Commit c38dec71 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'rtc-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux

Pull RTC updates from Alexandre Belloni:
 "Core:
   - fix module reference count in rtc-proc
   - Replace simple_strtoul by kstrtoul

  New driver:
   - Epson RX8010SJ

  Subsystem wide cleanups:
   - use %ph for short hex dumps
   - constify *_chip_ops structures

  Drivers:
   - abx80x: Microcrystal rv1805 support, alarm support
   - cmos: prevent kernel warning on IRQ flags mismatch
   - s5m: various cleanups
   - rv8803: rx8900 compatibility, small error path fix
   - sunxi: various cleanups
   - lpc32xx: remove irq > NR_IRQS check from probe()
   - imxdi: fix spelling mistake in warning message
   - ds1685: don't try to micromanage sysfs output size
   - da9063: avoid writing undefined data to rtc
   - gemini: Remove unnecessary platform_set_drvdata()
   - efi: add efi_procfs in efi_rtc_ops
   - pcf8523: refuse to write dates later than 2099"

* tag 'rtc-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: (24 commits)
  rtc: cmos: prevent kernel warning on IRQ flags mismatch
  rtc: rtc-ds2404: constify ds2404_chip_ops structures
  rtc: s5m: Make register configuration per S2MPS device to remove exceptions
  rtc: s5m: Add separate field for storing auto-cleared mask in register config
  rtc: s5m: Cleanup by removing useless 'rtc' prefix from fields
  rtc: Replace simple_strtoul by kstrtoul
  rtc: abx80x: add alarm support
  rtc: abx80x: Add Microcrystal rv1805 support
  rtc: v3020: constify v3020_chip_ops structures
  rtc: rv8803: Extend compatibility with the rx8900
  rtc: rv8803: fix handling return value of i2c_smbus_read_byte_data
  rtc: Add Epson RX8010SJ RTC driver
  rtc: lpc32xx: remove irq > NR_IRQS check from probe()
  rtc: imxdi: fix spelling mistake in warning message
  rtc: ds1685: don't try to micromanage sysfs output size
  rtc: use %ph for short hex dumps
  rtc: da9063: avoid writing undefined data to rtc
  rtc: sunxi: use of_device_get_match_data
  rtc: sunxi: constify the data_year_param structure
  rtc: sunxi: fix signedness issues
  ...
parents d43fb9f3 079062b2
......@@ -558,6 +558,16 @@ config RTC_DRV_FM3130
This driver can also be built as a module. If so the module
will be called rtc-fm3130.
config RTC_DRV_RX8010
tristate "Epson RX8010SJ"
depends on I2C
help
If you say yes here you get support for the Epson RX8010SJ RTC
chip.
This driver can also be built as a module. If so, the module
will be called rtc-rx8010.
config RTC_DRV_RX8581
tristate "Epson RX-8581"
help
......
......@@ -128,6 +128,7 @@ obj-$(CONFIG_RTC_DRV_RS5C372) += rtc-rs5c372.o
obj-$(CONFIG_RTC_DRV_RV3029C2) += rtc-rv3029c2.o
obj-$(CONFIG_RTC_DRV_RV8803) += rtc-rv8803.o
obj-$(CONFIG_RTC_DRV_RX4581) += rtc-rx4581.o
obj-$(CONFIG_RTC_DRV_RX8010) += rtc-rx8010.o
obj-$(CONFIG_RTC_DRV_RX8025) += rtc-rx8025.o
obj-$(CONFIG_RTC_DRV_RX8581) += rtc-rx8581.o
obj-$(CONFIG_RTC_DRV_S35390A) += rtc-s35390a.o
......
......@@ -27,10 +27,28 @@
#define ABX8XX_REG_YR 0x06
#define ABX8XX_REG_WD 0x07
#define ABX8XX_REG_AHTH 0x08
#define ABX8XX_REG_ASC 0x09
#define ABX8XX_REG_AMN 0x0a
#define ABX8XX_REG_AHR 0x0b
#define ABX8XX_REG_ADA 0x0c
#define ABX8XX_REG_AMO 0x0d
#define ABX8XX_REG_AWD 0x0e
#define ABX8XX_REG_STATUS 0x0f
#define ABX8XX_STATUS_AF BIT(2)
#define ABX8XX_REG_CTRL1 0x10
#define ABX8XX_CTRL_WRITE BIT(0)
#define ABX8XX_CTRL_ARST BIT(2)
#define ABX8XX_CTRL_12_24 BIT(6)
#define ABX8XX_REG_IRQ 0x12
#define ABX8XX_IRQ_AIE BIT(2)
#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
#define ABX8XX_REG_CD_TIMER_CTL 0x18
#define ABX8XX_REG_CFG_KEY 0x1f
#define ABX8XX_CFG_KEY_MISC 0x9d
......@@ -63,8 +81,6 @@ static struct abx80x_cap abx80x_caps[] = {
[ABX80X] = {.pn = 0}
};
static struct i2c_driver abx80x_driver;
static int abx80x_enable_trickle_charger(struct i2c_client *client,
u8 trickle_cfg)
{
......@@ -148,9 +164,111 @@ static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
return 0;
}
static irqreturn_t abx80x_handle_irq(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct rtc_device *rtc = i2c_get_clientdata(client);
int status;
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return IRQ_NONE;
if (status & ABX8XX_STATUS_AF)
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
return IRQ_HANDLED;
}
static int abx80x_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[7];
int irq_mask, err;
if (client->irq <= 0)
return -EINVAL;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ASC,
sizeof(buf), buf);
if (err)
return err;
irq_mask = i2c_smbus_read_byte_data(client, ABX8XX_REG_IRQ);
if (irq_mask < 0)
return irq_mask;
t->time.tm_sec = bcd2bin(buf[0] & 0x7F);
t->time.tm_min = bcd2bin(buf[1] & 0x7F);
t->time.tm_hour = bcd2bin(buf[2] & 0x3F);
t->time.tm_mday = bcd2bin(buf[3] & 0x3F);
t->time.tm_mon = bcd2bin(buf[4] & 0x1F) - 1;
t->time.tm_wday = buf[5] & 0x7;
t->enabled = !!(irq_mask & ABX8XX_IRQ_AIE);
t->pending = (buf[6] & ABX8XX_STATUS_AF) && t->enabled;
return err;
}
static int abx80x_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
u8 alarm[6];
int err;
if (client->irq <= 0)
return -EINVAL;
alarm[0] = 0x0;
alarm[1] = bin2bcd(t->time.tm_sec);
alarm[2] = bin2bcd(t->time.tm_min);
alarm[3] = bin2bcd(t->time.tm_hour);
alarm[4] = bin2bcd(t->time.tm_mday);
alarm[5] = bin2bcd(t->time.tm_mon + 1);
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_AHTH,
sizeof(alarm), alarm);
if (err < 0) {
dev_err(&client->dev, "Unable to write alarm registers\n");
return -EIO;
}
if (t->enabled) {
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
if (err)
return err;
}
return 0;
}
static int abx80x_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct i2c_client *client = to_i2c_client(dev);
int err;
if (enabled)
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
else
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
ABX8XX_IRQ_IM_1_4);
return err;
}
static const struct rtc_class_ops abx80x_rtc_ops = {
.read_time = abx80x_rtc_read_time,
.set_time = abx80x_rtc_set_time,
.read_alarm = abx80x_read_alarm,
.set_alarm = abx80x_set_alarm,
.alarm_irq_enable = abx80x_alarm_irq_enable,
};
static int abx80x_dt_trickle_cfg(struct device_node *np)
......@@ -225,7 +343,8 @@ static int abx80x_probe(struct i2c_client *client,
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1,
((data & ~ABX8XX_CTRL_12_24) |
((data & ~(ABX8XX_CTRL_12_24 |
ABX8XX_CTRL_ARST)) |
ABX8XX_CTRL_WRITE));
if (err < 0) {
dev_err(&client->dev, "Unable to write control register\n");
......@@ -260,7 +379,12 @@ static int abx80x_probe(struct i2c_client *client,
abx80x_enable_trickle_charger(client, trickle_cfg);
}
rtc = devm_rtc_device_register(&client->dev, abx80x_driver.driver.name,
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CD_TIMER_CTL,
BIT(2));
if (err)
return err;
rtc = devm_rtc_device_register(&client->dev, "abx8xx",
&abx80x_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc))
......@@ -268,6 +392,19 @@ static int abx80x_probe(struct i2c_client *client,
i2c_set_clientdata(client, rtc);
if (client->irq > 0) {
dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
abx80x_handle_irq,
IRQF_SHARED | IRQF_ONESHOT,
"abx8xx",
client);
if (err) {
dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
client->irq = 0;
}
}
return 0;
}
......@@ -286,6 +423,7 @@ static const struct i2c_device_id abx80x_id[] = {
{ "ab1803", AB1803 },
{ "ab1804", AB1804 },
{ "ab1805", AB1805 },
{ "rv1805", AB1805 },
{ }
};
MODULE_DEVICE_TABLE(i2c, abx80x_id);
......
......@@ -725,7 +725,7 @@ cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
rtc_cmos_int_handler = cmos_interrupt;
retval = request_irq(rtc_irq, rtc_cmos_int_handler,
0, dev_name(&cmos_rtc.rtc->dev),
IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
cmos_rtc.rtc);
if (retval < 0) {
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
......
......@@ -191,24 +191,13 @@ static void da9063_tm_to_data(struct rtc_time *tm, u8 *data,
{
const struct da9063_compatible_rtc_regmap *config = rtc->config;
data[RTC_SEC] &= ~config->rtc_count_sec_mask;
data[RTC_SEC] |= tm->tm_sec & config->rtc_count_sec_mask;
data[RTC_MIN] &= ~config->rtc_count_min_mask;
data[RTC_MIN] |= tm->tm_min & config->rtc_count_min_mask;
data[RTC_HOUR] &= ~config->rtc_count_hour_mask;
data[RTC_HOUR] |= tm->tm_hour & config->rtc_count_hour_mask;
data[RTC_DAY] &= ~config->rtc_count_day_mask;
data[RTC_DAY] |= tm->tm_mday & config->rtc_count_day_mask;
data[RTC_MONTH] &= ~config->rtc_count_month_mask;
data[RTC_MONTH] |= MONTHS_TO_DA9063(tm->tm_mon) &
data[RTC_SEC] = tm->tm_sec & config->rtc_count_sec_mask;
data[RTC_MIN] = tm->tm_min & config->rtc_count_min_mask;
data[RTC_HOUR] = tm->tm_hour & config->rtc_count_hour_mask;
data[RTC_DAY] = tm->tm_mday & config->rtc_count_day_mask;
data[RTC_MONTH] = MONTHS_TO_DA9063(tm->tm_mon) &
config->rtc_count_month_mask;
data[RTC_YEAR] &= ~config->rtc_count_year_mask;
data[RTC_YEAR] |= YEARS_TO_DA9063(tm->tm_year) &
data[RTC_YEAR] = YEARS_TO_DA9063(tm->tm_year) &
config->rtc_count_year_mask;
}
......
......@@ -186,9 +186,7 @@ static int ds1305_get_time(struct device *dev, struct rtc_time *time)
if (status < 0)
return status;
dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
"read", buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6]);
dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
/* Decode the registers */
time->tm_sec = bcd2bin(buf[DS1305_SEC]);
......@@ -232,9 +230,7 @@ static int ds1305_set_time(struct device *dev, struct rtc_time *time)
*bp++ = bin2bcd(time->tm_mon + 1);
*bp++ = bin2bcd(time->tm_year - 100);
dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
"write", buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
/* use write-then-read since dma from stack is nonportable */
return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
......
......@@ -460,13 +460,8 @@ static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
return -EIO;
}
dev_dbg(dev, "%s: %02x %02x %02x %02x, %02x %02x %02x, %02x %02x\n",
"alarm read",
ds1307->regs[0], ds1307->regs[1],
ds1307->regs[2], ds1307->regs[3],
ds1307->regs[4], ds1307->regs[5],
ds1307->regs[6], ds1307->regs[7],
ds1307->regs[8]);
dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
&ds1307->regs[0], &ds1307->regs[4], &ds1307->regs[7]);
/*
* report alarm time (ALARM1); assume 24 hour and day-of-month modes,
......@@ -522,12 +517,8 @@ static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
control = ds1307->regs[7];
status = ds1307->regs[8];
dev_dbg(dev, "%s: %02x %02x %02x %02x, %02x %02x %02x, %02x %02x\n",
"alarm set (old status)",
ds1307->regs[0], ds1307->regs[1],
ds1307->regs[2], ds1307->regs[3],
ds1307->regs[4], ds1307->regs[5],
ds1307->regs[6], control, status);
dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
&ds1307->regs[0], &ds1307->regs[4], control, status);
/* set ALARM1, using 24 hour and day-of-month modes */
buf[0] = bin2bcd(t->time.tm_sec);
......
......@@ -853,7 +853,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
"Periodic Rate\t: %s\n"
"SQW Freq\t: %s\n"
#ifdef CONFIG_RTC_DS1685_PROC_REGS
"Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n"
"Serial #\t: %8phC\n"
"Register Status\t:\n"
" Ctrl A\t: UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0\n"
"\t\t: %s\n"
......@@ -872,7 +872,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
" Ctrl 4B\t: ABE E32k CS RCE PRS RIE WIE KSE\n"
"\t\t: %s\n",
#else
"Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
"Serial #\t: %8phC\n",
#endif
model,
((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
......@@ -888,7 +888,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
(!((ctrl4b & RTC_CTRL_4B_E32K)) ?
ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
#ifdef CONFIG_RTC_DS1685_PROC_REGS
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7],
ssn,
ds1685_rtc_print_regs(ctrla, bits[0]),
ds1685_rtc_print_regs(ctrlb, bits[1]),
ds1685_rtc_print_regs(ctrlc, bits[2]),
......@@ -896,7 +896,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
ds1685_rtc_print_regs(ctrl4a, bits[4]),
ds1685_rtc_print_regs(ctrl4b, bits[5]));
#else
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7]);
ssn);
#endif
return 0;
}
......@@ -1114,7 +1114,7 @@ ds1685_rtc_sysfs_battery_show(struct device *dev,
ctrld = rtc->read(rtc, RTC_CTRL_D);
return snprintf(buf, 13, "%s\n",
return sprintf(buf, "%s\n",
(ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
}
static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
......@@ -1137,7 +1137,7 @@ ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 13, "%s\n",
return sprintf(buf, "%s\n",
(ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
}
static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
......@@ -1160,11 +1160,7 @@ ds1685_rtc_sysfs_serial_show(struct device *dev,
ds1685_rtc_get_ssn(rtc, ssn);
ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 24, "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5],
ssn[6], ssn[7]);
return 0;
return sprintf(buf, "%8phC\n", ssn);
}
static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
......@@ -1287,7 +1283,7 @@ ds1685_rtc_sysfs_ctrl_regs_show(struct device *dev,
tmp = rtc->read(rtc, reg_info->reg) & reg_info->bit;
ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 2, "%d\n", (tmp ? 1 : 0));
return sprintf(buf, "%d\n", (tmp ? 1 : 0));
}
/**
......@@ -1623,7 +1619,7 @@ ds1685_rtc_sysfs_time_regs_show(struct device *dev,
tmp = ds1685_rtc_bcd2bin(rtc, tmp, bcd_reg_info->mask,
bin_reg_info->mask);
return snprintf(buf, 4, "%d\n", tmp);
return sprintf(buf, "%d\n", tmp);
}
/**
......
......@@ -48,7 +48,7 @@ struct ds2404_gpio {
struct ds2404 {
struct ds2404_gpio *gpio;
struct ds2404_chip_ops *ops;
const struct ds2404_chip_ops *ops;
struct rtc_device *rtc;
};
......@@ -95,7 +95,7 @@ static void ds2404_gpio_unmap(struct ds2404 *chip)
gpio_free(ds2404_gpio[i].gpio);
}
static struct ds2404_chip_ops ds2404_gpio_ops = {
static const struct ds2404_chip_ops ds2404_gpio_ops = {
.map_io = ds2404_gpio_map,
.unmap_io = ds2404_gpio_unmap,
};
......
......@@ -191,11 +191,69 @@ static int efi_set_time(struct device *dev, struct rtc_time *tm)
return status == EFI_SUCCESS ? 0 : -EINVAL;
}
static int efi_procfs(struct device *dev, struct seq_file *seq)
{
efi_time_t eft, alm;
efi_time_cap_t cap;
efi_bool_t enabled, pending;
memset(&eft, 0, sizeof(eft));
memset(&alm, 0, sizeof(alm));
memset(&cap, 0, sizeof(cap));
efi.get_time(&eft, &cap);
efi.get_wakeup_time(&enabled, &pending, &alm);
seq_printf(seq,
"Time\t\t: %u:%u:%u.%09u\n"
"Date\t\t: %u-%u-%u\n"
"Daylight\t: %u\n",
eft.hour, eft.minute, eft.second, eft.nanosecond,
eft.year, eft.month, eft.day,
eft.daylight);
if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
seq_puts(seq, "Timezone\t: unspecified\n");
else
/* XXX fixme: convert to string? */
seq_printf(seq, "Timezone\t: %u\n", eft.timezone);
seq_printf(seq,
"Alarm Time\t: %u:%u:%u.%09u\n"
"Alarm Date\t: %u-%u-%u\n"
"Alarm Daylight\t: %u\n"
"Enabled\t\t: %s\n"
"Pending\t\t: %s\n",
alm.hour, alm.minute, alm.second, alm.nanosecond,
alm.year, alm.month, alm.day,
alm.daylight,
enabled == 1 ? "yes" : "no",
pending == 1 ? "yes" : "no");
if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
seq_puts(seq, "Timezone\t: unspecified\n");
else
/* XXX fixme: convert to string? */
seq_printf(seq, "Timezone\t: %u\n", alm.timezone);
/*
* now prints the capabilities
*/
seq_printf(seq,
"Resolution\t: %u\n"
"Accuracy\t: %u\n"
"SetstoZero\t: %u\n",
cap.resolution, cap.accuracy, cap.sets_to_zero);
return 0;
}
static const struct rtc_class_ops efi_rtc_ops = {
.read_time = efi_read_time,
.set_time = efi_set_time,
.read_alarm = efi_read_alarm,
.set_alarm = efi_set_alarm,
.proc = efi_procfs,
};
static int __init efi_rtc_probe(struct platform_device *dev)
......
......@@ -156,7 +156,6 @@ static int gemini_rtc_remove(struct platform_device *pdev)
struct gemini_rtc *rtc = platform_get_drvdata(pdev);
rtc_device_unregister(rtc->rtc_dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
......
......@@ -303,7 +303,7 @@ static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
sec = readl(imxdi->ioaddr + DTCMR);
if (sec != 0)
dev_warn(&imxdi->pdev->dev,
"The security violation has happend at %u seconds\n",
"The security violation has happened at %u seconds\n",
sec);
/*
* the timer cannot be set/modified if
......
......@@ -205,7 +205,7 @@ static int lpc32xx_rtc_probe(struct platform_device *pdev)
u32 tmp;
rtcirq = platform_get_irq(pdev, 0);
if (rtcirq < 0 || rtcirq >= NR_IRQS) {
if (rtcirq < 0) {
dev_warn(&pdev->dev, "Can't get interrupt resource\n");
rtcirq = -1;
}
......
......@@ -219,6 +219,17 @@ static int pcf8523_rtc_set_time(struct device *dev, struct rtc_time *tm)
u8 regs[8];
int err;
/*
* The hardware can only store values between 0 and 99 in it's YEAR
* register (with 99 overflowing to 0 on increment).
* After 2100-02-28 we could start interpreting the year to be in the
* interval [2100, 2199], but there is no path to switch in a smooth way
* because the chip handles YEAR=0x00 (and the out-of-spec
* YEAR=0xa0) as a leap year, but 2100 isn't.
*/
if (tm->tm_year < 100 || tm->tm_year >= 200)
return -EINVAL;
err = pcf8523_stop_rtc(client);
if (err < 0)
return err;
......
......@@ -112,19 +112,21 @@ static int rtc_proc_open(struct inode *inode, struct file *file)
int ret;
struct rtc_device *rtc = PDE_DATA(inode);
if (!try_module_get(THIS_MODULE))
if (!try_module_get(rtc->owner))
return -ENODEV;
ret = single_open(file, rtc_proc_show, rtc);
if (ret)
module_put(THIS_MODULE);
module_put(rtc->owner);
return ret;
}
static int rtc_proc_release(struct inode *inode, struct file *file)
{
int res = single_release(inode, file);
module_put(THIS_MODULE);
struct rtc_device *rtc = PDE_DATA(inode);
module_put(rtc->owner);
return res;
}
......
......@@ -61,7 +61,7 @@ static irqreturn_t rv8803_handle_irq(int irq, void *dev_id)
struct i2c_client *client = dev_id;
struct rv8803_data *rv8803 = i2c_get_clientdata(client);
unsigned long events = 0;
u8 flags;
int flags;
spin_lock(&rv8803->flags_lock);
......@@ -502,6 +502,7 @@ static int rv8803_remove(struct i2c_client *client)
static const struct i2c_device_id rv8803_id[] = {
{ "rv8803", 0 },
{ "rx8900", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, rv8803_id);
......
This diff is collapsed.
......@@ -38,7 +38,22 @@
*/
#define UDR_READ_RETRY_CNT 5
/* Registers used by the driver which are different between chipsets. */
/*
* Registers used by the driver which are different between chipsets.
*
* Operations like read time and write alarm/time require updating
* specific fields in UDR register. These fields usually are auto-cleared
* (with some exceptions).
*
* Table of operations per device:
*
* Device | Write time | Read time | Write alarm
* =================================================
* S5M8767 | UDR + TIME | | UDR
* S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
* S2MPS13 | WUDR | RUDR | WUDR + AUDR
* S2MPS15 | WUDR | RUDR | AUDR
*/
struct s5m_rtc_reg_config {
/* Number of registers used for setting time/alarm0/alarm1 */
unsigned int regs_count;
......@@ -55,9 +70,16 @@ struct s5m_rtc_reg_config {
* will enable update of time or alarm register. Then it will be
* auto-cleared after successful update.
*/
unsigned int rtc_udr_update;
/* Mask for UDR field in 'rtc_udr_update' register */
unsigned int rtc_udr_mask;
unsigned int udr_update;
/* Auto-cleared mask in UDR field for writing time and alarm */
unsigned int autoclear_udr_mask;
/*
* Masks in UDR field for time and alarm operations.
* The read time mask can be 0. Rest should not.
*/
unsigned int read_time_udr_mask;
unsigned int write_time_udr_mask;
unsigned int write_alarm_udr_mask;
};
/* Register map for S5M8763 and S5M8767 */
......@@ -67,22 +89,56 @@ static const struct s5m_rtc_reg_config s5m_rtc_regs = {
.ctrl = S5M_ALARM1_CONF,
.alarm0 = S5M_ALARM0_SEC,
.alarm1 = S5M_ALARM1_SEC,
.rtc_udr_update = S5M_RTC_UDR_CON,
.rtc_udr_mask = S5M_RTC_UDR_MASK,
.udr_update = S5M_RTC_UDR_CON,
.autoclear_udr_mask = S5M_RTC_UDR_MASK,
.read_time_udr_mask = 0, /* Not needed */
.write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
.write_alarm_udr_mask = S5M_RTC_UDR_MASK,
};
/* Register map for S2MPS13 */
static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.udr_update = S2MPS_RTC_UDR_CON,
.autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
};
/* Register map for S2MPS11/14 */
static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.udr_update = S2MPS_RTC_UDR_CON,
.autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
};
/*
* Register map for S2MPS14.
* It may be also suitable for S2MPS11 but this was not tested.
* Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
* are swapped.
*/
static const struct s5m_rtc_reg_config s2mps_rtc_regs = {
static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.rtc_udr_update = S2MPS_RTC_UDR_CON,
.rtc_udr_mask = S2MPS_RTC_WUDR_MASK,
.udr_update = S2MPS_RTC_UDR_CON,
.autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
};
struct s5m_rtc_info {
......@@ -166,9 +222,8 @@ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
unsigned int data;
do {
ret = regmap_read(info->regmap, info->regs->rtc_udr_update,
&data);
} while (--retry && (data & info->regs->rtc_udr_mask) && !ret);
ret = regmap_read(info->regmap, info->regs->udr_update, &data);
} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
if (!retry)
dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
......@@ -214,30 +269,15 @@ static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
int ret;
unsigned int data;
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data);
ret = regmap_read(info->regmap, info->regs->udr_update, &data);
if (ret < 0) {
dev_err(info->dev, "failed to read update reg(%d)\n", ret);
return ret;
}
switch (info->device_type) {
case S5M8763X:
case S5M8767X:
data |= info->regs->rtc_udr_mask | S5M_RTC_TIME_EN_MASK;
case S2MPS15X:
/* As per UM, for write time register, set WUDR bit to high */
data |= S2MPS15_RTC_WUDR_MASK;
break;
case S2MPS14X:
case S2MPS13X:
data |= info->regs->rtc_udr_mask;
break;
default:
return -EINVAL;
}
data |= info->regs->write_time_udr_mask;
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data);
ret = regmap_write(info->regmap, info->regs->udr_update, data);
if (ret < 0) {
dev_err(info->dev, "failed to write update reg(%d)\n", ret);
return ret;
......@@ -253,35 +293,29 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
int ret;
unsigned int data;
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data);
ret = regmap_read(info->regmap, info->regs->udr_update, &data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to read update reg(%d)\n",
__func__, ret);
return ret;
}
data |= info->regs->rtc_udr_mask;
data |= info->regs->write_alarm_udr_mask;
switch (info->device_type) {
case S5M8763X:
case S5M8767X:
data &= ~S5M_RTC_TIME_EN_MASK;
break;
case S2MPS15X:
/* As per UM, for write alarm, set A_UDR(bit[4]) to high
* rtc_udr_mask above sets bit[4]
*/
break;
case S2MPS14X:
data |= S2MPS_RTC_RUDR_MASK;
break;
case S2MPS13X:
data |= S2MPS13_RTC_AUDR_MASK;
/* No exceptions needed */
break;
default:
return -EINVAL;
}
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data);
ret = regmap_write(info->regmap, info->regs->udr_update, data);
if (ret < 0) {
dev_err(info->dev, "%s: fail to write update reg(%d)\n",
__func__, ret);
......@@ -292,7 +326,7 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
/* On S2MPS13 the AUDR is not auto-cleared */
if (info->device_type == S2MPS13X)
regmap_update_bits(info->regmap, info->regs->rtc_udr_update,
regmap_update_bits(info->regmap, info->regs->udr_update,
S2MPS13_RTC_AUDR_MASK, 0);
return ret;
......@@ -336,11 +370,11 @@ static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
u8 data[info->regs->regs_count];
int ret;
if (info->device_type == S2MPS15X || info->device_type == S2MPS14X ||
info->device_type == S2MPS13X) {
if (info->regs->read_time_udr_mask) {
ret = regmap_update_bits(info->regmap,
info->regs->rtc_udr_update,
S2MPS_RTC_RUDR_MASK, S2MPS_RTC_RUDR_MASK);
info->regs->udr_update,
info->regs->read_time_udr_mask,
info->regs->read_time_udr_mask);
if (ret) {
dev_err(dev,
"Failed to prepare registers for time reading: %d\n",
......@@ -707,10 +741,18 @@ static int s5m_rtc_probe(struct platform_device *pdev)
switch (platform_get_device_id(pdev)->driver_data) {
case S2MPS15X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps15_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S2MPS14X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps14_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S2MPS13X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps_rtc_regs;
info->regs = &s2mps13_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S5M8763X:
......
......@@ -133,7 +133,7 @@ struct sunxi_rtc_data_year {
unsigned char leap_shift; /* bit shift to get the leap year */
};
static struct sunxi_rtc_data_year data_year_param[] = {
static const struct sunxi_rtc_data_year data_year_param[] = {
[0] = {
.min = 2010,
.max = 2073,
......@@ -151,7 +151,7 @@ static struct sunxi_rtc_data_year data_year_param[] = {
struct sunxi_rtc_dev {
struct rtc_device *rtc;
struct device *dev;
struct sunxi_rtc_data_year *data_year;
const struct sunxi_rtc_data_year *data_year;
void __iomem *base;
int irq;
};
......@@ -175,7 +175,7 @@ static irqreturn_t sunxi_rtc_alarmirq(int irq, void *id)
return IRQ_NONE;
}
static void sunxi_rtc_setaie(int to, struct sunxi_rtc_dev *chip)
static void sunxi_rtc_setaie(unsigned int to, struct sunxi_rtc_dev *chip)
{
u32 alrm_val = 0;
u32 alrm_irq_val = 0;
......@@ -343,7 +343,7 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
u32 date = 0;
u32 time = 0;
int year;
unsigned int year;
/*
* the input rtc_tm->tm_year is the offset relative to 1900. We use
......@@ -353,7 +353,7 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
year = rtc_tm->tm_year + 1900;
if (year < chip->data_year->min || year > chip->data_year->max) {
dev_err(dev, "rtc only supports year in range %d - %d\n",
dev_err(dev, "rtc only supports year in range %u - %u\n",
chip->data_year->min, chip->data_year->max);
return -EINVAL;
}
......@@ -436,7 +436,6 @@ static int sunxi_rtc_probe(struct platform_device *pdev)
{
struct sunxi_rtc_dev *chip;
struct resource *res;
const struct of_device_id *of_id;
int ret;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
......@@ -463,12 +462,11 @@ static int sunxi_rtc_probe(struct platform_device *pdev)
return ret;
}
of_id = of_match_device(sunxi_rtc_dt_ids, &pdev->dev);
if (!of_id) {
chip->data_year = of_device_get_match_data(&pdev->dev);
if (!chip->data_year) {
dev_err(&pdev->dev, "Unable to setup RTC data\n");
return -ENODEV;
}
chip->data_year = (struct sunxi_rtc_data_year *) of_id->data;
/* clear the alarm count value */
writel(0, chip->base + SUNXI_ALRM_DHMS);
......
......@@ -91,7 +91,12 @@ max_user_freq_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t n)
{
struct rtc_device *rtc = to_rtc_device(dev);
unsigned long val = simple_strtoul(buf, NULL, 0);
unsigned long val;
int err;
err = kstrtoul(buf, 0, &val);
if (err)
return err;
if (val >= 4096 || val == 0)
return -EINVAL;
......@@ -175,7 +180,9 @@ wakealarm_store(struct device *dev, struct device_attribute *attr,
} else
adjust = 1;
}
alarm = simple_strtoul(buf_ptr, NULL, 0);
retval = kstrtoul(buf_ptr, 0, &alarm);
if (retval)
return retval;
if (adjust) {
alarm += now;
}
......
......@@ -57,7 +57,7 @@ struct v3020 {
/* GPIO access */
struct gpio *gpio;
struct v3020_chip_ops *ops;
const struct v3020_chip_ops *ops;
struct rtc_device *rtc;
};
......@@ -95,7 +95,7 @@ static unsigned char v3020_mmio_read_bit(struct v3020 *chip)
return !!(readl(chip->ioaddress) & (1 << chip->leftshift));
}
static struct v3020_chip_ops v3020_mmio_ops = {
static const struct v3020_chip_ops v3020_mmio_ops = {
.map_io = v3020_mmio_map,
.unmap_io = v3020_mmio_unmap,
.read_bit = v3020_mmio_read_bit,
......@@ -158,7 +158,7 @@ static unsigned char v3020_gpio_read_bit(struct v3020 *chip)
return bit;
}
static struct v3020_chip_ops v3020_gpio_ops = {
static const struct v3020_chip_ops v3020_gpio_ops = {
.map_io = v3020_gpio_map,
.unmap_io = v3020_gpio_unmap,
.read_bit = v3020_gpio_read_bit,
......
......@@ -105,6 +105,8 @@ enum s2mps_rtc_reg {
#define S5M_RTC_UDR_MASK (1 << S5M_RTC_UDR_SHIFT)
#define S2MPS_RTC_WUDR_SHIFT 4
#define S2MPS_RTC_WUDR_MASK (1 << S2MPS_RTC_WUDR_SHIFT)
#define S2MPS15_RTC_AUDR_SHIFT 4
#define S2MPS15_RTC_AUDR_MASK (1 << S2MPS15_RTC_AUDR_SHIFT)
#define S2MPS13_RTC_AUDR_SHIFT 1
#define S2MPS13_RTC_AUDR_MASK (1 << S2MPS13_RTC_AUDR_SHIFT)
#define S2MPS15_RTC_WUDR_SHIFT 1
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment