Commit edf6423c authored by M Chetan Kumar's avatar M Chetan Kumar Committed by David S. Miller

net: iosm: shared memory I/O operations

1) Binds logical channel between host-device for communication.
2) Implements device specific(Char/Net) IO operations.
Signed-off-by: default avatarM Chetan Kumar <m.chetan.kumar@intel.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 3670970d
No related merge requests found
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-21 Intel Corporation.
*/
#include <linux/delay.h>
#include "iosm_ipc_chnl_cfg.h"
#include "iosm_ipc_imem.h"
#include "iosm_ipc_imem_ops.h"
#include "iosm_ipc_port.h"
#include "iosm_ipc_task_queue.h"
/* Open a packet data online channel between the network layer and CP. */
int ipc_imem_sys_wwan_open(struct iosm_imem *ipc_imem, int if_id)
{
dev_dbg(ipc_imem->dev, "%s if id: %d",
ipc_imem_phase_get_string(ipc_imem->phase), if_id);
/* The network interface is only supported in the runtime phase. */
if (ipc_imem_phase_update(ipc_imem) != IPC_P_RUN) {
dev_err(ipc_imem->dev, "net:%d : refused phase %s", if_id,
ipc_imem_phase_get_string(ipc_imem->phase));
return -EIO;
}
/* check for the interafce id
* if if_id 1 to 8 then create IP MUX channel sessions.
* To start MUX session from 0 as network interface id would start
* from 1 so map it to if_id = if_id - 1
*/
if (if_id >= IP_MUX_SESSION_START && if_id <= IP_MUX_SESSION_END)
return ipc_mux_open_session(ipc_imem->mux, if_id - 1);
return -EINVAL;
}
/* Release a net link to CP. */
void ipc_imem_sys_wwan_close(struct iosm_imem *ipc_imem, int if_id,
int channel_id)
{
if (ipc_imem->mux && if_id >= IP_MUX_SESSION_START &&
if_id <= IP_MUX_SESSION_END)
ipc_mux_close_session(ipc_imem->mux, if_id - 1);
}
/* Tasklet call to do uplink transfer. */
static int ipc_imem_tq_cdev_write(struct iosm_imem *ipc_imem, int arg,
void *msg, size_t size)
{
ipc_imem->ev_cdev_write_pending = false;
ipc_imem_ul_send(ipc_imem);
return 0;
}
/* Through tasklet to do sio write. */
static int ipc_imem_call_cdev_write(struct iosm_imem *ipc_imem)
{
if (ipc_imem->ev_cdev_write_pending)
return -1;
ipc_imem->ev_cdev_write_pending = true;
return ipc_task_queue_send_task(ipc_imem, ipc_imem_tq_cdev_write, 0,
NULL, 0, false);
}
/* Function for transfer UL data */
int ipc_imem_sys_wwan_transmit(struct iosm_imem *ipc_imem,
int if_id, int channel_id, struct sk_buff *skb)
{
int ret = -EINVAL;
if (!ipc_imem || channel_id < 0)
goto out;
/* Is CP Running? */
if (ipc_imem->phase != IPC_P_RUN) {
dev_dbg(ipc_imem->dev, "phase %s transmit",
ipc_imem_phase_get_string(ipc_imem->phase));
ret = -EIO;
goto out;
}
if (if_id >= IP_MUX_SESSION_START && if_id <= IP_MUX_SESSION_END)
/* Route the UL packet through IP MUX Layer */
ret = ipc_mux_ul_trigger_encode(ipc_imem->mux,
if_id - 1, skb);
else
dev_err(ipc_imem->dev,
"invalid if_id %d: ", if_id);
out:
return ret;
}
/* Initialize wwan channel */
void ipc_imem_wwan_channel_init(struct iosm_imem *ipc_imem,
enum ipc_mux_protocol mux_type)
{
struct ipc_chnl_cfg chnl_cfg = { 0 };
ipc_imem->cp_version = ipc_mmio_get_cp_version(ipc_imem->mmio);
/* If modem version is invalid (0xffffffff), do not initialize WWAN. */
if (ipc_imem->cp_version == -1) {
dev_err(ipc_imem->dev, "invalid CP version");
return;
}
ipc_chnl_cfg_get(&chnl_cfg, ipc_imem->nr_of_channels);
ipc_imem_channel_init(ipc_imem, IPC_CTYPE_WWAN, chnl_cfg,
IRQ_MOD_OFF);
/* WWAN registration. */
ipc_imem->wwan = ipc_wwan_init(ipc_imem, ipc_imem->dev);
if (!ipc_imem->wwan)
dev_err(ipc_imem->dev,
"failed to register the ipc_wwan interfaces");
}
/* Map SKB to DMA for transfer */
static int ipc_imem_map_skb_to_dma(struct iosm_imem *ipc_imem,
struct sk_buff *skb)
{
struct iosm_pcie *ipc_pcie = ipc_imem->pcie;
char *buf = skb->data;
int len = skb->len;
dma_addr_t mapping;
int ret;
ret = ipc_pcie_addr_map(ipc_pcie, buf, len, &mapping, DMA_TO_DEVICE);
if (ret)
goto err;
BUILD_BUG_ON(sizeof(*IPC_CB(skb)) > sizeof(skb->cb));
IPC_CB(skb)->mapping = mapping;
IPC_CB(skb)->direction = DMA_TO_DEVICE;
IPC_CB(skb)->len = len;
IPC_CB(skb)->op_type = (u8)UL_DEFAULT;
err:
return ret;
}
/* return true if channel is ready for use */
static bool ipc_imem_is_channel_active(struct iosm_imem *ipc_imem,
struct ipc_mem_channel *channel)
{
enum ipc_phase phase;
/* Update the current operation phase. */
phase = ipc_imem->phase;
/* Select the operation depending on the execution stage. */
switch (phase) {
case IPC_P_RUN:
case IPC_P_PSI:
case IPC_P_EBL:
break;
case IPC_P_ROM:
/* Prepare the PSI image for the CP ROM driver and
* suspend the flash app.
*/
if (channel->state != IMEM_CHANNEL_RESERVED) {
dev_err(ipc_imem->dev,
"ch[%d]:invalid channel state %d,expected %d",
channel->channel_id, channel->state,
IMEM_CHANNEL_RESERVED);
goto channel_unavailable;
}
goto channel_available;
default:
/* Ignore uplink actions in all other phases. */
dev_err(ipc_imem->dev, "ch[%d]: confused phase %d",
channel->channel_id, phase);
goto channel_unavailable;
}
/* Check the full availability of the channel. */
if (channel->state != IMEM_CHANNEL_ACTIVE) {
dev_err(ipc_imem->dev, "ch[%d]: confused channel state %d",
channel->channel_id, channel->state);
goto channel_unavailable;
}
channel_available:
return true;
channel_unavailable:
return false;
}
/* Release a sio link to CP. */
void ipc_imem_sys_cdev_close(struct iosm_cdev *ipc_cdev)
{
struct iosm_imem *ipc_imem = ipc_cdev->ipc_imem;
struct ipc_mem_channel *channel = ipc_cdev->channel;
enum ipc_phase curr_phase;
int status = 0;
u32 tail = 0;
curr_phase = ipc_imem->phase;
/* If current phase is IPC_P_OFF or SIO ID is -ve then
* channel is already freed. Nothing to do.
*/
if (curr_phase == IPC_P_OFF) {
dev_err(ipc_imem->dev,
"nothing to do. Current Phase: %s",
ipc_imem_phase_get_string(curr_phase));
return;
}
if (channel->state == IMEM_CHANNEL_FREE) {
dev_err(ipc_imem->dev, "ch[%d]: invalid channel state %d",
channel->channel_id, channel->state);
return;
}
/* If there are any pending TDs then wait for Timeout/Completion before
* closing pipe.
*/
if (channel->ul_pipe.old_tail != channel->ul_pipe.old_head) {
ipc_imem->app_notify_ul_pend = 1;
/* Suspend the user app and wait a certain time for processing
* UL Data.
*/
status = wait_for_completion_interruptible_timeout
(&ipc_imem->ul_pend_sem,
msecs_to_jiffies(IPC_PEND_DATA_TIMEOUT));
if (status == 0) {
dev_dbg(ipc_imem->dev,
"Pend data Timeout UL-Pipe:%d Head:%d Tail:%d",
channel->ul_pipe.pipe_nr,
channel->ul_pipe.old_head,
channel->ul_pipe.old_tail);
}
ipc_imem->app_notify_ul_pend = 0;
}
/* If there are any pending TDs then wait for Timeout/Completion before
* closing pipe.
*/
ipc_protocol_get_head_tail_index(ipc_imem->ipc_protocol,
&channel->dl_pipe, NULL, &tail);
if (tail != channel->dl_pipe.old_tail) {
ipc_imem->app_notify_dl_pend = 1;
/* Suspend the user app and wait a certain time for processing
* DL Data.
*/
status = wait_for_completion_interruptible_timeout
(&ipc_imem->dl_pend_sem,
msecs_to_jiffies(IPC_PEND_DATA_TIMEOUT));
if (status == 0) {
dev_dbg(ipc_imem->dev,
"Pend data Timeout DL-Pipe:%d Head:%d Tail:%d",
channel->dl_pipe.pipe_nr,
channel->dl_pipe.old_head,
channel->dl_pipe.old_tail);
}
ipc_imem->app_notify_dl_pend = 0;
}
/* Due to wait for completion in messages, there is a small window
* between closing the pipe and updating the channel is closed. In this
* small window there could be HP update from Host Driver. Hence update
* the channel state as CLOSING to aviod unnecessary interrupt
* towards CP.
*/
channel->state = IMEM_CHANNEL_CLOSING;
ipc_imem_pipe_close(ipc_imem, &channel->ul_pipe);
ipc_imem_pipe_close(ipc_imem, &channel->dl_pipe);
ipc_imem_channel_free(channel);
}
/* Open a PORT link to CP and return the channel */
struct ipc_mem_channel *ipc_imem_sys_port_open(struct iosm_imem *ipc_imem,
int chl_id, int hp_id)
{
struct ipc_mem_channel *channel;
int ch_id;
/* The PORT interface is only supported in the runtime phase. */
if (ipc_imem_phase_update(ipc_imem) != IPC_P_RUN) {
dev_err(ipc_imem->dev, "PORT open refused, phase %s",
ipc_imem_phase_get_string(ipc_imem->phase));
return NULL;
}
ch_id = ipc_imem_channel_alloc(ipc_imem, chl_id, IPC_CTYPE_CTRL);
if (ch_id < 0) {
dev_err(ipc_imem->dev, "reservation of an PORT chnl id failed");
return NULL;
}
channel = ipc_imem_channel_open(ipc_imem, ch_id, hp_id);
if (!channel) {
dev_err(ipc_imem->dev, "PORT channel id open failed");
return NULL;
}
return channel;
}
/* transfer skb to modem */
int ipc_imem_sys_cdev_write(struct iosm_cdev *ipc_cdev, struct sk_buff *skb)
{
struct ipc_mem_channel *channel = ipc_cdev->channel;
struct iosm_imem *ipc_imem = ipc_cdev->ipc_imem;
int ret = -EIO;
if (!ipc_imem_is_channel_active(ipc_imem, channel) ||
ipc_imem->phase == IPC_P_OFF_REQ)
goto out;
ret = ipc_imem_map_skb_to_dma(ipc_imem, skb);
if (ret)
goto out;
/* Add skb to the uplink skbuf accumulator. */
skb_queue_tail(&channel->ul_list, skb);
ret = ipc_imem_call_cdev_write(ipc_imem);
if (ret) {
skb_dequeue_tail(&channel->ul_list);
dev_err(ipc_cdev->dev, "channel id[%d] write failed\n",
ipc_cdev->channel->channel_id);
}
out:
return ret;
}
/* SPDX-License-Identifier: GPL-2.0-only
*
* Copyright (C) 2020-21 Intel Corporation.
*/
#ifndef IOSM_IPC_IMEM_OPS_H
#define IOSM_IPC_IMEM_OPS_H
#include "iosm_ipc_mux_codec.h"
/* Maximum wait time for blocking read */
#define IPC_READ_TIMEOUT 500
/* The delay in ms for defering the unregister */
#define SIO_UNREGISTER_DEFER_DELAY_MS 1
/* Default delay till CP PSI image is running and modem updates the
* execution stage.
* unit : milliseconds
*/
#define PSI_START_DEFAULT_TIMEOUT 3000
/* Default time out when closing SIO, till the modem is in
* running state.
* unit : milliseconds
*/
#define BOOT_CHECK_DEFAULT_TIMEOUT 400
/* IP MUX channel range */
#define IP_MUX_SESSION_START 1
#define IP_MUX_SESSION_END 8
/**
* ipc_imem_sys_port_open - Open a port link to CP.
* @ipc_imem: Imem instance.
* @chl_id: Channel Indentifier.
* @hp_id: HP Indentifier.
*
* Return: channel instance on success, NULL for failure
*/
struct ipc_mem_channel *ipc_imem_sys_port_open(struct iosm_imem *ipc_imem,
int chl_id, int hp_id);
/**
* ipc_imem_sys_cdev_close - Release a sio link to CP.
* @ipc_cdev: iosm sio instance.
*/
void ipc_imem_sys_cdev_close(struct iosm_cdev *ipc_cdev);
/**
* ipc_imem_sys_cdev_write - Route the uplink buffer to CP.
* @ipc_cdev: iosm_cdev instance.
* @skb: Pointer to skb.
*
* Return: 0 on success and failure value on error
*/
int ipc_imem_sys_cdev_write(struct iosm_cdev *ipc_cdev, struct sk_buff *skb);
/**
* ipc_imem_sys_wwan_open - Open packet data online channel between network
* layer and CP.
* @ipc_imem: Imem instance.
* @if_id: ip link tag of the net device.
*
* Return: Channel ID on success and failure value on error
*/
int ipc_imem_sys_wwan_open(struct iosm_imem *ipc_imem, int if_id);
/**
* ipc_imem_sys_wwan_close - Close packet data online channel between network
* layer and CP.
* @ipc_imem: Imem instance.
* @if_id: IP link id net device.
* @channel_id: Channel ID to be closed.
*/
void ipc_imem_sys_wwan_close(struct iosm_imem *ipc_imem, int if_id,
int channel_id);
/**
* ipc_imem_sys_wwan_transmit - Function for transfer UL data
* @ipc_imem: Imem instance.
* @if_id: link ID of the device.
* @channel_id: Channel ID used
* @skb: Pointer to sk buffer
*
* Return: 0 on success and failure value on error
*/
int ipc_imem_sys_wwan_transmit(struct iosm_imem *ipc_imem, int if_id,
int channel_id, struct sk_buff *skb);
/**
* ipc_imem_wwan_channel_init - Initializes WWAN channels and the channel for
* MUX.
* @ipc_imem: Pointer to iosm_imem struct.
* @mux_type: Type of mux protocol.
*/
void ipc_imem_wwan_channel_init(struct iosm_imem *ipc_imem,
enum ipc_mux_protocol mux_type);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment