Commit eb97a784 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'for-f2fs-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "This patch-set includes the following major enhancement patches:
   - support inline xattrs
   - add sysfs support to control GCs explicitly
   - add proc entry to show the current segment usage information
   - improve the GC/SSR performance

  The other bug fixes are as follows:
   - avoid the overflow on status calculation
   - fix some error handling routines
   - fix inconsistent xattr states after power-off-recovery
   - fix incorrect xattr node offset definition
   - fix deadlock condition in fsync
   - fix the fdatasync routine for power-off-recovery"

* tag 'for-f2fs-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (40 commits)
  f2fs: optimize gc for better performance
  f2fs: merge more bios of node block writes
  f2fs: avoid an overflow during utilization calculation
  f2fs: trigger GC when there are prefree segments
  f2fs: use strncasecmp() simplify the string comparison
  f2fs: fix omitting to update inode page
  f2fs: support the inline xattrs
  f2fs: add the truncate_xattr_node function
  f2fs: introduce __find_xattr for readability
  f2fs: reserve the xattr space dynamically
  f2fs: add flags for inline xattrs
  f2fs: fix error return code in init_f2fs_fs()
  f2fs: fix wrong BUG_ON condition
  f2fs: fix memory leak when init f2fs filesystem fail
  f2fs: fix a compound statement label error
  f2fs: avoid writing inode redundantly when creating a file
  f2fs: alloc_page() doesn't return an ERR_PTR
  f2fs: should cover i_xattr_nid with its xattr node page lock
  f2fs: check the free space first in new_node_page
  f2fs: clean up the needless end 'return' of void function
  ...
parents 2e032852 a26b7c8a
What: /sys/fs/f2fs/<disk>/gc_max_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the maximun sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_min_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the minimum sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_no_gc_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the default sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_idle
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the victim selection policy for garbage collection.
......@@ -18,8 +18,8 @@ according to its internal geometry or flash memory management scheme, namely FTL
F2FS and its tools support various parameters not only for configuring on-disk
layout, but also for selecting allocation and cleaning algorithms.
The file system formatting tool, "mkfs.f2fs", is available from the following
git tree:
The following git tree provides the file system formatting tool (mkfs.f2fs),
a consistency checking tool (fsck.f2fs), and a debugging tool (dump.f2fs).
>> git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git
For reporting bugs and sending patches, please use the following mailing list:
......@@ -132,6 +132,38 @@ f2fs. Each file shows the whole f2fs information.
- average SIT information about whole segments
- current memory footprint consumed by f2fs.
================================================================================
SYSFS ENTRIES
================================================================================
Information about mounted f2f2 file systems can be found in
/sys/fs/f2fs. Each mounted filesystem will have a directory in
/sys/fs/f2fs based on its device name (i.e., /sys/fs/f2fs/sda).
The files in each per-device directory are shown in table below.
Files in /sys/fs/f2fs/<devname>
(see also Documentation/ABI/testing/sysfs-fs-f2fs)
..............................................................................
File Content
gc_max_sleep_time This tuning parameter controls the maximum sleep
time for the garbage collection thread. Time is
in milliseconds.
gc_min_sleep_time This tuning parameter controls the minimum sleep
time for the garbage collection thread. Time is
in milliseconds.
gc_no_gc_sleep_time This tuning parameter controls the default sleep
time for the garbage collection thread. Time is
in milliseconds.
gc_idle This parameter controls the selection of victim
policy for garbage collection. Setting gc_idle = 0
(default) will disable this option. Setting
gc_idle = 1 will select the Cost Benefit approach
& setting gc_idle = 2 will select the greedy aproach.
================================================================================
USAGE
================================================================================
......@@ -149,8 +181,12 @@ USAGE
# mkfs.f2fs -l label /dev/block_device
# mount -t f2fs /dev/block_device /mnt/f2fs
Format options
--------------
mkfs.f2fs
---------
The mkfs.f2fs is for the use of formatting a partition as the f2fs filesystem,
which builds a basic on-disk layout.
The options consist of:
-l [label] : Give a volume label, up to 512 unicode name.
-a [0 or 1] : Split start location of each area for heap-based allocation.
1 is set by default, which performs this.
......@@ -164,6 +200,37 @@ Format options
-t [0 or 1] : Disable discard command or not.
1 is set by default, which conducts discard.
fsck.f2fs
---------
The fsck.f2fs is a tool to check the consistency of an f2fs-formatted
partition, which examines whether the filesystem metadata and user-made data
are cross-referenced correctly or not.
Note that, initial version of the tool does not fix any inconsistency.
The options consist of:
-d debug level [default:0]
dump.f2fs
---------
The dump.f2fs shows the information of specific inode and dumps SSA and SIT to
file. Each file is dump_ssa and dump_sit.
The dump.f2fs is used to debug on-disk data structures of the f2fs filesystem.
It shows on-disk inode information reconized by a given inode number, and is
able to dump all the SSA and SIT entries into predefined files, ./dump_ssa and
./dump_sit respectively.
The options consist of:
-d debug level [default:0]
-i inode no (hex)
-s [SIT dump segno from #1~#2 (decimal), for all 0~-1]
-a [SSA dump segno from #1~#2 (decimal), for all 0~-1]
Examples:
# dump.f2fs -i [ino] /dev/sdx
# dump.f2fs -s 0~-1 /dev/sdx (SIT dump)
# dump.f2fs -a 0~-1 /dev/sdx (SSA dump)
================================================================================
DESIGN
================================================================================
......
......@@ -182,7 +182,7 @@ const struct address_space_operations f2fs_meta_aops = {
.set_page_dirty = f2fs_set_meta_page_dirty,
};
int check_orphan_space(struct f2fs_sb_info *sbi)
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
unsigned int max_orphans;
int err = 0;
......@@ -197,10 +197,19 @@ int check_orphan_space(struct f2fs_sb_info *sbi)
mutex_lock(&sbi->orphan_inode_mutex);
if (sbi->n_orphans >= max_orphans)
err = -ENOSPC;
else
sbi->n_orphans++;
mutex_unlock(&sbi->orphan_inode_mutex);
return err;
}
void release_orphan_inode(struct f2fs_sb_info *sbi)
{
mutex_lock(&sbi->orphan_inode_mutex);
sbi->n_orphans--;
mutex_unlock(&sbi->orphan_inode_mutex);
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *head, *this;
......@@ -229,21 +238,18 @@ void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
list_add(&new->list, this->prev);
else
list_add_tail(&new->list, head);
sbi->n_orphans++;
out:
mutex_unlock(&sbi->orphan_inode_mutex);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *this, *next, *head;
struct list_head *head;
struct orphan_inode_entry *orphan;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each_safe(this, next, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
list_for_each_entry(orphan, head, list) {
if (orphan->ino == ino) {
list_del(&orphan->list);
kmem_cache_free(orphan_entry_slab, orphan);
......@@ -373,7 +379,7 @@ static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = le64_to_cpu(cp_block->checkpoint_ver);
pre_version = cur_cp_version(cp_block);
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
......@@ -388,7 +394,7 @@ static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = le64_to_cpu(cp_block->checkpoint_ver);
cur_version = cur_cp_version(cp_block);
if (cur_version == pre_version) {
*version = cur_version;
......@@ -793,7 +799,7 @@ void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
......
......@@ -37,9 +37,9 @@ static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
struct page *node_page = dn->node_page;
unsigned int ofs_in_node = dn->ofs_in_node;
wait_on_page_writeback(node_page);
f2fs_wait_on_page_writeback(node_page, NODE, false);
rn = (struct f2fs_node *)page_address(node_page);
rn = F2FS_NODE(node_page);
/* Get physical address of data block */
addr_array = blkaddr_in_node(rn);
......@@ -117,7 +117,8 @@ void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
block_t start_blkaddr, end_blkaddr;
BUG_ON(blk_addr == NEW_ADDR);
fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
/* Update the page address in the parent node */
__set_data_blkaddr(dn, blk_addr);
......@@ -176,7 +177,6 @@ void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
end_update:
write_unlock(&fi->ext.ext_lock);
sync_inode_page(dn);
return;
}
struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
......@@ -260,8 +260,17 @@ struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
if (PageUptodate(page))
return page;
BUG_ON(dn.data_blkaddr == NEW_ADDR);
BUG_ON(dn.data_blkaddr == NULL_ADDR);
/*
* A new dentry page is allocated but not able to be written, since its
* new inode page couldn't be allocated due to -ENOSPC.
* In such the case, its blkaddr can be remained as NEW_ADDR.
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
*/
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
return page;
}
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
if (err)
......@@ -365,7 +374,6 @@ static void read_end_io(struct bio *bio, int err)
}
unlock_page(page);
} while (bvec >= bio->bi_io_vec);
kfree(bio->bi_private);
bio_put(bio);
}
......@@ -391,7 +399,6 @@ int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
bio->bi_end_io = read_end_io;
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
kfree(bio->bi_private);
bio_put(bio);
up_read(&sbi->bio_sem);
f2fs_put_page(page, 1);
......@@ -442,7 +449,7 @@ static int get_data_block_ro(struct inode *inode, sector_t iblock,
unsigned int end_offset;
end_offset = IS_INODE(dn.node_page) ?
ADDRS_PER_INODE :
ADDRS_PER_INODE(F2FS_I(inode)) :
ADDRS_PER_BLOCK;
clear_buffer_new(bh_result);
......@@ -636,9 +643,6 @@ static int f2fs_write_begin(struct file *file, struct address_space *mapping,
int err = 0;
int ilock;
/* for nobh_write_end */
*fsdata = NULL;
f2fs_balance_fs(sbi);
repeat:
page = grab_cache_page_write_begin(mapping, index, flags);
......
......@@ -29,7 +29,7 @@ static DEFINE_MUTEX(f2fs_stat_mutex);
static void update_general_status(struct f2fs_sb_info *sbi)
{
struct f2fs_stat_info *si = sbi->stat_info;
struct f2fs_stat_info *si = F2FS_STAT(sbi);
int i;
/* valid check of the segment numbers */
......@@ -83,7 +83,7 @@ static void update_general_status(struct f2fs_sb_info *sbi)
*/
static void update_sit_info(struct f2fs_sb_info *sbi)
{
struct f2fs_stat_info *si = sbi->stat_info;
struct f2fs_stat_info *si = F2FS_STAT(sbi);
unsigned int blks_per_sec, hblks_per_sec, total_vblocks, bimodal, dist;
struct sit_info *sit_i = SIT_I(sbi);
unsigned int segno, vblocks;
......@@ -118,7 +118,7 @@ static void update_sit_info(struct f2fs_sb_info *sbi)
*/
static void update_mem_info(struct f2fs_sb_info *sbi)
{
struct f2fs_stat_info *si = sbi->stat_info;
struct f2fs_stat_info *si = F2FS_STAT(sbi);
unsigned npages;
if (si->base_mem)
......@@ -253,21 +253,21 @@ static int stat_show(struct seq_file *s, void *v)
si->nats, NM_WOUT_THRESHOLD);
seq_printf(s, " - SITs: %5d\n - free_nids: %5d\n",
si->sits, si->fnids);
seq_printf(s, "\nDistribution of User Blocks:");
seq_printf(s, " [ valid | invalid | free ]\n");
seq_printf(s, " [");
seq_puts(s, "\nDistribution of User Blocks:");
seq_puts(s, " [ valid | invalid | free ]\n");
seq_puts(s, " [");
for (j = 0; j < si->util_valid; j++)
seq_printf(s, "-");
seq_printf(s, "|");
seq_putc(s, '-');
seq_putc(s, '|');
for (j = 0; j < si->util_invalid; j++)
seq_printf(s, "-");
seq_printf(s, "|");
seq_putc(s, '-');
seq_putc(s, '|');
for (j = 0; j < si->util_free; j++)
seq_printf(s, "-");
seq_printf(s, "]\n\n");
seq_putc(s, '-');
seq_puts(s, "]\n\n");
seq_printf(s, "SSR: %u blocks in %u segments\n",
si->block_count[SSR], si->segment_count[SSR]);
seq_printf(s, "LFS: %u blocks in %u segments\n",
......@@ -305,11 +305,10 @@ int f2fs_build_stats(struct f2fs_sb_info *sbi)
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_stat_info *si;
sbi->stat_info = kzalloc(sizeof(struct f2fs_stat_info), GFP_KERNEL);
if (!sbi->stat_info)
si = kzalloc(sizeof(struct f2fs_stat_info), GFP_KERNEL);
if (!si)
return -ENOMEM;
si = sbi->stat_info;
si->all_area_segs = le32_to_cpu(raw_super->segment_count);
si->sit_area_segs = le32_to_cpu(raw_super->segment_count_sit);
si->nat_area_segs = le32_to_cpu(raw_super->segment_count_nat);
......@@ -319,6 +318,7 @@ int f2fs_build_stats(struct f2fs_sb_info *sbi)
si->main_area_zones = si->main_area_sections /
le32_to_cpu(raw_super->secs_per_zone);
si->sbi = sbi;
sbi->stat_info = si;
mutex_lock(&f2fs_stat_mutex);
list_add_tail(&si->stat_list, &f2fs_stat_list);
......@@ -329,13 +329,13 @@ int f2fs_build_stats(struct f2fs_sb_info *sbi)
void f2fs_destroy_stats(struct f2fs_sb_info *sbi)
{
struct f2fs_stat_info *si = sbi->stat_info;
struct f2fs_stat_info *si = F2FS_STAT(sbi);
mutex_lock(&f2fs_stat_mutex);
list_del(&si->stat_list);
mutex_unlock(&f2fs_stat_mutex);
kfree(sbi->stat_info);
kfree(si);
}
void __init f2fs_create_root_stats(void)
......
......@@ -270,12 +270,27 @@ static void init_dent_inode(const struct qstr *name, struct page *ipage)
struct f2fs_node *rn;
/* copy name info. to this inode page */
rn = (struct f2fs_node *)page_address(ipage);
rn = F2FS_NODE(ipage);
rn->i.i_namelen = cpu_to_le32(name->len);
memcpy(rn->i.i_name, name->name, name->len);
set_page_dirty(ipage);
}
int update_dent_inode(struct inode *inode, const struct qstr *name)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct page *page;
page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(page))
return PTR_ERR(page);
init_dent_inode(name, page);
f2fs_put_page(page, 1);
return 0;
}
static int make_empty_dir(struct inode *inode,
struct inode *parent, struct page *page)
{
......@@ -557,6 +572,8 @@ void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
if (inode->i_nlink == 0)
add_orphan_inode(sbi, inode->i_ino);
else
release_orphan_inode(sbi);
}
if (bit_pos == NR_DENTRY_IN_BLOCK) {
......
......@@ -17,6 +17,7 @@
#include <linux/slab.h>
#include <linux/crc32.h>
#include <linux/magic.h>
#include <linux/kobject.h>
/*
* For mount options
......@@ -28,6 +29,7 @@
#define F2FS_MOUNT_XATTR_USER 0x00000010
#define F2FS_MOUNT_POSIX_ACL 0x00000020
#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
#define F2FS_MOUNT_INLINE_XATTR 0x00000080
#define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
#define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
......@@ -134,11 +136,13 @@ static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
/*
* For INODE and NODE manager
*/
#define XATTR_NODE_OFFSET (-1) /*
* store xattrs to one node block per
* file keeping -1 as its node offset to
* distinguish from index node blocks.
*/
/*
* XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
* as its node offset to distinguish from index node blocks.
* But some bits are used to mark the node block.
*/
#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
>> OFFSET_BIT_SHIFT)
enum {
ALLOC_NODE, /* allocate a new node page if needed */
LOOKUP_NODE, /* look up a node without readahead */
......@@ -178,6 +182,7 @@ struct f2fs_inode_info {
f2fs_hash_t chash; /* hash value of given file name */
unsigned int clevel; /* maximum level of given file name */
nid_t i_xattr_nid; /* node id that contains xattrs */
unsigned long long xattr_ver; /* cp version of xattr modification */
struct extent_info ext; /* in-memory extent cache entry */
};
......@@ -295,15 +300,6 @@ struct f2fs_sm_info {
unsigned int ovp_segments; /* # of overprovision segments */
};
/*
* For directory operation
*/
#define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1)
#define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2)
#define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3)
#define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4)
#define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5)
/*
* For superblock
*/
......@@ -350,6 +346,7 @@ enum page_type {
struct f2fs_sb_info {
struct super_block *sb; /* pointer to VFS super block */
struct proc_dir_entry *s_proc; /* proc entry */
struct buffer_head *raw_super_buf; /* buffer head of raw sb */
struct f2fs_super_block *raw_super; /* raw super block pointer */
int s_dirty; /* dirty flag for checkpoint */
......@@ -429,6 +426,10 @@ struct f2fs_sb_info {
#endif
unsigned int last_victim[2]; /* last victim segment # */
spinlock_t stat_lock; /* lock for stat operations */
/* For sysfs suppport */
struct kobject s_kobj;
struct completion s_kobj_unregister;
};
/*
......@@ -454,6 +455,11 @@ static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
return (struct f2fs_checkpoint *)(sbi->ckpt);
}
static inline struct f2fs_node *F2FS_NODE(struct page *page)
{
return (struct f2fs_node *)page_address(page);
}
static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
{
return (struct f2fs_nm_info *)(sbi->nm_info);
......@@ -489,6 +495,11 @@ static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
sbi->s_dirty = 0;
}
static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
{
return le64_to_cpu(cp->checkpoint_ver);
}
static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
{
unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
......@@ -677,7 +688,7 @@ static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
{
block_t start_addr;
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
unsigned long long ckpt_version = cur_cp_version(ckpt);
start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
......@@ -812,7 +823,7 @@ static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
static inline bool IS_INODE(struct page *page)
{
struct f2fs_node *p = (struct f2fs_node *)page_address(page);
struct f2fs_node *p = F2FS_NODE(page);
return RAW_IS_INODE(p);
}
......@@ -826,7 +837,7 @@ static inline block_t datablock_addr(struct page *node_page,
{
struct f2fs_node *raw_node;
__le32 *addr_array;
raw_node = (struct f2fs_node *)page_address(node_page);
raw_node = F2FS_NODE(node_page);
addr_array = blkaddr_in_node(raw_node);
return le32_to_cpu(addr_array[offset]);
}
......@@ -873,6 +884,7 @@ enum {
FI_NO_ALLOC, /* should not allocate any blocks */
FI_UPDATE_DIR, /* should update inode block for consistency */
FI_DELAY_IPUT, /* used for the recovery */
FI_INLINE_XATTR, /* used for inline xattr */
};
static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
......@@ -905,6 +917,45 @@ static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
return 0;
}
static inline void get_inline_info(struct f2fs_inode_info *fi,
struct f2fs_inode *ri)
{
if (ri->i_inline & F2FS_INLINE_XATTR)
set_inode_flag(fi, FI_INLINE_XATTR);
}
static inline void set_raw_inline(struct f2fs_inode_info *fi,
struct f2fs_inode *ri)
{
ri->i_inline = 0;
if (is_inode_flag_set(fi, FI_INLINE_XATTR))
ri->i_inline |= F2FS_INLINE_XATTR;
}
static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
{
if (is_inode_flag_set(fi, FI_INLINE_XATTR))
return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
return DEF_ADDRS_PER_INODE;
}
static inline void *inline_xattr_addr(struct page *page)
{
struct f2fs_inode *ri;
ri = (struct f2fs_inode *)page_address(page);
return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
F2FS_INLINE_XATTR_ADDRS]);
}
static inline int inline_xattr_size(struct inode *inode)
{
if (is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR))
return F2FS_INLINE_XATTR_ADDRS << 2;
else
return 0;
}
static inline int f2fs_readonly(struct super_block *sb)
{
return sb->s_flags & MS_RDONLY;
......@@ -947,6 +998,7 @@ struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
struct page *, struct inode *);
int update_dent_inode(struct inode *, const struct qstr *);
int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
int f2fs_make_empty(struct inode *, struct inode *);
......@@ -980,6 +1032,7 @@ int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
int truncate_inode_blocks(struct inode *, pgoff_t);
int truncate_xattr_node(struct inode *, struct page *);
int remove_inode_page(struct inode *);
struct page *new_inode_page(struct inode *, const struct qstr *);
struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
......@@ -1012,7 +1065,8 @@ int npages_for_summary_flush(struct f2fs_sb_info *);
void allocate_new_segments(struct f2fs_sb_info *);
struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
struct bio *f2fs_bio_alloc(struct block_device *, int);
void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool);
void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
void write_meta_page(struct f2fs_sb_info *, struct page *);
void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
block_t, block_t *);
......@@ -1037,7 +1091,8 @@ void destroy_segment_manager(struct f2fs_sb_info *);
struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
int check_orphan_space(struct f2fs_sb_info *);
int acquire_orphan_inode(struct f2fs_sb_info *);
void release_orphan_inode(struct f2fs_sb_info *);
void add_orphan_inode(struct f2fs_sb_info *, nid_t);
void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
int recover_orphan_inodes(struct f2fs_sb_info *);
......@@ -1068,7 +1123,7 @@ int do_write_data_page(struct page *);
*/
int start_gc_thread(struct f2fs_sb_info *);
void stop_gc_thread(struct f2fs_sb_info *);
block_t start_bidx_of_node(unsigned int);
block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
int f2fs_gc(struct f2fs_sb_info *);
void build_gc_manager(struct f2fs_sb_info *);
int __init create_gc_caches(void);
......@@ -1112,11 +1167,16 @@ struct f2fs_stat_info {
unsigned base_mem, cache_mem;
};
static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
{
return (struct f2fs_stat_info*)sbi->stat_info;
}
#define stat_inc_call_count(si) ((si)->call_count++)
#define stat_inc_seg_count(sbi, type) \
do { \
struct f2fs_stat_info *si = sbi->stat_info; \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
(si)->tot_segs++; \
if (type == SUM_TYPE_DATA) \
si->data_segs++; \
......@@ -1129,14 +1189,14 @@ struct f2fs_stat_info {
#define stat_inc_data_blk_count(sbi, blks) \
do { \
struct f2fs_stat_info *si = sbi->stat_info; \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->data_blks += (blks); \
} while (0)
#define stat_inc_node_blk_count(sbi, blks) \
do { \
struct f2fs_stat_info *si = sbi->stat_info; \
struct f2fs_stat_info *si = F2FS_STAT(sbi); \
stat_inc_tot_blk_count(si, blks); \
si->node_blks += (blks); \
} while (0)
......
......@@ -112,11 +112,13 @@ static int get_parent_ino(struct inode *inode, nid_t *pino)
if (!dentry)
return 0;
inode = igrab(dentry->d_parent->d_inode);
dput(dentry);
if (update_dent_inode(inode, &dentry->d_name)) {
dput(dentry);
return 0;
}
*pino = inode->i_ino;
iput(inode);
*pino = parent_ino(dentry);
dput(dentry);
return 1;
}
......@@ -147,9 +149,10 @@ int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
mutex_lock(&inode->i_mutex);
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
goto out;
/*
* Both of fdatasync() and fsync() are able to be recovered from
* sudden-power-off.
*/
if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
need_cp = true;
else if (file_wrong_pino(inode))
......@@ -158,10 +161,14 @@ int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
need_cp = true;
else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
need_cp = true;
else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
need_cp = true;
if (need_cp) {
nid_t pino;
F2FS_I(inode)->xattr_ver = 0;
/* all the dirty node pages should be flushed for POR */
ret = f2fs_sync_fs(inode->i_sb, 1);
if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
......@@ -205,7 +212,7 @@ int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
struct f2fs_node *raw_node;
__le32 *addr;
raw_node = page_address(dn->node_page);
raw_node = F2FS_NODE(dn->node_page);
addr = blkaddr_in_node(raw_node) + ofs;
for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
......@@ -283,7 +290,7 @@ static int truncate_blocks(struct inode *inode, u64 from)
}
if (IS_INODE(dn.node_page))
count = ADDRS_PER_INODE;
count = ADDRS_PER_INODE(F2FS_I(inode));
else
count = ADDRS_PER_BLOCK;
......
......@@ -29,10 +29,11 @@ static struct kmem_cache *winode_slab;
static int gc_thread_func(void *data)
{
struct f2fs_sb_info *sbi = data;
struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
long wait_ms;
wait_ms = GC_THREAD_MIN_SLEEP_TIME;
wait_ms = gc_th->min_sleep_time;
do {
if (try_to_freeze())
......@@ -45,7 +46,7 @@ static int gc_thread_func(void *data)
break;
if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
wait_ms = GC_THREAD_MAX_SLEEP_TIME;
wait_ms = increase_sleep_time(gc_th, wait_ms);
continue;
}
......@@ -66,15 +67,15 @@ static int gc_thread_func(void *data)
continue;
if (!is_idle(sbi)) {
wait_ms = increase_sleep_time(wait_ms);
wait_ms = increase_sleep_time(gc_th, wait_ms);
mutex_unlock(&sbi->gc_mutex);
continue;
}
if (has_enough_invalid_blocks(sbi))
wait_ms = decrease_sleep_time(wait_ms);
wait_ms = decrease_sleep_time(gc_th, wait_ms);
else
wait_ms = increase_sleep_time(wait_ms);
wait_ms = increase_sleep_time(gc_th, wait_ms);
#ifdef CONFIG_F2FS_STAT_FS
sbi->bg_gc++;
......@@ -82,7 +83,7 @@ static int gc_thread_func(void *data)
/* if return value is not zero, no victim was selected */
if (f2fs_gc(sbi))
wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
wait_ms = gc_th->no_gc_sleep_time;
} while (!kthread_should_stop());
return 0;
}
......@@ -101,6 +102,12 @@ int start_gc_thread(struct f2fs_sb_info *sbi)
goto out;
}
gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
gc_th->gc_idle = 0;
sbi->gc_thread = gc_th;
init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
......@@ -125,9 +132,17 @@ void stop_gc_thread(struct f2fs_sb_info *sbi)
sbi->gc_thread = NULL;
}
static int select_gc_type(int gc_type)
static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
{
return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
if (gc_th && gc_th->gc_idle) {
if (gc_th->gc_idle == 1)
gc_mode = GC_CB;
else if (gc_th->gc_idle == 2)
gc_mode = GC_GREEDY;
}
return gc_mode;
}
static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
......@@ -138,12 +153,18 @@ static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
if (p->alloc_mode == SSR) {
p->gc_mode = GC_GREEDY;
p->dirty_segmap = dirty_i->dirty_segmap[type];
p->max_search = dirty_i->nr_dirty[type];
p->ofs_unit = 1;
} else {
p->gc_mode = select_gc_type(gc_type);
p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
p->max_search = dirty_i->nr_dirty[DIRTY];
p->ofs_unit = sbi->segs_per_sec;
}
if (p->max_search > MAX_VICTIM_SEARCH)
p->max_search = MAX_VICTIM_SEARCH;
p->offset = sbi->last_victim[p->gc_mode];
}
......@@ -290,7 +311,7 @@ static int get_victim_by_default(struct f2fs_sb_info *sbi,
if (cost == max_cost)
continue;
if (nsearched++ >= MAX_VICTIM_SEARCH) {
if (nsearched++ >= p.max_search) {
sbi->last_victim[p.gc_mode] = segno;
break;
}
......@@ -407,8 +428,7 @@ static void gc_node_segment(struct f2fs_sb_info *sbi,
/* set page dirty and write it */
if (gc_type == FG_GC) {
f2fs_submit_bio(sbi, NODE, true);
wait_on_page_writeback(node_page);
f2fs_wait_on_page_writeback(node_page, NODE, true);
set_page_dirty(node_page);
} else {
if (!PageWriteback(node_page))
......@@ -447,7 +467,7 @@ static void gc_node_segment(struct f2fs_sb_info *sbi,
* as indirect or double indirect node blocks, are given, it must be a caller's
* bug.
*/
block_t start_bidx_of_node(unsigned int node_ofs)
block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
{
unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
unsigned int bidx;
......@@ -464,7 +484,7 @@ block_t start_bidx_of_node(unsigned int node_ofs)
int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
bidx = node_ofs - 5 - dec;
}
return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
}
static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
......@@ -508,10 +528,7 @@ static void move_data_page(struct inode *inode, struct page *page, int gc_type)
} else {
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
if (PageWriteback(page)) {
f2fs_submit_bio(sbi, DATA, true);
wait_on_page_writeback(page);
}
f2fs_wait_on_page_writeback(page, DATA, true);
if (clear_page_dirty_for_io(page) &&
S_ISDIR(inode->i_mode)) {
......@@ -575,7 +592,6 @@ static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
continue;
}
start_bidx = start_bidx_of_node(nofs);
ofs_in_node = le16_to_cpu(entry->ofs_in_node);
if (phase == 2) {
......@@ -583,6 +599,8 @@ static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
if (IS_ERR(inode))
continue;
start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
data_page = find_data_page(inode,
start_bidx + ofs_in_node, false);
if (IS_ERR(data_page))
......@@ -593,6 +611,8 @@ static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
} else {
inode = find_gc_inode(dni.ino, ilist);
if (inode) {
start_bidx = start_bidx_of_node(nofs,
F2FS_I(inode));
data_page = get_lock_data_page(inode,
start_bidx + ofs_in_node);
if (IS_ERR(data_page))
......
......@@ -13,18 +13,26 @@
* whether IO subsystem is idle
* or not
*/
#define GC_THREAD_MIN_SLEEP_TIME 30000 /* milliseconds */
#define GC_THREAD_MAX_SLEEP_TIME 60000
#define GC_THREAD_NOGC_SLEEP_TIME 300000 /* wait 5 min */
#define DEF_GC_THREAD_MIN_SLEEP_TIME 30000 /* milliseconds */
#define DEF_GC_THREAD_MAX_SLEEP_TIME 60000
#define DEF_GC_THREAD_NOGC_SLEEP_TIME 300000 /* wait 5 min */
#define LIMIT_INVALID_BLOCK 40 /* percentage over total user space */
#define LIMIT_FREE_BLOCK 40 /* percentage over invalid + free space */
/* Search max. number of dirty segments to select a victim segment */
#define MAX_VICTIM_SEARCH 20
#define MAX_VICTIM_SEARCH 4096 /* covers 8GB */
struct f2fs_gc_kthread {
struct task_struct *f2fs_gc_task;
wait_queue_head_t gc_wait_queue_head;
/* for gc sleep time */
unsigned int min_sleep_time;
unsigned int max_sleep_time;
unsigned int no_gc_sleep_time;
/* for changing gc mode */
unsigned int gc_idle;
};
struct inode_entry {
......@@ -56,25 +64,25 @@ static inline block_t limit_free_user_blocks(struct f2fs_sb_info *sbi)
return (long)(reclaimable_user_blocks * LIMIT_FREE_BLOCK) / 100;
}
static inline long increase_sleep_time(long wait)
static inline long increase_sleep_time(struct f2fs_gc_kthread *gc_th, long wait)
{
if (wait == GC_THREAD_NOGC_SLEEP_TIME)
if (wait == gc_th->no_gc_sleep_time)
return wait;
wait += GC_THREAD_MIN_SLEEP_TIME;
if (wait > GC_THREAD_MAX_SLEEP_TIME)
wait = GC_THREAD_MAX_SLEEP_TIME;
wait += gc_th->min_sleep_time;
if (wait > gc_th->max_sleep_time)
wait = gc_th->max_sleep_time;
return wait;
}
static inline long decrease_sleep_time(long wait)
static inline long decrease_sleep_time(struct f2fs_gc_kthread *gc_th, long wait)
{
if (wait == GC_THREAD_NOGC_SLEEP_TIME)
wait = GC_THREAD_MAX_SLEEP_TIME;
if (wait == gc_th->no_gc_sleep_time)
wait = gc_th->max_sleep_time;
wait -= GC_THREAD_MIN_SLEEP_TIME;
if (wait <= GC_THREAD_MIN_SLEEP_TIME)
wait = GC_THREAD_MIN_SLEEP_TIME;
wait -= gc_th->min_sleep_time;
if (wait <= gc_th->min_sleep_time)
wait = gc_th->min_sleep_time;
return wait;
}
......
......@@ -56,7 +56,7 @@ static int do_read_inode(struct inode *inode)
if (IS_ERR(node_page))
return PTR_ERR(node_page);
rn = page_address(node_page);
rn = F2FS_NODE(node_page);
ri = &(rn->i);
inode->i_mode = le16_to_cpu(ri->i_mode);
......@@ -85,6 +85,7 @@ static int do_read_inode(struct inode *inode)
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
get_extent_info(&fi->ext, ri->i_ext);
get_inline_info(fi, ri);
f2fs_put_page(node_page, 1);
return 0;
}
......@@ -151,9 +152,9 @@ void update_inode(struct inode *inode, struct page *node_page)
struct f2fs_node *rn;
struct f2fs_inode *ri;
wait_on_page_writeback(node_page);
f2fs_wait_on_page_writeback(node_page, NODE, false);
rn = page_address(node_page);
rn = F2FS_NODE(node_page);
ri = &(rn->i);
ri->i_mode = cpu_to_le16(inode->i_mode);
......@@ -164,6 +165,7 @@ void update_inode(struct inode *inode, struct page *node_page)
ri->i_size = cpu_to_le64(i_size_read(inode));
ri->i_blocks = cpu_to_le64(inode->i_blocks);
set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
set_raw_inline(F2FS_I(inode), ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
......@@ -221,9 +223,6 @@ int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
return 0;
if (wbc)
f2fs_balance_fs(sbi);
/*
* We need to lock here to prevent from producing dirty node pages
* during the urgent cleaning time when runing out of free sections.
......@@ -231,6 +230,10 @@ int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
ilock = mutex_lock_op(sbi);
ret = update_inode_page(inode);
mutex_unlock_op(sbi, ilock);
if (wbc)
f2fs_balance_fs(sbi);
return ret;
}
......
......@@ -83,21 +83,11 @@ static int is_multimedia_file(const unsigned char *s, const char *sub)
{
size_t slen = strlen(s);
size_t sublen = strlen(sub);
int ret;
if (sublen > slen)
return 0;
ret = memcmp(s + slen - sublen, sub, sublen);
if (ret) { /* compare upper case */
int i;
char upper_sub[8];
for (i = 0; i < sublen && i < sizeof(upper_sub); i++)
upper_sub[i] = toupper(sub[i]);
return !memcmp(s + slen - sublen, upper_sub, sublen);
}
return !ret;
return !strncasecmp(s + slen - sublen, sub, sublen);
}
/*
......@@ -239,7 +229,7 @@ static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
if (!de)
goto fail;
err = check_orphan_space(sbi);
err = acquire_orphan_inode(sbi);
if (err) {
kunmap(page);
f2fs_put_page(page, 0);
......@@ -393,7 +383,7 @@ static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *old_inode = old_dentry->d_inode;
struct inode *new_inode = new_dentry->d_inode;
struct page *old_dir_page;
struct page *old_page;
struct page *old_page, *new_page;
struct f2fs_dir_entry *old_dir_entry = NULL;
struct f2fs_dir_entry *old_entry;
struct f2fs_dir_entry *new_entry;
......@@ -415,7 +405,6 @@ static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
ilock = mutex_lock_op(sbi);
if (new_inode) {
struct page *new_page;
err = -ENOTEMPTY;
if (old_dir_entry && !f2fs_empty_dir(new_inode))
......@@ -427,14 +416,28 @@ static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
if (!new_entry)
goto out_dir;
err = acquire_orphan_inode(sbi);
if (err)
goto put_out_dir;
if (update_dent_inode(old_inode, &new_dentry->d_name)) {
release_orphan_inode(sbi);
goto put_out_dir;
}
f2fs_set_link(new_dir, new_entry, new_page, old_inode);
new_inode->i_ctime = CURRENT_TIME;
if (old_dir_entry)
drop_nlink(new_inode);
drop_nlink(new_inode);
if (!new_inode->i_nlink)
add_orphan_inode(sbi, new_inode->i_ino);
else
release_orphan_inode(sbi);
update_inode_page(old_inode);
update_inode_page(new_inode);
} else {
err = f2fs_add_link(new_dentry, old_inode);
......@@ -467,6 +470,8 @@ static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
mutex_unlock_op(sbi, ilock);
return 0;
put_out_dir:
f2fs_put_page(new_page, 1);
out_dir:
if (old_dir_entry) {
kunmap(old_dir_page);
......
......@@ -315,9 +315,10 @@ void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
* The maximum depth is four.
* Offset[0] will have raw inode offset.
*/
static int get_node_path(long block, int offset[4], unsigned int noffset[4])
static int get_node_path(struct f2fs_inode_info *fi, long block,
int offset[4], unsigned int noffset[4])
{
const long direct_index = ADDRS_PER_INODE;
const long direct_index = ADDRS_PER_INODE(fi);
const long direct_blks = ADDRS_PER_BLOCK;
const long dptrs_per_blk = NIDS_PER_BLOCK;
const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
......@@ -405,7 +406,7 @@ int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
int level, i;
int err = 0;
level = get_node_path(index, offset, noffset);
level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
nids[0] = dn->inode->i_ino;
npage[0] = dn->inode_page;
......@@ -565,7 +566,7 @@ static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
return PTR_ERR(page);
}
rn = (struct f2fs_node *)page_address(page);
rn = F2FS_NODE(page);
if (depth < 3) {
for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
child_nid = le32_to_cpu(rn->in.nid[i]);
......@@ -687,7 +688,7 @@ int truncate_inode_blocks(struct inode *inode, pgoff_t from)
trace_f2fs_truncate_inode_blocks_enter(inode, from);
level = get_node_path(from, offset, noffset);
level = get_node_path(F2FS_I(inode), from, offset, noffset);
restart:
page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(page)) {
......@@ -698,7 +699,7 @@ int truncate_inode_blocks(struct inode *inode, pgoff_t from)
set_new_dnode(&dn, inode, page, NULL, 0);
unlock_page(page);
rn = page_address(page);
rn = F2FS_NODE(page);
switch (level) {
case 0:
case 1:
......@@ -771,6 +772,33 @@ int truncate_inode_blocks(struct inode *inode, pgoff_t from)
return err > 0 ? 0 : err;
}
int truncate_xattr_node(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
nid_t nid = F2FS_I(inode)->i_xattr_nid;
struct dnode_of_data dn;
struct page *npage;
if (!nid)
return 0;
npage = get_node_page(sbi, nid);
if (IS_ERR(npage))
return PTR_ERR(npage);
F2FS_I(inode)->i_xattr_nid = 0;
/* need to do checkpoint during fsync */
F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
set_new_dnode(&dn, inode, page, npage, nid);
if (page)
dn.inode_page_locked = 1;
truncate_node(&dn);
return 0;
}
/*
* Caller should grab and release a mutex by calling mutex_lock_op() and
* mutex_unlock_op().
......@@ -781,22 +809,16 @@ int remove_inode_page(struct inode *inode)
struct page *page;
nid_t ino = inode->i_ino;
struct dnode_of_data dn;
int err;
page = get_node_page(sbi, ino);
if (IS_ERR(page))
return PTR_ERR(page);
if (F2FS_I(inode)->i_xattr_nid) {
nid_t nid = F2FS_I(inode)->i_xattr_nid;
struct page *npage = get_node_page(sbi, nid);
if (IS_ERR(npage))
return PTR_ERR(npage);
F2FS_I(inode)->i_xattr_nid = 0;
set_new_dnode(&dn, inode, page, npage, nid);
dn.inode_page_locked = 1;
truncate_node(&dn);
err = truncate_xattr_node(inode, page);
if (err) {
f2fs_put_page(page, 1);
return err;
}
/* 0 is possible, after f2fs_new_inode() is failed */
......@@ -833,29 +855,32 @@ struct page *new_node_page(struct dnode_of_data *dn,
if (!page)
return ERR_PTR(-ENOMEM);
get_node_info(sbi, dn->nid, &old_ni);
if (!inc_valid_node_count(sbi, dn->inode, 1)) {
err = -ENOSPC;
goto fail;
}
SetPageUptodate(page);
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
get_node_info(sbi, dn->nid, &old_ni);
/* Reinitialize old_ni with new node page */
BUG_ON(old_ni.blk_addr != NULL_ADDR);
new_ni = old_ni;
new_ni.ino = dn->inode->i_ino;
if (!inc_valid_node_count(sbi, dn->inode, 1)) {
err = -ENOSPC;
goto fail;
}
set_node_addr(sbi, &new_ni, NEW_ADDR);
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
set_cold_node(dn->inode, page);
SetPageUptodate(page);
set_page_dirty(page);
if (ofs == XATTR_NODE_OFFSET)
F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
dn->node_page = page;
if (ipage)
update_inode(dn->inode, ipage);
else
sync_inode_page(dn);
set_page_dirty(page);
if (ofs == 0)
inc_valid_inode_count(sbi);
......@@ -916,7 +941,6 @@ void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
f2fs_put_page(apage, 0);
else if (err == LOCKED_PAGE)
f2fs_put_page(apage, 1);
return;
}
struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
......@@ -1167,9 +1191,9 @@ static int f2fs_write_node_page(struct page *page,
/*
* It is very important to gather dirty pages and write at once, so that we can
* submit a big bio without interfering other data writes.
* Be default, 512 pages (2MB), a segment size, is quite reasonable.
* Be default, 512 pages (2MB) * 3 node types, is more reasonable.
*/
#define COLLECT_DIRTY_NODES 512
#define COLLECT_DIRTY_NODES 1536
static int f2fs_write_node_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
......@@ -1187,9 +1211,10 @@ static int f2fs_write_node_pages(struct address_space *mapping,
return 0;
/* if mounting is failed, skip writing node pages */
wbc->nr_to_write = max_hw_blocks(sbi);
wbc->nr_to_write = 3 * max_hw_blocks(sbi);
sync_node_pages(sbi, 0, wbc);
wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
wbc->nr_to_write);
return 0;
}
......@@ -1444,6 +1469,9 @@ void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
if (!nid)
return;
spin_lock(&nm_i->free_nid_list_lock);
i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
BUG_ON(!i || i->state != NID_ALLOC);
......@@ -1484,8 +1512,8 @@ int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
SetPageUptodate(ipage);
fill_node_footer(ipage, ino, ino, 0, true);
src = (struct f2fs_node *)page_address(page);
dst = (struct f2fs_node *)page_address(ipage);
src = F2FS_NODE(page);
dst = F2FS_NODE(ipage);
memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
dst->i.i_size = 0;
......@@ -1515,8 +1543,8 @@ int restore_node_summary(struct f2fs_sb_info *sbi,
/* alloc temporal page for read node */
page = alloc_page(GFP_NOFS | __GFP_ZERO);
if (IS_ERR(page))
return PTR_ERR(page);
if (!page)
return -ENOMEM;
lock_page(page);
/* scan the node segment */
......@@ -1535,7 +1563,7 @@ int restore_node_summary(struct f2fs_sb_info *sbi,
goto out;
lock_page(page);
rn = (struct f2fs_node *)page_address(page);
rn = F2FS_NODE(page);
sum_entry->nid = rn->footer.nid;
sum_entry->version = 0;
sum_entry->ofs_in_node = 0;
......
......@@ -155,8 +155,7 @@ static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
static inline void fill_node_footer(struct page *page, nid_t nid,
nid_t ino, unsigned int ofs, bool reset)
{
void *kaddr = page_address(page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(page);
if (reset)
memset(rn, 0, sizeof(*rn));
rn->footer.nid = cpu_to_le32(nid);
......@@ -166,10 +165,8 @@ static inline void fill_node_footer(struct page *page, nid_t nid,
static inline void copy_node_footer(struct page *dst, struct page *src)
{
void *src_addr = page_address(src);
void *dst_addr = page_address(dst);
struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
struct f2fs_node *src_rn = F2FS_NODE(src);
struct f2fs_node *dst_rn = F2FS_NODE(dst);
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
}
......@@ -177,45 +174,40 @@ static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
void *kaddr = page_address(page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(page);
rn->footer.cp_ver = ckpt->checkpoint_ver;
rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
}
static inline nid_t ino_of_node(struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.ino);
}
static inline nid_t nid_of_node(struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.nid);
}
static inline unsigned int ofs_of_node(struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(node_page);
unsigned flag = le32_to_cpu(rn->footer.flag);
return flag >> OFFSET_BIT_SHIFT;
}
static inline unsigned long long cpver_of_node(struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(node_page);
return le64_to_cpu(rn->footer.cp_ver);
}
static inline block_t next_blkaddr_of_node(struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(node_page);
return le32_to_cpu(rn->footer.next_blkaddr);
}
......@@ -237,6 +229,10 @@ static inline block_t next_blkaddr_of_node(struct page *node_page)
static inline bool IS_DNODE(struct page *node_page)
{
unsigned int ofs = ofs_of_node(node_page);
if (ofs == XATTR_NODE_OFFSET)
return false;
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
ofs == 5 + 2 * NIDS_PER_BLOCK)
return false;
......@@ -250,7 +246,7 @@ static inline bool IS_DNODE(struct page *node_page)
static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
{
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
struct f2fs_node *rn = F2FS_NODE(p);
wait_on_page_writeback(p);
......@@ -263,7 +259,8 @@ static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
static inline nid_t get_nid(struct page *p, int off, bool i)
{
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
struct f2fs_node *rn = F2FS_NODE(p);
if (i)
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
return le32_to_cpu(rn->in.nid[off]);
......@@ -314,8 +311,7 @@ static inline void clear_cold_data(struct page *page)
static inline int is_node(struct page *page, int type)
{
void *kaddr = page_address(page);
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
struct f2fs_node *rn = F2FS_NODE(page);
return le32_to_cpu(rn->footer.flag) & (1 << type);
}
......@@ -325,7 +321,7 @@ static inline int is_node(struct page *page, int type)
static inline void set_cold_node(struct inode *inode, struct page *page)
{
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (S_ISDIR(inode->i_mode))
......@@ -337,7 +333,7 @@ static inline void set_cold_node(struct inode *inode, struct page *page)
static inline void set_mark(struct page *page, int mark, int type)
{
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
struct f2fs_node *rn = F2FS_NODE(page);
unsigned int flag = le32_to_cpu(rn->footer.flag);
if (mark)
flag |= (0x1 << type);
......
......@@ -40,8 +40,7 @@ static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
static int recover_dentry(struct page *ipage, struct inode *inode)
{
void *kaddr = page_address(ipage);
struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
struct f2fs_node *raw_node = F2FS_NODE(ipage);
struct f2fs_inode *raw_inode = &(raw_node->i);
nid_t pino = le32_to_cpu(raw_inode->i_pino);
struct f2fs_dir_entry *de;
......@@ -93,8 +92,7 @@ static int recover_dentry(struct page *ipage, struct inode *inode)
static int recover_inode(struct inode *inode, struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
struct f2fs_node *raw_node = F2FS_NODE(node_page);
struct f2fs_inode *raw_inode = &(raw_node->i);
if (!IS_INODE(node_page))
......@@ -119,7 +117,7 @@ static int recover_inode(struct inode *inode, struct page *node_page)
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct page *page;
block_t blkaddr;
......@@ -131,8 +129,8 @@ static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
/* read node page */
page = alloc_page(GFP_F2FS_ZERO);
if (IS_ERR(page))
return PTR_ERR(page);
if (!page)
return -ENOMEM;
lock_page(page);
while (1) {
......@@ -215,6 +213,7 @@ static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
void *kaddr;
struct inode *inode;
struct page *node_page;
unsigned int offset;
block_t bidx;
int i;
......@@ -259,8 +258,8 @@ static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
node_page = get_node_page(sbi, nid);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
bidx = start_bidx_of_node(ofs_of_node(node_page)) +
le16_to_cpu(sum.ofs_in_node);
offset = ofs_of_node(node_page);
ino = ino_of_node(node_page);
f2fs_put_page(node_page, 1);
......@@ -269,6 +268,9 @@ static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
if (IS_ERR(inode))
return PTR_ERR(inode);
bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
le16_to_cpu(sum.ofs_in_node);
truncate_hole(inode, bidx, bidx + 1);
iput(inode);
return 0;
......@@ -277,6 +279,7 @@ static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page, block_t blkaddr)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned int start, end;
struct dnode_of_data dn;
struct f2fs_summary sum;
......@@ -284,9 +287,9 @@ static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
int err = 0, recovered = 0;
int ilock;
start = start_bidx_of_node(ofs_of_node(page));
start = start_bidx_of_node(ofs_of_node(page), fi);
if (IS_INODE(page))
end = start + ADDRS_PER_INODE;
end = start + ADDRS_PER_INODE(fi);
else
end = start + ADDRS_PER_BLOCK;
......@@ -357,7 +360,7 @@ static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
static int recover_data(struct f2fs_sb_info *sbi,
struct list_head *head, int type)
{
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
struct curseg_info *curseg;
struct page *page;
int err = 0;
......@@ -369,7 +372,7 @@ static int recover_data(struct f2fs_sb_info *sbi,
/* read node page */
page = alloc_page(GFP_NOFS | __GFP_ZERO);
if (IS_ERR(page))
if (!page)
return -ENOMEM;
lock_page(page);
......
......@@ -117,7 +117,6 @@ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
}
mutex_unlock(&dirty_i->seglist_lock);
return;
}
/*
......@@ -261,7 +260,6 @@ static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
void *addr = curseg->sum_blk;
addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
memcpy(addr, sum, sizeof(struct f2fs_summary));
return;
}
/*
......@@ -542,12 +540,9 @@ static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
if (force) {
if (force)
new_curseg(sbi, type, true);
goto out;
}
if (type == CURSEG_WARM_NODE)
else if (type == CURSEG_WARM_NODE)
new_curseg(sbi, type, false);
else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
new_curseg(sbi, type, false);
......@@ -555,11 +550,9 @@ static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
change_curseg(sbi, type, true);
else
new_curseg(sbi, type, false);
out:
#ifdef CONFIG_F2FS_STAT_FS
sbi->segment_count[curseg->alloc_type]++;
#endif
return;
}
void allocate_new_segments(struct f2fs_sb_info *sbi)
......@@ -611,18 +604,12 @@ static void f2fs_end_io_write(struct bio *bio, int err)
struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
{
struct bio *bio;
struct bio_private *priv;
retry:
priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
if (!priv) {
cond_resched();
goto retry;
}
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
bio->bi_bdev = bdev;
bio->bi_private = priv;
bio->bi_private = NULL;
return bio;
}
......@@ -681,8 +668,17 @@ static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
do_submit_bio(sbi, type, false);
alloc_new:
if (sbi->bio[type] == NULL) {
struct bio_private *priv;
retry:
priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
if (!priv) {
cond_resched();
goto retry;
}
sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
sbi->bio[type]->bi_private = priv;
/*
* The end_io will be assigned at the sumbission phase.
* Until then, let bio_add_page() merge consecutive IOs as much
......@@ -702,6 +698,16 @@ static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
trace_f2fs_submit_write_page(page, blk_addr, type);
}
void f2fs_wait_on_page_writeback(struct page *page,
enum page_type type, bool sync)
{
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
if (PageWriteback(page)) {
f2fs_submit_bio(sbi, type, sync);
wait_on_page_writeback(page);
}
}
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
......@@ -1179,7 +1185,6 @@ void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
{
if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
return;
}
int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
......
......@@ -142,6 +142,7 @@ struct victim_sel_policy {
int alloc_mode; /* LFS or SSR */
int gc_mode; /* GC_CB or GC_GREEDY */
unsigned long *dirty_segmap; /* dirty segment bitmap */
unsigned int max_search; /* maximum # of segments to search */
unsigned int offset; /* last scanned bitmap offset */
unsigned int ofs_unit; /* bitmap search unit */
unsigned int min_cost; /* minimum cost */
......@@ -453,7 +454,8 @@ static inline int reserved_sections(struct f2fs_sb_info *sbi)
static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
return (free_sections(sbi) < overprovision_sections(sbi));
return ((prefree_segments(sbi) / sbi->segs_per_sec)
+ free_sections(sbi) < overprovision_sections(sbi));
}
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
......@@ -470,7 +472,7 @@ static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
static inline int utilization(struct f2fs_sb_info *sbi)
{
return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
}
/*
......
......@@ -18,20 +18,25 @@
#include <linux/parser.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/random.h>
#include <linux/exportfs.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/sysfs.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "gc.h"
#define CREATE_TRACE_POINTS
#include <trace/events/f2fs.h>
static struct proc_dir_entry *f2fs_proc_root;
static struct kmem_cache *f2fs_inode_cachep;
static struct kset *f2fs_kset;
enum {
Opt_gc_background,
......@@ -42,6 +47,7 @@ enum {
Opt_noacl,
Opt_active_logs,
Opt_disable_ext_identify,
Opt_inline_xattr,
Opt_err,
};
......@@ -54,9 +60,117 @@ static match_table_t f2fs_tokens = {
{Opt_noacl, "noacl"},
{Opt_active_logs, "active_logs=%u"},
{Opt_disable_ext_identify, "disable_ext_identify"},
{Opt_inline_xattr, "inline_xattr"},
{Opt_err, NULL},
};
/* Sysfs support for f2fs */
struct f2fs_attr {
struct attribute attr;
ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
const char *, size_t);
int offset;
};
static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
struct f2fs_sb_info *sbi, char *buf)
{
struct f2fs_gc_kthread *gc_kth = sbi->gc_thread;
unsigned int *ui;
if (!gc_kth)
return -EINVAL;
ui = (unsigned int *)(((char *)gc_kth) + a->offset);
return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
}
static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
struct f2fs_sb_info *sbi,
const char *buf, size_t count)
{
struct f2fs_gc_kthread *gc_kth = sbi->gc_thread;
unsigned long t;
unsigned int *ui;
ssize_t ret;
if (!gc_kth)
return -EINVAL;
ui = (unsigned int *)(((char *)gc_kth) + a->offset);
ret = kstrtoul(skip_spaces(buf), 0, &t);
if (ret < 0)
return ret;
*ui = t;
return count;
}
static ssize_t f2fs_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->show ? a->show(a, sbi, buf) : 0;
}
static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t len)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
return a->store ? a->store(a, sbi, buf, len) : 0;
}
static void f2fs_sb_release(struct kobject *kobj)
{
struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
s_kobj);
complete(&sbi->s_kobj_unregister);
}
#define F2FS_ATTR_OFFSET(_name, _mode, _show, _store, _elname) \
static struct f2fs_attr f2fs_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.offset = offsetof(struct f2fs_gc_kthread, _elname), \
}
#define F2FS_RW_ATTR(name, elname) \
F2FS_ATTR_OFFSET(name, 0644, f2fs_sbi_show, f2fs_sbi_store, elname)
F2FS_RW_ATTR(gc_min_sleep_time, min_sleep_time);
F2FS_RW_ATTR(gc_max_sleep_time, max_sleep_time);
F2FS_RW_ATTR(gc_no_gc_sleep_time, no_gc_sleep_time);
F2FS_RW_ATTR(gc_idle, gc_idle);
#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
static struct attribute *f2fs_attrs[] = {
ATTR_LIST(gc_min_sleep_time),
ATTR_LIST(gc_max_sleep_time),
ATTR_LIST(gc_no_gc_sleep_time),
ATTR_LIST(gc_idle),
NULL,
};
static const struct sysfs_ops f2fs_attr_ops = {
.show = f2fs_attr_show,
.store = f2fs_attr_store,
};
static struct kobj_type f2fs_ktype = {
.default_attrs = f2fs_attrs,
.sysfs_ops = &f2fs_attr_ops,
.release = f2fs_sb_release,
};
void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
{
struct va_format vaf;
......@@ -126,11 +240,18 @@ static int parse_options(struct super_block *sb, char *options)
case Opt_nouser_xattr:
clear_opt(sbi, XATTR_USER);
break;
case Opt_inline_xattr:
set_opt(sbi, INLINE_XATTR);
break;
#else
case Opt_nouser_xattr:
f2fs_msg(sb, KERN_INFO,
"nouser_xattr options not supported");
break;
case Opt_inline_xattr:
f2fs_msg(sb, KERN_INFO,
"inline_xattr options not supported");
break;
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
case Opt_noacl:
......@@ -180,6 +301,9 @@ static struct inode *f2fs_alloc_inode(struct super_block *sb)
set_inode_flag(fi, FI_NEW_INODE);
if (test_opt(F2FS_SB(sb), INLINE_XATTR))
set_inode_flag(fi, FI_INLINE_XATTR);
return &fi->vfs_inode;
}
......@@ -205,7 +329,6 @@ static int f2fs_drop_inode(struct inode *inode)
static void f2fs_dirty_inode(struct inode *inode, int flags)
{
set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
return;
}
static void f2fs_i_callback(struct rcu_head *head)
......@@ -223,6 +346,12 @@ static void f2fs_put_super(struct super_block *sb)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
if (sbi->s_proc) {
remove_proc_entry("segment_info", sbi->s_proc);
remove_proc_entry(sb->s_id, f2fs_proc_root);
}
kobject_del(&sbi->s_kobj);
f2fs_destroy_stats(sbi);
stop_gc_thread(sbi);
......@@ -236,6 +365,8 @@ static void f2fs_put_super(struct super_block *sb)
destroy_segment_manager(sbi);
kfree(sbi->ckpt);
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
sb->s_fs_info = NULL;
brelse(sbi->raw_super_buf);
......@@ -325,6 +456,8 @@ static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
seq_puts(seq, ",user_xattr");
else
seq_puts(seq, ",nouser_xattr");
if (test_opt(sbi, INLINE_XATTR))
seq_puts(seq, ",inline_xattr");
#endif
#ifdef CONFIG_F2FS_FS_POSIX_ACL
if (test_opt(sbi, POSIX_ACL))
......@@ -340,6 +473,36 @@ static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
return 0;
}
static int segment_info_seq_show(struct seq_file *seq, void *offset)
{
struct super_block *sb = seq->private;
struct f2fs_sb_info *sbi = F2FS_SB(sb);
unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main);
int i;
for (i = 0; i < total_segs; i++) {
seq_printf(seq, "%u", get_valid_blocks(sbi, i, 1));
if (i != 0 && (i % 10) == 0)
seq_puts(seq, "\n");
else
seq_puts(seq, " ");
}
return 0;
}
static int segment_info_open_fs(struct inode *inode, struct file *file)
{
return single_open(file, segment_info_seq_show, PDE_DATA(inode));
}
static const struct file_operations f2fs_seq_segment_info_fops = {
.owner = THIS_MODULE,
.open = segment_info_open_fs,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int f2fs_remount(struct super_block *sb, int *flags, char *data)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
......@@ -455,7 +618,7 @@ static const struct export_operations f2fs_export_ops = {
static loff_t max_file_size(unsigned bits)
{
loff_t result = ADDRS_PER_INODE;
loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
loff_t leaf_count = ADDRS_PER_BLOCK;
/* two direct node blocks */
......@@ -766,6 +929,13 @@ static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
if (err)
goto fail;
if (f2fs_proc_root)
sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
if (sbi->s_proc)
proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
&f2fs_seq_segment_info_fops, sb);
if (test_opt(sbi, DISCARD)) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q))
......@@ -774,6 +944,13 @@ static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
"the device does not support discard");
}
sbi->s_kobj.kset = f2fs_kset;
init_completion(&sbi->s_kobj_unregister);
err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
"%s", sb->s_id);
if (err)
goto fail;
return 0;
fail:
stop_gc_thread(sbi);
......@@ -841,29 +1018,49 @@ static int __init init_f2fs_fs(void)
goto fail;
err = create_node_manager_caches();
if (err)
goto fail;
goto free_inodecache;
err = create_gc_caches();
if (err)
goto fail;
goto free_node_manager_caches;
err = create_checkpoint_caches();
if (err)
goto fail;
goto free_gc_caches;
f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
if (!f2fs_kset) {
err = -ENOMEM;
goto free_checkpoint_caches;
}
err = register_filesystem(&f2fs_fs_type);
if (err)
goto fail;
goto free_kset;
f2fs_create_root_stats();
f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
return 0;
free_kset:
kset_unregister(f2fs_kset);
free_checkpoint_caches:
destroy_checkpoint_caches();
free_gc_caches:
destroy_gc_caches();
free_node_manager_caches:
destroy_node_manager_caches();
free_inodecache:
destroy_inodecache();
fail:
return err;
}
static void __exit exit_f2fs_fs(void)
{
remove_proc_entry("fs/f2fs", NULL);
f2fs_destroy_root_stats();
unregister_filesystem(&f2fs_fs_type);
destroy_checkpoint_caches();
destroy_gc_caches();
destroy_node_manager_caches();
destroy_inodecache();
kset_unregister(f2fs_kset);
}
module_init(init_f2fs_fs)
......
This diff is collapsed.
......@@ -51,7 +51,7 @@ struct f2fs_xattr_entry {
#define XATTR_HDR(ptr) ((struct f2fs_xattr_header *)(ptr))
#define XATTR_ENTRY(ptr) ((struct f2fs_xattr_entry *)(ptr))
#define XATTR_FIRST_ENTRY(ptr) (XATTR_ENTRY(XATTR_HDR(ptr)+1))
#define XATTR_FIRST_ENTRY(ptr) (XATTR_ENTRY(XATTR_HDR(ptr) + 1))
#define XATTR_ROUND (3)
#define XATTR_ALIGN(size) ((size + XATTR_ROUND) & ~XATTR_ROUND)
......@@ -69,17 +69,16 @@ struct f2fs_xattr_entry {
!IS_XATTR_LAST_ENTRY(entry);\
entry = XATTR_NEXT_ENTRY(entry))
#define MIN_OFFSET(i) XATTR_ALIGN(inline_xattr_size(i) + PAGE_SIZE - \
sizeof(struct node_footer) - sizeof(__u32))
#define MIN_OFFSET XATTR_ALIGN(PAGE_SIZE - \
sizeof(struct node_footer) - \
sizeof(__u32))
#define MAX_VALUE_LEN (MIN_OFFSET - sizeof(struct f2fs_xattr_header) - \
sizeof(struct f2fs_xattr_entry))
#define MAX_VALUE_LEN(i) (MIN_OFFSET(i) - \
sizeof(struct f2fs_xattr_header) - \
sizeof(struct f2fs_xattr_entry))
/*
* On-disk structure of f2fs_xattr
* We use only 1 block for xattr.
* We use inline xattrs space + 1 block for xattr.
*
* +--------------------+
* | f2fs_xattr_header |
......
......@@ -140,14 +140,24 @@ struct f2fs_extent {
} __packed;
#define F2FS_NAME_LEN 255
#define ADDRS_PER_INODE 923 /* Address Pointers in an Inode */
#define ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */
#define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */
#define F2FS_INLINE_XATTR_ADDRS 50 /* 200 bytes for inline xattrs */
#define DEF_ADDRS_PER_INODE 923 /* Address Pointers in an Inode */
#define ADDRS_PER_INODE(fi) addrs_per_inode(fi)
#define ADDRS_PER_BLOCK 1018 /* Address Pointers in a Direct Block */
#define NIDS_PER_BLOCK 1018 /* Node IDs in an Indirect Block */
#define NODE_DIR1_BLOCK (DEF_ADDRS_PER_INODE + 1)
#define NODE_DIR2_BLOCK (DEF_ADDRS_PER_INODE + 2)
#define NODE_IND1_BLOCK (DEF_ADDRS_PER_INODE + 3)
#define NODE_IND2_BLOCK (DEF_ADDRS_PER_INODE + 4)
#define NODE_DIND_BLOCK (DEF_ADDRS_PER_INODE + 5)
#define F2FS_INLINE_XATTR 0x01 /* file inline xattr flag */
struct f2fs_inode {
__le16 i_mode; /* file mode */
__u8 i_advise; /* file hints */
__u8 i_reserved; /* reserved */
__u8 i_inline; /* file inline flags */
__le32 i_uid; /* user ID */
__le32 i_gid; /* group ID */
__le32 i_links; /* links count */
......@@ -170,7 +180,7 @@ struct f2fs_inode {
struct f2fs_extent i_ext; /* caching a largest extent */
__le32 i_addr[ADDRS_PER_INODE]; /* Pointers to data blocks */
__le32 i_addr[DEF_ADDRS_PER_INODE]; /* Pointers to data blocks */
__le32 i_nid[5]; /* direct(2), indirect(2),
double_indirect(1) node id */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment