Commit d5da6457 authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'for-mingo' of...

Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu

Pull RCU fix from Paul McKenney:

" This pull request is for an RCU change that permits waiting for grace
  periods started by CPUs late in the process of going offline.  Lack of
  this capability is causing failures:

    http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org"
Signed-off-by: default avatarIngo Molnar <mingo@kernel.org>
parents ef954844 a58163d8
......@@ -110,6 +110,7 @@ void rcu_bh_qs(void);
void rcu_check_callbacks(int user);
void rcu_report_dead(unsigned int cpu);
void rcu_cpu_starting(unsigned int cpu);
void rcutree_migrate_callbacks(int cpu);
#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
......
......@@ -650,6 +650,7 @@ static int takedown_cpu(unsigned int cpu)
__cpu_die(cpu);
tick_cleanup_dead_cpu(cpu);
rcutree_migrate_callbacks(cpu);
return 0;
}
......
......@@ -2562,85 +2562,6 @@ rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
}
/*
* Send the specified CPU's RCU callbacks to the orphanage. The
* specified CPU must be offline, and the caller must hold the
* ->orphan_lock.
*/
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
struct rcu_node *rnp, struct rcu_data *rdp)
{
lockdep_assert_held(&rsp->orphan_lock);
/* No-CBs CPUs do not have orphanable callbacks. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
return;
/*
* Orphan the callbacks. First adjust the counts. This is safe
* because _rcu_barrier() excludes CPU-hotplug operations, so it
* cannot be running now. Thus no memory barrier is required.
*/
rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
/*
* Next, move those callbacks still needing a grace period to
* the orphanage, where some other CPU will pick them up.
* Some of the callbacks might have gone partway through a grace
* period, but that is too bad. They get to start over because we
* cannot assume that grace periods are synchronized across CPUs.
*/
rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
/*
* Then move the ready-to-invoke callbacks to the orphanage,
* where some other CPU will pick them up. These will not be
* required to pass though another grace period: They are done.
*/
rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
/* Finally, disallow further callbacks on this CPU. */
rcu_segcblist_disable(&rdp->cblist);
}
/*
* Adopt the RCU callbacks from the specified rcu_state structure's
* orphanage. The caller must hold the ->orphan_lock.
*/
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
{
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
lockdep_assert_held(&rsp->orphan_lock);
/* No-CBs CPUs are handled specially. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
return;
/* Do the accounting first. */
rdp->n_cbs_adopted += rsp->orphan_done.len;
if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
rcu_idle_count_callbacks_posted();
rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
/*
* We do not need a memory barrier here because the only way we
* can get here if there is an rcu_barrier() in flight is if
* we are the task doing the rcu_barrier().
*/
/* First adopt the ready-to-invoke callbacks, then the done ones. */
rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
WARN_ON_ONCE(rsp->orphan_done.head);
rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
WARN_ON_ONCE(rsp->orphan_pend.head);
WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
!rcu_segcblist_n_cbs(&rdp->cblist));
}
/*
* Trace the fact that this CPU is going offline.
*/
......@@ -2704,14 +2625,12 @@ static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
/*
* The CPU has been completely removed, and some other CPU is reporting
* this fact from process context. Do the remainder of the cleanup,
* including orphaning the outgoing CPU's RCU callbacks, and also
* adopting them. There can only be one CPU hotplug operation at a time,
* so no other CPU can be attempting to update rcu_cpu_kthread_task.
* this fact from process context. Do the remainder of the cleanup.
* There can only be one CPU hotplug operation at a time, so no need for
* explicit locking.
*/
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
......@@ -2720,18 +2639,6 @@ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
/* Adjust any no-longer-needed kthreads. */
rcu_boost_kthread_setaffinity(rnp, -1);
/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
rcu_adopt_orphan_cbs(rsp, flags);
raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
!rcu_segcblist_empty(&rdp->cblist),
"rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
cpu, rcu_segcblist_n_cbs(&rdp->cblist),
rcu_segcblist_first_cb(&rdp->cblist));
}
/*
......@@ -3937,6 +3844,116 @@ void rcu_report_dead(unsigned int cpu)
for_each_rcu_flavor(rsp)
rcu_cleanup_dying_idle_cpu(cpu, rsp);
}
/*
* Send the specified CPU's RCU callbacks to the orphanage. The
* specified CPU must be offline, and the caller must hold the
* ->orphan_lock.
*/
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
struct rcu_node *rnp, struct rcu_data *rdp)
{
lockdep_assert_held(&rsp->orphan_lock);
/* No-CBs CPUs do not have orphanable callbacks. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
return;
/*
* Orphan the callbacks. First adjust the counts. This is safe
* because _rcu_barrier() excludes CPU-hotplug operations, so it
* cannot be running now. Thus no memory barrier is required.
*/
rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
/*
* Next, move those callbacks still needing a grace period to
* the orphanage, where some other CPU will pick them up.
* Some of the callbacks might have gone partway through a grace
* period, but that is too bad. They get to start over because we
* cannot assume that grace periods are synchronized across CPUs.
*/
rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
/*
* Then move the ready-to-invoke callbacks to the orphanage,
* where some other CPU will pick them up. These will not be
* required to pass though another grace period: They are done.
*/
rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
/* Finally, disallow further callbacks on this CPU. */
rcu_segcblist_disable(&rdp->cblist);
}
/*
* Adopt the RCU callbacks from the specified rcu_state structure's
* orphanage. The caller must hold the ->orphan_lock.
*/
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
{
struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
lockdep_assert_held(&rsp->orphan_lock);
/* No-CBs CPUs are handled specially. */
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
return;
/* Do the accounting first. */
rdp->n_cbs_adopted += rsp->orphan_done.len;
if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
rcu_idle_count_callbacks_posted();
rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
/*
* We do not need a memory barrier here because the only way we
* can get here if there is an rcu_barrier() in flight is if
* we are the task doing the rcu_barrier().
*/
/* First adopt the ready-to-invoke callbacks, then the done ones. */
rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
WARN_ON_ONCE(rsp->orphan_done.head);
rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
WARN_ON_ONCE(rsp->orphan_pend.head);
WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
!rcu_segcblist_n_cbs(&rdp->cblist));
}
/* Orphan the dead CPU's callbacks, and then adopt them. */
static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
rcu_adopt_orphan_cbs(rsp, flags);
raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
!rcu_segcblist_empty(&rdp->cblist),
"rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
cpu, rcu_segcblist_n_cbs(&rdp->cblist),
rcu_segcblist_first_cb(&rdp->cblist));
}
/*
* The outgoing CPU has just passed through the dying-idle state,
* and we are being invoked from the CPU that was IPIed to continue the
* offline operation. We need to migrate the outgoing CPU's callbacks.
*/
void rcutree_migrate_callbacks(int cpu)
{
struct rcu_state *rsp;
for_each_rcu_flavor(rsp)
rcu_migrate_callbacks(cpu, rsp);
}
#endif
/*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment