __init kasan_init(void)
{
phys_addr_t pa_start, pa_end;
u64 i;
/*
* We are going to perform proper setup of shadow memory.
*
* At first we should unmap early shadow (clear_pgds() call bellow).
* However, instrumented code can't execute without shadow memory.
*
* To keep the early shadow memory MMU tables around while setting up
* the proper shadow memory, we copy swapper_pg_dir (the initial page
* table) to tmp_pgd_table and use that to keep the early shadow memory
* mapped until the full shadow setup is finished. Then we swap back
* to the proper swapper_pg_dir.
*/
memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table));
#ifdef CONFIG_ARM_LPAE
/* We need to be in the same PGD or this won't work */
BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) !=
pgd_index(KASAN_SHADOW_END));
memcpy(tmp_pmd_table,
pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)),
sizeof(tmp_pmd_table));
set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)],
__pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
#endif
cpu_switch_mm(tmp_pgd_table, &init_mm);
local_flush_tlb_all();
clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START),
kasan_mem_to_shadow((void *)-1UL) + 1);
for_each_mem_range(i, &pa_start, &pa_end) {
void *start = __va(pa_start);
void *end = __va(pa_end);
/* Do not attempt to shadow highmem */
if (pa_start >= arm_lowmem_limit) {
pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end);
continue;
}
if (pa_end > arm_lowmem_limit) {
pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n",
&pa_start, &pa_end, &arm_lowmem_limit);
end = __va(arm_lowmem_limit);
}
if (start >= end) {
pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n",
&pa_start, &pa_end, start, end);
continue;
}
create_mapping(start, end);
}
/*
* 1. The module global variables are in MODULES_VADDR ~ MODULES_END,
* so we need to map this area.
* 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR
* ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't
* use kasan_populate_zero_shadow.
*/
create_mapping((void *)MODULES_VADDR, (void *)(PKMAP_BASE + PMD_SIZE));
/*
* KAsan may reuse the contents of kasan_early_shadow_pte directly, so
* we should make sure that it maps the zero page read-only.
*/
for (i = 0; i < PTRS_PER_PTE; i++)
set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE,
&kasan_early_shadow_pte[i],
pfn_pte(virt_to_pfn(kasan_early_shadow_page),
__pgprot(pgprot_val(PAGE_KERNEL)
| L_PTE_RDONLY)));
cpu_switch_mm(swapper_pg_dir, &init_mm);
local_flush_tlb_all();
memset(kasan_early_shadow_page, 0, PAGE_SIZE);
pr_info("Kernel address sanitizer initialized\n");
init_task.kasan_depth = 0;
}
......@@ -29,6 +29,7 @@
#include <asm/procinfo.h>
#include <asm/memory.h>
#include <asm/pgalloc.h>
#include <asm/kasan_def.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
......@@ -39,6 +40,8 @@
#include "mm.h"
#include "tcm.h"
extern unsigned long __atags_pointer;
/*
* empty_zero_page is a special page that is used for
* zero-initialized data and COW.
......@@ -946,7 +949,7 @@ static void __init create_mapping(struct map_desc *md)
return;
}
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
if (md->type == MT_DEVICE &&
md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
(md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
......@@ -1253,8 +1256,25 @@ static inline void prepare_page_table(void)
/*
* Clear out all the mappings below the kernel image.
*/
#ifdef CONFIG_KASAN
/*
* KASan's shadow memory inserts itself between the TASK_SIZE
* and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
*/
for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
/*
* Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
* equal to MODULES_VADDR and then we exit the pmd clearing. If we
* are using a thumb-compiled kernel, there there will be 8MB more
* to clear as KASan always offset to 16 MB below MODULES_VADDR.
*/
for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
#else
for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
#endif
#ifdef CONFIG_XIP_KERNEL
/* The XIP kernel is mapped in the module area -- skip over it */
......@@ -1333,6 +1353,15 @@ static void __init devicemaps_init(const struct machine_desc *mdesc)
for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
if (__atags_pointer) {
/* create a read-only mapping of the device tree */
map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
map.virtual = FDT_FIXED_BASE;
map.length = FDT_FIXED_SIZE;
map.type = MT_ROM;
create_mapping(&map);
}
/*
* Map the kernel if it is XIP.
* It is always first in the modulearea.
......@@ -1489,8 +1518,7 @@ static void __init map_lowmem(void)
}
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
typedef void pgtables_remap(long long offset, unsigned long pgd);
pgtables_remap lpae_pgtables_remap_asm;
/*
......@@ -1503,7 +1531,6 @@ static void __init early_paging_init(const struct machine_desc *mdesc)
unsigned long pa_pgd;
unsigned int cr, ttbcr;
long long offset;
void *boot_data;
if (!mdesc->pv_fixup)
return;
......@@ -1520,7 +1547,6 @@ static void __init early_paging_init(const struct machine_desc *mdesc)
*/
lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
pa_pgd = __pa(swapper_pg_dir);
boot_data = __va(__atags_pointer);
barrier();
pr_info("Switching physical address space to 0x%08llx\n",
......@@ -1556,7 +1582,7 @@ static void __init early_paging_init(const struct machine_desc *mdesc)
* needs to be assembly. It's fairly simple, as we're using the
* temporary tables setup by the initial assembly code.
*/
lpae_pgtables_remap(offset, pa_pgd, boot_data);
lpae_pgtables_remap(offset, pa_pgd);
/* Re-enable the caches and cacheable TLB walks */
asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
......
......@@ -66,7 +66,21 @@ pgd_t *pgd_alloc(struct mm_struct *mm)
new_pmd = pmd_alloc(mm, new_pud, 0);
if (!new_pmd)
goto no_pmd;
#endif
#ifdef CONFIG_KASAN
/*
* Copy PMD table for KASAN shadow mappings.
*/
init_pgd = pgd_offset_k(TASK_SIZE);
init_p4d = p4d_offset(init_pgd, TASK_SIZE);
init_pud = pud_offset(init_p4d, TASK_SIZE);
init_pmd = pmd_offset(init_pud, TASK_SIZE);
new_pmd = pmd_offset(new_pud, TASK_SIZE);
memcpy(new_pmd, init_pmd,
(pmd_index(MODULES_VADDR) - pmd_index(TASK_SIZE))
* sizeof(pmd_t));
clean_dcache_area(new_pmd, PTRS_PER_PMD * sizeof(pmd_t));
#endif /* CONFIG_KASAN */
#endif /* CONFIG_LPAE */
if (!vectors_high()) {
/*
......
......@@ -39,8 +39,8 @@ ENTRY(lpae_pgtables_remap_asm)
/* Update level 2 entries for the boot data */
add r7, r2, #0x1000
add r7, r7, r3, lsr #SECTION_SHIFT - L2_ORDER
bic r7, r7, #(1 << L2_ORDER) - 1
movw r3, #FDT_FIXED_BASE >> (SECTION_SHIFT - L2_ORDER)
add r7, r7, r3
ldrd r4, r5, [r7]
adds r4, r4, r0
adc r5, r5, r1
......
......@@ -42,6 +42,8 @@ GCOV_PROFILE := n
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
KCOV_INSTRUMENT := n
KASAN_SANITIZE := n
# Force dependency
$(obj)/vdso.o : $(obj)/vdso.so
......
......@@ -37,20 +37,3 @@ ENDPROC(vfp_null_entry)
.align 2
.LCvfp:
.word vfp_vector
@ This code is called if the VFP does not exist. It needs to flag the
@ failure to the VFP initialisation code.
__INIT
ENTRY(vfp_testing_entry)
dec_preempt_count_ti r10, r4
ldr r0, VFP_arch_address
str r0, [r0] @ set to non-zero value
ret r9 @ we have handled the fault
ENDPROC(vfp_testing_entry)
.align 2
VFP_arch_address:
.word VFP_arch
__FINIT
......@@ -79,11 +79,6 @@ ENTRY(vfp_support_entry)
DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
.fpu vfpv2
ldr r3, [sp, #S_PSR] @ Neither lazy restore nor FP exceptions
and r3, r3, #MODE_MASK @ are supported in kernel mode
teq r3, #USR_MODE
bne vfp_kmode_exception @ Returns through lr
VFPFMRX r1, FPEXC @ Is the VFP enabled?
DBGSTR1 "fpexc %08x", r1
tst r1, #FPEXC_EN
......
......@@ -23,6 +23,7 @@
#include <asm/cputype.h>
#include <asm/system_info.h>
#include <asm/thread_notify.h>
#include <asm/traps.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
......@@ -31,7 +32,6 @@
/*
* Our undef handlers (in entry.S)
*/
asmlinkage void vfp_testing_entry(void);
asmlinkage void vfp_support_entry(void);
asmlinkage void vfp_null_entry(void);
......@@ -42,7 +42,7 @@ asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
* Used in startup: set to non-zero if VFP checks fail
* After startup, holds VFP architecture
*/
unsigned int VFP_arch;
static unsigned int __initdata VFP_arch;
/*
* The pointer to the vfpstate structure of the thread which currently
......@@ -436,7 +436,7 @@ static void vfp_enable(void *unused)
* present on all CPUs within a SMP complex. Needs to be called prior to
* vfp_init().
*/
void vfp_disable(void)
void __init vfp_disable(void)
{
if (VFP_arch) {
pr_debug("%s: should be called prior to vfp_init\n", __func__);
......@@ -642,7 +642,9 @@ static int vfp_starting_cpu(unsigned int unused)
return 0;
}
void vfp_kmode_exception(void)
#ifdef CONFIG_KERNEL_MODE_NEON
static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
{
/*
* If we reach this point, a floating point exception has been raised
......@@ -660,9 +662,51 @@ void vfp_kmode_exception(void)
pr_crit("BUG: unsupported FP instruction in kernel mode\n");
else
pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
return 1;
}
#ifdef CONFIG_KERNEL_MODE_NEON
static struct undef_hook vfp_kmode_exception_hook[] = {{
.instr_mask = 0xfe000000,
.instr_val = 0xf2000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT,
.cpsr_val = SVC_MODE,
.fn = vfp_kmode_exception,
}, {
.instr_mask = 0xff100000,
.instr_val = 0xf4000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT,
.cpsr_val = SVC_MODE,
.fn = vfp_kmode_exception,
}, {
.instr_mask = 0xef000000,
.instr_val = 0xef000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT,
.cpsr_val = SVC_MODE | PSR_T_BIT,
.fn = vfp_kmode_exception,
}, {
.instr_mask = 0xff100000,
.instr_val = 0xf9000000,
.cpsr_mask = MODE_MASK | PSR_T_BIT,
.cpsr_val = SVC_MODE | PSR_T_BIT,
.fn = vfp_kmode_exception,
}, {
.instr_mask = 0x0c000e00,
.instr_val = 0x0c000a00,
.cpsr_mask = MODE_MASK,
.cpsr_val = SVC_MODE,
.fn = vfp_kmode_exception,
}};
static int __init vfp_kmode_exception_hook_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
register_undef_hook(&vfp_kmode_exception_hook[i]);
return 0;
}
subsys_initcall(vfp_kmode_exception_hook_init);
/*
* Kernel-side NEON support functions
......@@ -708,6 +752,21 @@ EXPORT_SYMBOL(kernel_neon_end);
#endif /* CONFIG_KERNEL_MODE_NEON */
static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
{
VFP_arch = UINT_MAX; /* mark as not present */
regs->ARM_pc += 4;
return 0;
}
static struct undef_hook vfp_detect_hook __initdata = {
.instr_mask = 0x0c000e00,
.instr_val = 0x0c000a00,
.cpsr_mask = MODE_MASK,
.cpsr_val = SVC_MODE,
.fn = vfp_detect,
};
/*
* VFP support code initialisation.
*/
......@@ -728,10 +787,11 @@ static int __init vfp_init(void)
* The handler is already setup to just log calls, so
* we just need to read the VFPSID register.
*/
vfp_vector = vfp_testing_entry;
register_undef_hook(&vfp_detect_hook);
barrier();
vfpsid = fmrx(FPSID);
barrier();
unregister_undef_hook(&vfp_detect_hook);
vfp_vector = vfp_null_entry;
pr_info("VFP support v0.3: ");
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment