Commit ccb1352e authored by Jesse Gross's avatar Jesse Gross

net: Add Open vSwitch kernel components.

Open vSwitch is a multilayer Ethernet switch targeted at virtualized
environments.  In addition to supporting a variety of features
expected in a traditional hardware switch, it enables fine-grained
programmatic extension and flow-based control of the network.
This control is useful in a wide variety of applications but is
particularly important in multi-server virtualization deployments,
which are often characterized by highly dynamic endpoints and the need
to maintain logical abstractions for multiple tenants.

The Open vSwitch datapath provides an in-kernel fast path for packet
forwarding.  It is complemented by a userspace daemon, ovs-vswitchd,
which is able to accept configuration from a variety of sources and
translate it into packet processing rules.

See http://openvswitch.org for more information and userspace
utilities.
Signed-off-by: default avatarJesse Gross <jesse@nicira.com>
parent 75f2811c
...@@ -144,6 +144,8 @@ nfc.txt ...@@ -144,6 +144,8 @@ nfc.txt
- The Linux Near Field Communication (NFS) subsystem. - The Linux Near Field Communication (NFS) subsystem.
olympic.txt olympic.txt
- IBM PCI Pit/Pit-Phy/Olympic Token Ring driver info. - IBM PCI Pit/Pit-Phy/Olympic Token Ring driver info.
openvswitch.txt
- Open vSwitch developer documentation.
operstates.txt operstates.txt
- Overview of network interface operational states. - Overview of network interface operational states.
packet_mmap.txt packet_mmap.txt
......
Open vSwitch datapath developer documentation
=============================================
The Open vSwitch kernel module allows flexible userspace control over
flow-level packet processing on selected network devices. It can be
used to implement a plain Ethernet switch, network device bonding,
VLAN processing, network access control, flow-based network control,
and so on.
The kernel module implements multiple "datapaths" (analogous to
bridges), each of which can have multiple "vports" (analogous to ports
within a bridge). Each datapath also has associated with it a "flow
table" that userspace populates with "flows" that map from keys based
on packet headers and metadata to sets of actions. The most common
action forwards the packet to another vport; other actions are also
implemented.
When a packet arrives on a vport, the kernel module processes it by
extracting its flow key and looking it up in the flow table. If there
is a matching flow, it executes the associated actions. If there is
no match, it queues the packet to userspace for processing (as part of
its processing, userspace will likely set up a flow to handle further
packets of the same type entirely in-kernel).
Flow key compatibility
----------------------
Network protocols evolve over time. New protocols become important
and existing protocols lose their prominence. For the Open vSwitch
kernel module to remain relevant, it must be possible for newer
versions to parse additional protocols as part of the flow key. It
might even be desirable, someday, to drop support for parsing
protocols that have become obsolete. Therefore, the Netlink interface
to Open vSwitch is designed to allow carefully written userspace
applications to work with any version of the flow key, past or future.
To support this forward and backward compatibility, whenever the
kernel module passes a packet to userspace, it also passes along the
flow key that it parsed from the packet. Userspace then extracts its
own notion of a flow key from the packet and compares it against the
kernel-provided version:
- If userspace's notion of the flow key for the packet matches the
kernel's, then nothing special is necessary.
- If the kernel's flow key includes more fields than the userspace
version of the flow key, for example if the kernel decoded IPv6
headers but userspace stopped at the Ethernet type (because it
does not understand IPv6), then again nothing special is
necessary. Userspace can still set up a flow in the usual way,
as long as it uses the kernel-provided flow key to do it.
- If the userspace flow key includes more fields than the
kernel's, for example if userspace decoded an IPv6 header but
the kernel stopped at the Ethernet type, then userspace can
forward the packet manually, without setting up a flow in the
kernel. This case is bad for performance because every packet
that the kernel considers part of the flow must go to userspace,
but the forwarding behavior is correct. (If userspace can
determine that the values of the extra fields would not affect
forwarding behavior, then it could set up a flow anyway.)
How flow keys evolve over time is important to making this work, so
the following sections go into detail.
Flow key format
---------------
A flow key is passed over a Netlink socket as a sequence of Netlink
attributes. Some attributes represent packet metadata, defined as any
information about a packet that cannot be extracted from the packet
itself, e.g. the vport on which the packet was received. Most
attributes, however, are extracted from headers within the packet,
e.g. source and destination addresses from Ethernet, IP, or TCP
headers.
The <linux/openvswitch.h> header file defines the exact format of the
flow key attributes. For informal explanatory purposes here, we write
them as comma-separated strings, with parentheses indicating arguments
and nesting. For example, the following could represent a flow key
corresponding to a TCP packet that arrived on vport 1:
in_port(1), eth(src=e0:91:f5:21:d0:b2, dst=00:02:e3:0f:80:a4),
eth_type(0x0800), ipv4(src=172.16.0.20, dst=172.18.0.52, proto=17, tos=0,
frag=no), tcp(src=49163, dst=80)
Often we ellipsize arguments not important to the discussion, e.g.:
in_port(1), eth(...), eth_type(0x0800), ipv4(...), tcp(...)
Basic rule for evolving flow keys
---------------------------------
Some care is needed to really maintain forward and backward
compatibility for applications that follow the rules listed under
"Flow key compatibility" above.
The basic rule is obvious:
------------------------------------------------------------------
New network protocol support must only supplement existing flow
key attributes. It must not change the meaning of already defined
flow key attributes.
------------------------------------------------------------------
This rule does have less-obvious consequences so it is worth working
through a few examples. Suppose, for example, that the kernel module
did not already implement VLAN parsing. Instead, it just interpreted
the 802.1Q TPID (0x8100) as the Ethertype then stopped parsing the
packet. The flow key for any packet with an 802.1Q header would look
essentially like this, ignoring metadata:
eth(...), eth_type(0x8100)
Naively, to add VLAN support, it makes sense to add a new "vlan" flow
key attribute to contain the VLAN tag, then continue to decode the
encapsulated headers beyond the VLAN tag using the existing field
definitions. With this change, an TCP packet in VLAN 10 would have a
flow key much like this:
eth(...), vlan(vid=10, pcp=0), eth_type(0x0800), ip(proto=6, ...), tcp(...)
But this change would negatively affect a userspace application that
has not been updated to understand the new "vlan" flow key attribute.
The application could, following the flow compatibility rules above,
ignore the "vlan" attribute that it does not understand and therefore
assume that the flow contained IP packets. This is a bad assumption
(the flow only contains IP packets if one parses and skips over the
802.1Q header) and it could cause the application's behavior to change
across kernel versions even though it follows the compatibility rules.
The solution is to use a set of nested attributes. This is, for
example, why 802.1Q support uses nested attributes. A TCP packet in
VLAN 10 is actually expressed as:
eth(...), eth_type(0x8100), vlan(vid=10, pcp=0), encap(eth_type(0x0800),
ip(proto=6, ...), tcp(...)))
Notice how the "eth_type", "ip", and "tcp" flow key attributes are
nested inside the "encap" attribute. Thus, an application that does
not understand the "vlan" key will not see either of those attributes
and therefore will not misinterpret them. (Also, the outer eth_type
is still 0x8100, not changed to 0x0800.)
Handling malformed packets
--------------------------
Don't drop packets in the kernel for malformed protocol headers, bad
checksums, etc. This would prevent userspace from implementing a
simple Ethernet switch that forwards every packet.
Instead, in such a case, include an attribute with "empty" content.
It doesn't matter if the empty content could be valid protocol values,
as long as those values are rarely seen in practice, because userspace
can always forward all packets with those values to userspace and
handle them individually.
For example, consider a packet that contains an IP header that
indicates protocol 6 for TCP, but which is truncated just after the IP
header, so that the TCP header is missing. The flow key for this
packet would include a tcp attribute with all-zero src and dst, like
this:
eth(...), eth_type(0x0800), ip(proto=6, ...), tcp(src=0, dst=0)
As another example, consider a packet with an Ethernet type of 0x8100,
indicating that a VLAN TCI should follow, but which is truncated just
after the Ethernet type. The flow key for this packet would include
an all-zero-bits vlan and an empty encap attribute, like this:
eth(...), eth_type(0x8100), vlan(0), encap()
Unlike a TCP packet with source and destination ports 0, an
all-zero-bits VLAN TCI is not that rare, so the CFI bit (aka
VLAN_TAG_PRESENT inside the kernel) is ordinarily set in a vlan
attribute expressly to allow this situation to be distinguished.
Thus, the flow key in this second example unambiguously indicates a
missing or malformed VLAN TCI.
Other rules
-----------
The other rules for flow keys are much less subtle:
- Duplicate attributes are not allowed at a given nesting level.
- Ordering of attributes is not significant.
- When the kernel sends a given flow key to userspace, it always
composes it the same way. This allows userspace to hash and
compare entire flow keys that it may not be able to fully
interpret.
...@@ -4868,6 +4868,14 @@ S: Maintained ...@@ -4868,6 +4868,14 @@ S: Maintained
T: git git://openrisc.net/~jonas/linux T: git git://openrisc.net/~jonas/linux
F: arch/openrisc F: arch/openrisc
OPENVSWITCH
M: Jesse Gross <jesse@nicira.com>
L: dev@openvswitch.org
W: http://openvswitch.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch.git
S: Maintained
F: net/openvswitch/
OPL4 DRIVER OPL4 DRIVER
M: Clemens Ladisch <clemens@ladisch.de> M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers) L: alsa-devel@alsa-project.org (moderated for non-subscribers)
......
This diff is collapsed.
...@@ -215,6 +215,7 @@ source "net/sched/Kconfig" ...@@ -215,6 +215,7 @@ source "net/sched/Kconfig"
source "net/dcb/Kconfig" source "net/dcb/Kconfig"
source "net/dns_resolver/Kconfig" source "net/dns_resolver/Kconfig"
source "net/batman-adv/Kconfig" source "net/batman-adv/Kconfig"
source "net/openvswitch/Kconfig"
config RPS config RPS
boolean boolean
......
...@@ -69,3 +69,4 @@ obj-$(CONFIG_DNS_RESOLVER) += dns_resolver/ ...@@ -69,3 +69,4 @@ obj-$(CONFIG_DNS_RESOLVER) += dns_resolver/
obj-$(CONFIG_CEPH_LIB) += ceph/ obj-$(CONFIG_CEPH_LIB) += ceph/
obj-$(CONFIG_BATMAN_ADV) += batman-adv/ obj-$(CONFIG_BATMAN_ADV) += batman-adv/
obj-$(CONFIG_NFC) += nfc/ obj-$(CONFIG_NFC) += nfc/
obj-$(CONFIG_OPENVSWITCH) += openvswitch/
#
# Open vSwitch
#
config OPENVSWITCH
tristate "Open vSwitch"
---help---
Open vSwitch is a multilayer Ethernet switch targeted at virtualized
environments. In addition to supporting a variety of features
expected in a traditional hardware switch, it enables fine-grained
programmatic extension and flow-based control of the network. This
control is useful in a wide variety of applications but is
particularly important in multi-server virtualization deployments,
which are often characterized by highly dynamic endpoints and the
need to maintain logical abstractions for multiple tenants.
The Open vSwitch datapath provides an in-kernel fast path for packet
forwarding. It is complemented by a userspace daemon, ovs-vswitchd,
which is able to accept configuration from a variety of sources and
translate it into packet processing rules.
See http://openvswitch.org for more information and userspace
utilities.
To compile this code as a module, choose M here: the module will be
called openvswitch.
If unsure, say N.
#
# Makefile for Open vSwitch.
#
obj-$(CONFIG_OPENVSWITCH) += openvswitch.o
openvswitch-y := \
actions.o \
datapath.o \
dp_notify.o \
flow.o \
vport.o \
vport-internal_dev.o \
vport-netdev.o \
This diff is collapsed.
This diff is collapsed.
/*
* Copyright (c) 2007-2011 Nicira Networks.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef DATAPATH_H
#define DATAPATH_H 1
#include <asm/page.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/u64_stats_sync.h>
#include <linux/version.h>
#include "flow.h"
struct vport;
#define DP_MAX_PORTS 1024
#define SAMPLE_ACTION_DEPTH 3
/**
* struct dp_stats_percpu - per-cpu packet processing statistics for a given
* datapath.
* @n_hit: Number of received packets for which a matching flow was found in
* the flow table.
* @n_miss: Number of received packets that had no matching flow in the flow
* table. The sum of @n_hit and @n_miss is the number of packets that have
* been received by the datapath.
* @n_lost: Number of received packets that had no matching flow in the flow
* table that could not be sent to userspace (normally due to an overflow in
* one of the datapath's queues).
*/
struct dp_stats_percpu {
u64 n_hit;
u64 n_missed;
u64 n_lost;
struct u64_stats_sync sync;
};
/**
* struct datapath - datapath for flow-based packet switching
* @rcu: RCU callback head for deferred destruction.
* @list_node: Element in global 'dps' list.
* @n_flows: Number of flows currently in flow table.
* @table: Current flow table. Protected by genl_lock and RCU.
* @ports: Map from port number to &struct vport. %OVSP_LOCAL port
* always exists, other ports may be %NULL. Protected by RTNL and RCU.
* @port_list: List of all ports in @ports in arbitrary order. RTNL required
* to iterate or modify.
* @stats_percpu: Per-CPU datapath statistics.
*
* Context: See the comment on locking at the top of datapath.c for additional
* locking information.
*/
struct datapath {
struct rcu_head rcu;
struct list_head list_node;
/* Flow table. */
struct flow_table __rcu *table;
/* Switch ports. */
struct vport __rcu *ports[DP_MAX_PORTS];
struct list_head port_list;
/* Stats. */
struct dp_stats_percpu __percpu *stats_percpu;
};
/**
* struct ovs_skb_cb - OVS data in skb CB
* @flow: The flow associated with this packet. May be %NULL if no flow.
*/
struct ovs_skb_cb {
struct sw_flow *flow;
};
#define OVS_CB(skb) ((struct ovs_skb_cb *)(skb)->cb)
/**
* struct dp_upcall - metadata to include with a packet to send to userspace
* @cmd: One of %OVS_PACKET_CMD_*.
* @key: Becomes %OVS_PACKET_ATTR_KEY. Must be nonnull.
* @userdata: If nonnull, its u64 value is extracted and passed to userspace as
* %OVS_PACKET_ATTR_USERDATA.
* @pid: Netlink PID to which packet should be sent. If @pid is 0 then no
* packet is sent and the packet is accounted in the datapath's @n_lost
* counter.
*/
struct dp_upcall_info {
u8 cmd;
const struct sw_flow_key *key;
const struct nlattr *userdata;
u32 pid;
};
extern struct notifier_block ovs_dp_device_notifier;
extern struct genl_multicast_group ovs_dp_vport_multicast_group;
void ovs_dp_process_received_packet(struct vport *, struct sk_buff *);
void ovs_dp_detach_port(struct vport *);
int ovs_dp_upcall(struct datapath *, struct sk_buff *,
const struct dp_upcall_info *);
const char *ovs_dp_name(const struct datapath *dp);
struct sk_buff *ovs_vport_cmd_build_info(struct vport *, u32 pid, u32 seq,
u8 cmd);
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb);
#endif /* datapath.h */
/*
* Copyright (c) 2007-2011 Nicira Networks.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#include <linux/netdevice.h>
#include <net/genetlink.h>
#include "datapath.h"
#include "vport-internal_dev.h"
#include "vport-netdev.h"
static int dp_device_event(struct notifier_block *unused, unsigned long event,
void *ptr)
{
struct net_device *dev = ptr;
struct vport *vport;
if (ovs_is_internal_dev(dev))
vport = ovs_internal_dev_get_vport(dev);
else
vport = ovs_netdev_get_vport(dev);
if (!vport)
return NOTIFY_DONE;
switch (event) {
case NETDEV_UNREGISTER:
if (!ovs_is_internal_dev(dev)) {
struct sk_buff *notify;
notify = ovs_vport_cmd_build_info(vport, 0, 0,
OVS_VPORT_CMD_DEL);
ovs_dp_detach_port(vport);
if (IS_ERR(notify)) {
netlink_set_err(init_net.genl_sock, 0,
ovs_dp_vport_multicast_group.id,
PTR_ERR(notify));
break;
}
genlmsg_multicast(notify, 0, ovs_dp_vport_multicast_group.id,
GFP_KERNEL);
}
break;
}
return NOTIFY_DONE;
}
struct notifier_block ovs_dp_device_notifier = {
.notifier_call = dp_device_event
};
This diff is collapsed.
/*
* Copyright (c) 2007-2011 Nicira Networks.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef FLOW_H
#define FLOW_H 1
#include <linux/kernel.h>
#include <linux/netlink.h>
#include <linux/openvswitch.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/rcupdate.h>
#include <linux/if_ether.h>
#include <linux/in6.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/flex_array.h>
#include <net/inet_ecn.h>
struct sk_buff;
struct sw_flow_actions {
struct rcu_head rcu;
u32 actions_len;
struct nlattr actions[];
};
struct sw_flow_key {
struct {
u32 priority; /* Packet QoS priority. */
u16 in_port; /* Input switch port (or USHRT_MAX). */
} phy;
struct {
u8 src[ETH_ALEN]; /* Ethernet source address. */
u8 dst[ETH_ALEN]; /* Ethernet destination address. */
__be16 tci; /* 0 if no VLAN, VLAN_TAG_PRESENT set otherwise. */
__be16 type; /* Ethernet frame type. */
} eth;
struct {
u8 proto; /* IP protocol or lower 8 bits of ARP opcode. */
u8 tos; /* IP ToS. */
u8 ttl; /* IP TTL/hop limit. */
u8 frag; /* One of OVS_FRAG_TYPE_*. */
} ip;
union {
struct {
struct {
__be32 src; /* IP source address. */
__be32 dst; /* IP destination address. */
} addr;
union {
struct {
__be16 src; /* TCP/UDP source port. */
__be16 dst; /* TCP/UDP destination port. */
} tp;
struct {
u8 sha[ETH_ALEN]; /* ARP source hardware address. */
u8 tha[ETH_ALEN]; /* ARP target hardware address. */
} arp;
};
} ipv4;
struct {
struct {
struct in6_addr src; /* IPv6 source address. */
struct in6_addr dst; /* IPv6 destination address. */
} addr;
__be32 label; /* IPv6 flow label. */
struct {
__be16 src; /* TCP/UDP source port. */
__be16 dst; /* TCP/UDP destination port. */
} tp;
struct {
struct in6_addr target; /* ND target address. */
u8 sll[ETH_ALEN]; /* ND source link layer address. */
u8 tll[ETH_ALEN]; /* ND target link layer address. */
} nd;
} ipv6;
};
};
struct sw_flow {
struct rcu_head rcu;
struct hlist_node hash_node[2];
u32 hash;
struct sw_flow_key key;
struct sw_flow_actions __rcu *sf_acts;
spinlock_t lock; /* Lock for values below. */
unsigned long used; /* Last used time (in jiffies). */
u64 packet_count; /* Number of packets matched. */
u64 byte_count; /* Number of bytes matched. */
u8 tcp_flags; /* Union of seen TCP flags. */
};
struct arp_eth_header {
__be16 ar_hrd; /* format of hardware address */
__be16 ar_pro; /* format of protocol address */
unsigned char ar_hln; /* length of hardware address */
unsigned char ar_pln; /* length of protocol address */
__be16 ar_op; /* ARP opcode (command) */
/* Ethernet+IPv4 specific members. */
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
unsigned char ar_sip[4]; /* sender IP address */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
unsigned char ar_tip[4]; /* target IP address */
} __packed;
int ovs_flow_init(void);
void ovs_flow_exit(void);
struct sw_flow *ovs_flow_alloc(void);
void ovs_flow_deferred_free(struct sw_flow *);
void ovs_flow_free(struct sw_flow *flow);
struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *);
void ovs_flow_deferred_free_acts(struct sw_flow_actions *);
int ovs_flow_extract(struct sk_buff *, u16 in_port, struct sw_flow_key *,
int *key_lenp);
void ovs_flow_used(struct sw_flow *, struct sk_buff *);
u64 ovs_flow_used_time(unsigned long flow_jiffies);
/* Upper bound on the length of a nlattr-formatted flow key. The longest
* nlattr-formatted flow key would be:
*
* struct pad nl hdr total
* ------ --- ------ -----
* OVS_KEY_ATTR_PRIORITY 4 -- 4 8
* OVS_KEY_ATTR_IN_PORT 4 -- 4 8
* OVS_KEY_ATTR_ETHERNET 12 -- 4 16
* OVS_KEY_ATTR_8021Q 4 -- 4 8
* OVS_KEY_ATTR_ETHERTYPE 2 2 4 8
* OVS_KEY_ATTR_IPV6 40 -- 4 44
* OVS_KEY_ATTR_ICMPV6 2 2 4 8
* OVS_KEY_ATTR_ND 28 -- 4 32
* -------------------------------------------------
* total 132
*/
#define FLOW_BUFSIZE 132
int ovs_flow_to_nlattrs(const struct sw_flow_key *, struct sk_buff *);
int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
const struct nlattr *);
int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
const struct nlattr *);
#define TBL_MIN_BUCKETS 1024
struct flow_table {
struct flex_array *buckets;
unsigned int count, n_buckets;
struct rcu_head rcu;
int node_ver;
u32 hash_seed;
bool keep_flows;
};
static inline int ovs_flow_tbl_count(struct flow_table *table)
{
return table->count;
}
static inline int ovs_flow_tbl_need_to_expand(struct flow_table *table)
{
return (table->count > table->n_buckets);
}
struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
struct sw_flow_key *key, int len);
void ovs_flow_tbl_destroy(struct flow_table *table);
void ovs_flow_tbl_deferred_destroy(struct flow_table *table);
struct flow_table *ovs_flow_tbl_alloc(int new_size);
struct flow_table *ovs_flow_tbl_expand(struct flow_table *table);
struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table);
void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow);
void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow);
u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len);
struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *idx);
extern const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1];
#endif /* flow.h */
This diff is collapsed.
/*
* Copyright (c) 2007-2011 Nicira Networks.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef VPORT_INTERNAL_DEV_H
#define VPORT_INTERNAL_DEV_H 1
#include "datapath.h"
#include "vport.h"
int ovs_is_internal_dev(const struct net_device *);
struct vport *ovs_internal_dev_get_vport(struct net_device *);
#endif /* vport-internal_dev.h */
This diff is collapsed.
/*
* Copyright (c) 2007-2011 Nicira Networks.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#ifndef VPORT_NETDEV_H
#define VPORT_NETDEV_H 1
#include <linux/netdevice.h>
#include "vport.h"
struct vport *ovs_netdev_get_vport(struct net_device *dev);
struct netdev_vport {
struct net_device *dev;
};
static inline struct netdev_vport *
netdev_vport_priv(const struct vport *vport)
{
return vport_priv(vport);
}
const char *ovs_netdev_get_name(const struct vport *);
const char *ovs_netdev_get_config(const struct vport *);
int ovs_netdev_get_ifindex(const struct vport *);
#endif /* vport_netdev.h */
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment