Commit a1b87d54 authored by Ard Biesheuvel's avatar Ard Biesheuvel Committed by Borislav Petkov (AMD)

x86/efistub: Avoid legacy decompressor when doing EFI boot

The bare metal decompressor code was never really intended to run in a
hosted environment such as the EFI boot services, and does a few things
that are becoming problematic in the context of EFI boot now that the
logo requirements are getting tighter: EFI executables will no longer be
allowed to consist of a single executable section that is mapped with
read, write and execute permissions if they are intended for use in a
context where Secure Boot is enabled (and where Microsoft's set of
certificates is used, i.e., every x86 PC built to run Windows).

To avoid stepping on reserved memory before having inspected the E820
tables, and to ensure the correct placement when running a kernel build
that is non-relocatable, the bare metal decompressor moves its own
executable image to the end of the allocation that was reserved for it,
in order to perform the decompression in place. This means the region in
question requires both write and execute permissions, which either need
to be given upfront (which EFI will no longer permit), or need to be
applied on demand using the existing page fault handling framework.

However, the physical placement of the kernel is usually randomized
anyway, and even if it isn't, a dedicated decompression output buffer
can be allocated anywhere in memory using EFI APIs when still running in
the boot services, given that EFI support already implies a relocatable
kernel. This means that decompression in place is never necessary, nor
is moving the compressed image from one end to the other.

Since EFI already maps all of memory 1:1, it is also unnecessary to
create new page tables or handle page faults when decompressing the
kernel. That means there is also no need to replace the special
exception handlers for SEV. Generally, there is little need to do
any of the things that the decompressor does beyond

- initialize SEV encryption, if needed,
- perform the 4/5 level paging switch, if needed,
- decompress the kernel
- relocate the kernel

So do all of this from the EFI stub code, and avoid the bare metal
decompressor altogether.
Signed-off-by: default avatarArd Biesheuvel <ardb@kernel.org>
Signed-off-by: default avatarBorislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-24-ardb@kernel.org
parent 31c77a50
...@@ -74,6 +74,11 @@ LDFLAGS_vmlinux += -z noexecstack ...@@ -74,6 +74,11 @@ LDFLAGS_vmlinux += -z noexecstack
ifeq ($(CONFIG_LD_IS_BFD),y) ifeq ($(CONFIG_LD_IS_BFD),y)
LDFLAGS_vmlinux += $(call ld-option,--no-warn-rwx-segments) LDFLAGS_vmlinux += $(call ld-option,--no-warn-rwx-segments)
endif endif
ifeq ($(CONFIG_EFI_STUB),y)
# ensure that the static EFI stub library will be pulled in, even if it is
# never referenced explicitly from the startup code
LDFLAGS_vmlinux += -u efi_pe_entry
endif
LDFLAGS_vmlinux += -T LDFLAGS_vmlinux += -T
hostprogs := mkpiggy hostprogs := mkpiggy
......
...@@ -269,10 +269,6 @@ SYM_FUNC_START_LOCAL(efi32_entry) ...@@ -269,10 +269,6 @@ SYM_FUNC_START_LOCAL(efi32_entry)
jmp startup_32 jmp startup_32
SYM_FUNC_END(efi32_entry) SYM_FUNC_END(efi32_entry)
#define ST32_boottime 60 // offsetof(efi_system_table_32_t, boottime)
#define BS32_handle_protocol 88 // offsetof(efi_boot_services_32_t, handle_protocol)
#define LI32_image_base 32 // offsetof(efi_loaded_image_32_t, image_base)
/* /*
* efi_status_t efi32_pe_entry(efi_handle_t image_handle, * efi_status_t efi32_pe_entry(efi_handle_t image_handle,
* efi_system_table_32_t *sys_table) * efi_system_table_32_t *sys_table)
...@@ -280,8 +276,6 @@ SYM_FUNC_END(efi32_entry) ...@@ -280,8 +276,6 @@ SYM_FUNC_END(efi32_entry)
SYM_FUNC_START(efi32_pe_entry) SYM_FUNC_START(efi32_pe_entry)
pushl %ebp pushl %ebp
movl %esp, %ebp movl %esp, %ebp
pushl %eax // dummy push to allocate loaded_image
pushl %ebx // save callee-save registers pushl %ebx // save callee-save registers
pushl %edi pushl %edi
...@@ -290,48 +284,8 @@ SYM_FUNC_START(efi32_pe_entry) ...@@ -290,48 +284,8 @@ SYM_FUNC_START(efi32_pe_entry)
movl $0x80000003, %eax // EFI_UNSUPPORTED movl $0x80000003, %eax // EFI_UNSUPPORTED
jnz 2f jnz 2f
call 1f
1: pop %ebx
/* Get the loaded image protocol pointer from the image handle */
leal -4(%ebp), %eax
pushl %eax // &loaded_image
leal (loaded_image_proto - 1b)(%ebx), %eax
pushl %eax // pass the GUID address
pushl 8(%ebp) // pass the image handle
/*
* Note the alignment of the stack frame.
* sys_table
* handle <-- 16-byte aligned on entry by ABI
* return address
* frame pointer
* loaded_image <-- local variable
* saved %ebx <-- 16-byte aligned here
* saved %edi
* &loaded_image
* &loaded_image_proto
* handle <-- 16-byte aligned for call to handle_protocol
*/
movl 12(%ebp), %eax // sys_table
movl ST32_boottime(%eax), %eax // sys_table->boottime
call *BS32_handle_protocol(%eax) // sys_table->boottime->handle_protocol
addl $12, %esp // restore argument space
testl %eax, %eax
jnz 2f
movl 8(%ebp), %ecx // image_handle movl 8(%ebp), %ecx // image_handle
movl 12(%ebp), %edx // sys_table movl 12(%ebp), %edx // sys_table
movl -4(%ebp), %esi // loaded_image
movl LI32_image_base(%esi), %esi // loaded_image->image_base
leal (startup_32 - 1b)(%ebx), %ebp // runtime address of startup_32
/*
* We need to set the image_offset variable here since startup_32() will
* use it before we get to the 64-bit efi_pe_entry() in C code.
*/
subl %esi, %ebp // calculate image_offset
movl %ebp, (image_offset - 1b)(%ebx) // save image_offset
xorl %esi, %esi xorl %esi, %esi
jmp efi32_entry // pass %ecx, %edx, %esi jmp efi32_entry // pass %ecx, %edx, %esi
// no other registers remain live // no other registers remain live
...@@ -350,15 +304,6 @@ SYM_FUNC_START_NOALIGN(efi64_stub_entry) ...@@ -350,15 +304,6 @@ SYM_FUNC_START_NOALIGN(efi64_stub_entry)
SYM_FUNC_END(efi64_stub_entry) SYM_FUNC_END(efi64_stub_entry)
#endif #endif
.section ".rodata"
/* EFI loaded image protocol GUID */
.balign 4
SYM_DATA_START_LOCAL(loaded_image_proto)
.long 0x5b1b31a1
.word 0x9562, 0x11d2
.byte 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
SYM_DATA_END(loaded_image_proto)
.data .data
.balign 8 .balign 8
SYM_DATA_START_LOCAL(efi32_boot_gdt) SYM_DATA_START_LOCAL(efi32_boot_gdt)
......
...@@ -84,19 +84,6 @@ SYM_FUNC_START(startup_32) ...@@ -84,19 +84,6 @@ SYM_FUNC_START(startup_32)
#ifdef CONFIG_RELOCATABLE #ifdef CONFIG_RELOCATABLE
leal startup_32@GOTOFF(%edx), %ebx leal startup_32@GOTOFF(%edx), %ebx
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32() will be at an
* offset to the start of the space allocated for the image. efi_pe_entry() will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
subl image_offset@GOTOFF(%edx), %ebx
#endif
movl BP_kernel_alignment(%esi), %eax movl BP_kernel_alignment(%esi), %eax
decl %eax decl %eax
addl %eax, %ebx addl %eax, %ebx
......
...@@ -146,19 +146,6 @@ SYM_FUNC_START(startup_32) ...@@ -146,19 +146,6 @@ SYM_FUNC_START(startup_32)
#ifdef CONFIG_RELOCATABLE #ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx movl %ebp, %ebx
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32 will be at an
* offset to the start of the space allocated for the image. efi_pe_entry will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
subl rva(image_offset)(%ebp), %ebx
#endif
movl BP_kernel_alignment(%esi), %eax movl BP_kernel_alignment(%esi), %eax
decl %eax decl %eax
addl %eax, %ebx addl %eax, %ebx
...@@ -335,20 +322,6 @@ SYM_CODE_START(startup_64) ...@@ -335,20 +322,6 @@ SYM_CODE_START(startup_64)
/* Start with the delta to where the kernel will run at. */ /* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE #ifdef CONFIG_RELOCATABLE
leaq startup_32(%rip) /* - $startup_32 */, %rbp leaq startup_32(%rip) /* - $startup_32 */, %rbp
#ifdef CONFIG_EFI_STUB
/*
* If we were loaded via the EFI LoadImage service, startup_32 will be at an
* offset to the start of the space allocated for the image. efi_pe_entry will
* set up image_offset to tell us where the image actually starts, so that we
* can use the full available buffer.
* image_offset = startup_32 - image_base
* Otherwise image_offset will be zero and has no effect on the calculations.
*/
movl image_offset(%rip), %eax
subq %rax, %rbp
#endif
movl BP_kernel_alignment(%rsi), %eax movl BP_kernel_alignment(%rsi), %eax
decl %eax decl %eax
addq %rax, %rbp addq %rax, %rbp
......
...@@ -90,6 +90,8 @@ static inline void efi_fpu_end(void) ...@@ -90,6 +90,8 @@ static inline void efi_fpu_end(void)
} }
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
#define EFI_X86_KERNEL_ALLOC_LIMIT (SZ_512M - 1)
#define arch_efi_call_virt_setup() \ #define arch_efi_call_virt_setup() \
({ \ ({ \
efi_fpu_begin(); \ efi_fpu_begin(); \
...@@ -103,8 +105,7 @@ static inline void efi_fpu_end(void) ...@@ -103,8 +105,7 @@ static inline void efi_fpu_end(void)
}) })
#else /* !CONFIG_X86_32 */ #else /* !CONFIG_X86_32 */
#define EFI_X86_KERNEL_ALLOC_LIMIT EFI_ALLOC_LIMIT
#define EFI_LOADER_SIGNATURE "EL64"
extern asmlinkage u64 __efi_call(void *fp, ...); extern asmlinkage u64 __efi_call(void *fp, ...);
...@@ -218,6 +219,8 @@ efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size, ...@@ -218,6 +219,8 @@ efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
#ifdef CONFIG_EFI_MIXED #ifdef CONFIG_EFI_MIXED
#define EFI_ALLOC_LIMIT (efi_is_64bit() ? ULONG_MAX : U32_MAX)
#define ARCH_HAS_EFISTUB_WRAPPERS #define ARCH_HAS_EFISTUB_WRAPPERS
static inline bool efi_is_64bit(void) static inline bool efi_is_64bit(void)
......
...@@ -164,6 +164,7 @@ static __always_inline void sev_es_nmi_complete(void) ...@@ -164,6 +164,7 @@ static __always_inline void sev_es_nmi_complete(void)
__sev_es_nmi_complete(); __sev_es_nmi_complete();
} }
extern int __init sev_es_efi_map_ghcbs(pgd_t *pgd); extern int __init sev_es_efi_map_ghcbs(pgd_t *pgd);
extern void sev_enable(struct boot_params *bp);
static inline int rmpadjust(unsigned long vaddr, bool rmp_psize, unsigned long attrs) static inline int rmpadjust(unsigned long vaddr, bool rmp_psize, unsigned long attrs)
{ {
...@@ -218,6 +219,7 @@ static inline void sev_es_ist_exit(void) { } ...@@ -218,6 +219,7 @@ static inline void sev_es_ist_exit(void) { }
static inline int sev_es_setup_ap_jump_table(struct real_mode_header *rmh) { return 0; } static inline int sev_es_setup_ap_jump_table(struct real_mode_header *rmh) { return 0; }
static inline void sev_es_nmi_complete(void) { } static inline void sev_es_nmi_complete(void) { }
static inline int sev_es_efi_map_ghcbs(pgd_t *pgd) { return 0; } static inline int sev_es_efi_map_ghcbs(pgd_t *pgd) { return 0; }
static inline void sev_enable(struct boot_params *bp) { }
static inline int pvalidate(unsigned long vaddr, bool rmp_psize, bool validate) { return 0; } static inline int pvalidate(unsigned long vaddr, bool rmp_psize, bool validate) { return 0; }
static inline int rmpadjust(unsigned long vaddr, bool rmp_psize, unsigned long attrs) { return 0; } static inline int rmpadjust(unsigned long vaddr, bool rmp_psize, unsigned long attrs) { return 0; }
static inline void setup_ghcb(void) { } static inline void setup_ghcb(void) { }
......
...@@ -15,17 +15,14 @@ ...@@ -15,17 +15,14 @@
#include <asm/setup.h> #include <asm/setup.h>
#include <asm/desc.h> #include <asm/desc.h>
#include <asm/boot.h> #include <asm/boot.h>
#include <asm/kaslr.h>
#include <asm/sev.h> #include <asm/sev.h>
#include "efistub.h" #include "efistub.h"
#include "x86-stub.h" #include "x86-stub.h"
/* Maximum physical address for 64-bit kernel with 4-level paging */
#define MAXMEM_X86_64_4LEVEL (1ull << 46)
const efi_system_table_t *efi_system_table; const efi_system_table_t *efi_system_table;
const efi_dxe_services_table_t *efi_dxe_table; const efi_dxe_services_table_t *efi_dxe_table;
u32 image_offset __section(".data");
static efi_loaded_image_t *image = NULL; static efi_loaded_image_t *image = NULL;
static efi_memory_attribute_protocol_t *memattr; static efi_memory_attribute_protocol_t *memattr;
...@@ -287,28 +284,6 @@ void efi_adjust_memory_range_protection(unsigned long start, ...@@ -287,28 +284,6 @@ void efi_adjust_memory_range_protection(unsigned long start,
} }
} }
extern const u8 startup_32[], startup_64[];
static void
setup_memory_protection(unsigned long image_base, unsigned long image_size)
{
#ifdef CONFIG_64BIT
if (image_base != (unsigned long)startup_32)
efi_adjust_memory_range_protection(image_base, image_size);
#else
/*
* Clear protection flags on a whole range of possible
* addresses used for KASLR. We don't need to do that
* on x86_64, since KASLR/extraction is performed after
* dedicated identity page tables are built and we only
* need to remove possible protection on relocated image
* itself disregarding further relocations.
*/
efi_adjust_memory_range_protection(LOAD_PHYSICAL_ADDR,
KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR);
#endif
}
static void setup_unaccepted_memory(void) static void setup_unaccepted_memory(void)
{ {
efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID; efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
...@@ -334,9 +309,7 @@ static void setup_unaccepted_memory(void) ...@@ -334,9 +309,7 @@ static void setup_unaccepted_memory(void)
static const efi_char16_t apple[] = L"Apple"; static const efi_char16_t apple[] = L"Apple";
static void setup_quirks(struct boot_params *boot_params, static void setup_quirks(struct boot_params *boot_params)
unsigned long image_base,
unsigned long image_size)
{ {
efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long) efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
efi_table_attr(efi_system_table, fw_vendor); efi_table_attr(efi_system_table, fw_vendor);
...@@ -345,9 +318,6 @@ static void setup_quirks(struct boot_params *boot_params, ...@@ -345,9 +318,6 @@ static void setup_quirks(struct boot_params *boot_params,
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES)) if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
retrieve_apple_device_properties(boot_params); retrieve_apple_device_properties(boot_params);
} }
if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES))
setup_memory_protection(image_base, image_size);
} }
/* /*
...@@ -500,7 +470,6 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle, ...@@ -500,7 +470,6 @@ efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
} }
image_base = efi_table_attr(image, image_base); image_base = efi_table_attr(image, image_base);
image_offset = (void *)startup_32 - image_base;
status = efi_allocate_pages(sizeof(struct boot_params), status = efi_allocate_pages(sizeof(struct boot_params),
(unsigned long *)&boot_params, ULONG_MAX); (unsigned long *)&boot_params, ULONG_MAX);
...@@ -804,6 +773,61 @@ static bool have_unsupported_snp_features(void) ...@@ -804,6 +773,61 @@ static bool have_unsupported_snp_features(void)
return false; return false;
} }
static void efi_get_seed(void *seed, int size)
{
efi_get_random_bytes(size, seed);
/*
* This only updates seed[0] when running on 32-bit, but in that case,
* seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
*/
*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
}
static void error(char *str)
{
efi_warn("Decompression failed: %s\n", str);
}
static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry)
{
unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
unsigned long addr, alloc_size, entry;
efi_status_t status;
u32 seed[2] = {};
/* determine the required size of the allocation */
alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
MIN_KERNEL_ALIGN);
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
efi_get_seed(seed, sizeof(seed));
virt_addr += (range * seed[1]) >> 32;
virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
}
status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
seed[0], EFI_LOADER_CODE,
EFI_X86_KERNEL_ALLOC_LIMIT);
if (status != EFI_SUCCESS)
return status;
entry = decompress_kernel((void *)addr, virt_addr, error);
if (entry == ULONG_MAX) {
efi_free(alloc_size, addr);
return EFI_LOAD_ERROR;
}
*kernel_entry = addr + entry;
efi_adjust_memory_range_protection(addr, kernel_total_size);
return EFI_SUCCESS;
}
static void __noreturn enter_kernel(unsigned long kernel_addr, static void __noreturn enter_kernel(unsigned long kernel_addr,
struct boot_params *boot_params) struct boot_params *boot_params)
{ {
...@@ -823,10 +847,9 @@ void __noreturn efi_stub_entry(efi_handle_t handle, ...@@ -823,10 +847,9 @@ void __noreturn efi_stub_entry(efi_handle_t handle,
struct boot_params *boot_params) struct boot_params *boot_params)
{ {
efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID; efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
unsigned long bzimage_addr = (unsigned long)startup_32;
unsigned long buffer_start, buffer_end;
struct setup_header *hdr = &boot_params->hdr; struct setup_header *hdr = &boot_params->hdr;
const struct linux_efi_initrd *initrd = NULL; const struct linux_efi_initrd *initrd = NULL;
unsigned long kernel_entry;
efi_status_t status; efi_status_t status;
efi_system_table = sys_table_arg; efi_system_table = sys_table_arg;
...@@ -855,60 +878,6 @@ void __noreturn efi_stub_entry(efi_handle_t handle, ...@@ -855,60 +878,6 @@ void __noreturn efi_stub_entry(efi_handle_t handle,
goto fail; goto fail;
} }
/*
* If the kernel isn't already loaded at a suitable address,
* relocate it.
*
* It must be loaded above LOAD_PHYSICAL_ADDR.
*
* The maximum address for 64-bit is 1 << 46 for 4-level paging. This
* is defined as the macro MAXMEM, but unfortunately that is not a
* compile-time constant if 5-level paging is configured, so we instead
* define our own macro for use here.
*
* For 32-bit, the maximum address is complicated to figure out, for
* now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what
* KASLR uses.
*
* Also relocate it if image_offset is zero, i.e. the kernel wasn't
* loaded by LoadImage, but rather by a bootloader that called the
* handover entry. The reason we must always relocate in this case is
* to handle the case of systemd-boot booting a unified kernel image,
* which is a PE executable that contains the bzImage and an initrd as
* COFF sections. The initrd section is placed after the bzImage
* without ensuring that there are at least init_size bytes available
* for the bzImage, and thus the compressed kernel's startup code may
* overwrite the initrd unless it is moved out of the way.
*/
buffer_start = ALIGN(bzimage_addr - image_offset,
hdr->kernel_alignment);
buffer_end = buffer_start + hdr->init_size;
if ((buffer_start < LOAD_PHYSICAL_ADDR) ||
(IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE) ||
(IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) ||
(image_offset == 0)) {
extern char _bss[];
status = efi_relocate_kernel(&bzimage_addr,
(unsigned long)_bss - bzimage_addr,
hdr->init_size,
hdr->pref_address,
hdr->kernel_alignment,
LOAD_PHYSICAL_ADDR);
if (status != EFI_SUCCESS) {
efi_err("efi_relocate_kernel() failed!\n");
goto fail;
}
/*
* Now that we've copied the kernel elsewhere, we no longer
* have a set up block before startup_32(), so reset image_offset
* to zero in case it was set earlier.
*/
image_offset = 0;
}
#ifdef CONFIG_CMDLINE_BOOL #ifdef CONFIG_CMDLINE_BOOL
status = efi_parse_options(CONFIG_CMDLINE); status = efi_parse_options(CONFIG_CMDLINE);
if (status != EFI_SUCCESS) { if (status != EFI_SUCCESS) {
...@@ -926,6 +895,12 @@ void __noreturn efi_stub_entry(efi_handle_t handle, ...@@ -926,6 +895,12 @@ void __noreturn efi_stub_entry(efi_handle_t handle,
} }
} }
status = efi_decompress_kernel(&kernel_entry);
if (status != EFI_SUCCESS) {
efi_err("Failed to decompress kernel\n");
goto fail;
}
/* /*
* At this point, an initrd may already have been loaded by the * At this point, an initrd may already have been loaded by the
* bootloader and passed via bootparams. We permit an initrd loaded * bootloader and passed via bootparams. We permit an initrd loaded
...@@ -965,7 +940,7 @@ void __noreturn efi_stub_entry(efi_handle_t handle, ...@@ -965,7 +940,7 @@ void __noreturn efi_stub_entry(efi_handle_t handle,
setup_efi_pci(boot_params); setup_efi_pci(boot_params);
setup_quirks(boot_params, bzimage_addr, buffer_end - buffer_start); setup_quirks(boot_params);
setup_unaccepted_memory(); setup_unaccepted_memory();
...@@ -975,12 +950,15 @@ void __noreturn efi_stub_entry(efi_handle_t handle, ...@@ -975,12 +950,15 @@ void __noreturn efi_stub_entry(efi_handle_t handle,
goto fail; goto fail;
} }
efi_5level_switch(); /*
* Call the SEV init code while still running with the firmware's
* GDT/IDT, so #VC exceptions will be handled by EFI.
*/
sev_enable(boot_params);
if (IS_ENABLED(CONFIG_X86_64)) efi_5level_switch();
bzimage_addr += startup_64 - startup_32;
enter_kernel(bzimage_addr, boot_params); enter_kernel(kernel_entry, boot_params);
fail: fail:
efi_err("efi_stub_entry() failed!\n"); efi_err("efi_stub_entry() failed!\n");
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment