Commit bae9defb authored by Sudip Mukherjee's avatar Sudip Mukherjee Committed by Greg Kroah-Hartman

parport: remove unused parport_register_device()

All the drivers that are using parallel port has been converted to use
the new device model api, and parport_register_device() is no longer
used.
Signed-off-by: default avatarSudip Mukherjee <sudipm.mukherjee@gmail.com>
Link: https://lore.kernel.org/r/20200403134325.11523-10-sudipm.mukherjee@gmail.comSigned-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 6824f0ce
......@@ -641,198 +641,6 @@ void parport_remove_port(struct parport *port)
}
EXPORT_SYMBOL(parport_remove_port);
/**
* parport_register_device - register a device on a parallel port
* @port: port to which the device is attached
* @name: a name to refer to the device
* @pf: preemption callback
* @kf: kick callback (wake-up)
* @irq_func: interrupt handler
* @flags: registration flags
* @handle: data for callback functions
*
* This function, called by parallel port device drivers,
* declares that a device is connected to a port, and tells the
* system all it needs to know.
*
* The @name is allocated by the caller and must not be
* deallocated until the caller calls @parport_unregister_device
* for that device.
*
* The preemption callback function, @pf, is called when this
* device driver has claimed access to the port but another
* device driver wants to use it. It is given @handle as its
* parameter, and should return zero if it is willing for the
* system to release the port to another driver on its behalf.
* If it wants to keep control of the port it should return
* non-zero, and no action will be taken. It is good manners for
* the driver to try to release the port at the earliest
* opportunity after its preemption callback rejects a preemption
* attempt. Note that if a preemption callback is happy for
* preemption to go ahead, there is no need to release the port;
* it is done automatically. This function may not block, as it
* may be called from interrupt context. If the device driver
* does not support preemption, @pf can be %NULL.
*
* The wake-up ("kick") callback function, @kf, is called when
* the port is available to be claimed for exclusive access; that
* is, parport_claim() is guaranteed to succeed when called from
* inside the wake-up callback function. If the driver wants to
* claim the port it should do so; otherwise, it need not take
* any action. This function may not block, as it may be called
* from interrupt context. If the device driver does not want to
* be explicitly invited to claim the port in this way, @kf can
* be %NULL.
*
* The interrupt handler, @irq_func, is called when an interrupt
* arrives from the parallel port. Note that if a device driver
* wants to use interrupts it should use parport_enable_irq(),
* and can also check the irq member of the parport structure
* representing the port.
*
* The parallel port (lowlevel) driver is the one that has called
* request_irq() and whose interrupt handler is called first.
* This handler does whatever needs to be done to the hardware to
* acknowledge the interrupt (for PC-style ports there is nothing
* special to be done). It then tells the IEEE 1284 code about
* the interrupt, which may involve reacting to an IEEE 1284
* event depending on the current IEEE 1284 phase. After this,
* it calls @irq_func. Needless to say, @irq_func will be called
* from interrupt context, and may not block.
*
* The %PARPORT_DEV_EXCL flag is for preventing port sharing, and
* so should only be used when sharing the port with other device
* drivers is impossible and would lead to incorrect behaviour.
* Use it sparingly! Normally, @flags will be zero.
*
* This function returns a pointer to a structure that represents
* the device on the port, or %NULL if there is not enough memory
* to allocate space for that structure.
**/
struct pardevice *
parport_register_device(struct parport *port, const char *name,
int (*pf)(void *), void (*kf)(void *),
void (*irq_func)(void *),
int flags, void *handle)
{
struct pardevice *tmp;
if (port->physport->flags & PARPORT_FLAG_EXCL) {
/* An exclusive device is registered. */
printk(KERN_DEBUG "%s: no more devices allowed\n", port->name);
return NULL;
}
if (flags & PARPORT_DEV_LURK) {
if (!pf || !kf) {
pr_info("%s: refused to register lurking device (%s) without callbacks\n",
port->name, name);
return NULL;
}
}
if (flags & PARPORT_DEV_EXCL) {
if (port->physport->devices) {
/*
* If a device is already registered and this new
* device wants exclusive access, then no need to
* continue as we can not grant exclusive access to
* this device.
*/
pr_err("%s: cannot grant exclusive access for device %s\n",
port->name, name);
return NULL;
}
}
/*
* We up our own module reference count, and that of the port
* on which a device is to be registered, to ensure that
* neither of us gets unloaded while we sleep in (e.g.)
* kmalloc.
*/
if (!try_module_get(port->ops->owner))
return NULL;
parport_get_port(port);
tmp = kmalloc(sizeof(struct pardevice), GFP_KERNEL);
if (!tmp)
goto out;
tmp->state = kmalloc(sizeof(struct parport_state), GFP_KERNEL);
if (!tmp->state)
goto out_free_pardevice;
tmp->name = name;
tmp->port = port;
tmp->daisy = -1;
tmp->preempt = pf;
tmp->wakeup = kf;
tmp->private = handle;
tmp->flags = flags;
tmp->irq_func = irq_func;
tmp->waiting = 0;
tmp->timeout = 5 * HZ;
tmp->devmodel = false;
/* Chain this onto the list */
tmp->prev = NULL;
/*
* This function must not run from an irq handler so we don' t need
* to clear irq on the local CPU. -arca
*/
spin_lock(&port->physport->pardevice_lock);
if (flags & PARPORT_DEV_EXCL) {
if (port->physport->devices) {
spin_unlock(&port->physport->pardevice_lock);
printk(KERN_DEBUG "%s: cannot grant exclusive access for device %s\n",
port->name, name);
goto out_free_all;
}
port->flags |= PARPORT_FLAG_EXCL;
}
tmp->next = port->physport->devices;
wmb(); /*
* Make sure that tmp->next is written before it's
* added to the list; see comments marked 'no locking
* required'
*/
if (port->physport->devices)
port->physport->devices->prev = tmp;
port->physport->devices = tmp;
spin_unlock(&port->physport->pardevice_lock);
init_waitqueue_head(&tmp->wait_q);
tmp->timeslice = parport_default_timeslice;
tmp->waitnext = tmp->waitprev = NULL;
/*
* This has to be run as last thing since init_state may need other
* pardevice fields. -arca
*/
port->ops->init_state(tmp, tmp->state);
if (!test_and_set_bit(PARPORT_DEVPROC_REGISTERED, &port->devflags)) {
port->proc_device = tmp;
parport_device_proc_register(tmp);
}
return tmp;
out_free_all:
kfree(tmp->state);
out_free_pardevice:
kfree(tmp);
out:
parport_put_port(port);
module_put(port->ops->owner);
return NULL;
}
EXPORT_SYMBOL(parport_register_device);
static void free_pardevice(struct device *dev)
{
struct pardevice *par_dev = to_pardevice(dev);
......
......@@ -325,18 +325,6 @@ struct pardev_cb {
unsigned int flags;
};
/* parport_register_device declares that a device is connected to a
port, and tells the kernel all it needs to know.
- pf is the preemption function (may be NULL for no callback)
- kf is the wake-up function (may be NULL for no callback)
- irq_func is the interrupt handler (may be NULL for no interrupts)
- handle is a user pointer that gets handed to callback functions. */
struct pardevice *parport_register_device(struct parport *port,
const char *name,
int (*pf)(void *), void (*kf)(void *),
void (*irq_func)(void *),
int flags, void *handle);
/*
* parport_register_dev_model declares that a device is connected to a
* port, and tells the kernel all it needs to know.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment