Commit f2e0a532 authored by Maxime Ripard's avatar Maxime Ripard

clk: Add a basic multiplier clock

Some clocks are using a multiplier component, however, unlike their mux,
gate or divider counterpart, these factors don't have a basic clock
implementation.

This leads to code duplication across platforms that want to use that kind
of clocks, and the impossibility to use the composite clocks with such a
clock without defining your own rate operations.

Create such a driver in order to remove these issues, and hopefully factor
the implementations, reducing code size across platforms and consolidating
the various implementations.
Signed-off-by: default avatarMaxime Ripard <maxime.ripard@free-electrons.com>
Reviewed-by: default avatarChen-Yu Tsai <wens@csie.org>
parent 7d6ddad6
...@@ -6,6 +6,7 @@ obj-$(CONFIG_COMMON_CLK) += clk-divider.o ...@@ -6,6 +6,7 @@ obj-$(CONFIG_COMMON_CLK) += clk-divider.o
obj-$(CONFIG_COMMON_CLK) += clk-fixed-factor.o obj-$(CONFIG_COMMON_CLK) += clk-fixed-factor.o
obj-$(CONFIG_COMMON_CLK) += clk-fixed-rate.o obj-$(CONFIG_COMMON_CLK) += clk-fixed-rate.o
obj-$(CONFIG_COMMON_CLK) += clk-gate.o obj-$(CONFIG_COMMON_CLK) += clk-gate.o
obj-$(CONFIG_COMMON_CLK) += clk-multiplier.o
obj-$(CONFIG_COMMON_CLK) += clk-mux.o obj-$(CONFIG_COMMON_CLK) += clk-mux.o
obj-$(CONFIG_COMMON_CLK) += clk-composite.o obj-$(CONFIG_COMMON_CLK) += clk-composite.o
obj-$(CONFIG_COMMON_CLK) += clk-fractional-divider.o obj-$(CONFIG_COMMON_CLK) += clk-fractional-divider.o
......
/*
* Copyright (C) 2015 Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/bitops.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/slab.h>
#define to_clk_multiplier(_hw) container_of(_hw, struct clk_multiplier, hw)
static unsigned long __get_mult(struct clk_multiplier *mult,
unsigned long rate,
unsigned long parent_rate)
{
if (mult->flags & CLK_MULTIPLIER_ROUND_CLOSEST)
return DIV_ROUND_CLOSEST(rate, parent_rate);
return rate / parent_rate;
}
static unsigned long clk_multiplier_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_multiplier *mult = to_clk_multiplier(hw);
unsigned long val;
val = clk_readl(mult->reg) >> mult->shift;
val &= GENMASK(mult->width - 1, 0);
if (!val && mult->flags & CLK_MULTIPLIER_ZERO_BYPASS)
val = 1;
return parent_rate * val;
}
static bool __is_best_rate(unsigned long rate, unsigned long new,
unsigned long best, unsigned long flags)
{
if (flags & CLK_MULTIPLIER_ROUND_CLOSEST)
return abs(rate - new) < abs(rate - best);
return new >= rate && new < best;
}
static unsigned long __bestmult(struct clk_hw *hw, unsigned long rate,
unsigned long *best_parent_rate,
u8 width, unsigned long flags)
{
unsigned long orig_parent_rate = *best_parent_rate;
unsigned long parent_rate, current_rate, best_rate = ~0;
unsigned int i, bestmult = 0;
if (!(clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT))
return rate / *best_parent_rate;
for (i = 1; i < ((1 << width) - 1); i++) {
if (rate == orig_parent_rate * i) {
/*
* This is the best case for us if we have a
* perfect match without changing the parent
* rate.
*/
*best_parent_rate = orig_parent_rate;
return i;
}
parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw),
rate / i);
current_rate = parent_rate * i;
if (__is_best_rate(rate, current_rate, best_rate, flags)) {
bestmult = i;
best_rate = current_rate;
*best_parent_rate = parent_rate;
}
}
return bestmult;
}
static long clk_multiplier_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_multiplier *mult = to_clk_multiplier(hw);
unsigned long factor = __bestmult(hw, rate, parent_rate,
mult->width, mult->flags);
return *parent_rate * factor;
}
static int clk_multiplier_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_multiplier *mult = to_clk_multiplier(hw);
unsigned long factor = __get_mult(mult, rate, parent_rate);
unsigned long flags = 0;
unsigned long val;
if (mult->lock)
spin_lock_irqsave(mult->lock, flags);
else
__acquire(mult->lock);
val = clk_readl(mult->reg);
val &= ~GENMASK(mult->width + mult->shift - 1, mult->shift);
val |= factor << mult->shift;
clk_writel(val, mult->reg);
if (mult->lock)
spin_unlock_irqrestore(mult->lock, flags);
else
__release(mult->lock);
return 0;
}
const struct clk_ops clk_multiplier_ops = {
.recalc_rate = clk_multiplier_recalc_rate,
.round_rate = clk_multiplier_round_rate,
.set_rate = clk_multiplier_set_rate,
};
EXPORT_SYMBOL_GPL(clk_multiplier_ops);
struct clk *clk_register_multiplier(struct device *dev, const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *reg, u8 shift, u8 width,
u8 clk_mult_flags, spinlock_t *lock)
{
struct clk_init_data init;
struct clk_multiplier *mult;
struct clk *clk;
mult = kmalloc(sizeof(*mult), GFP_KERNEL);
if (!mult)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &clk_multiplier_ops;
init.flags = flags | CLK_IS_BASIC;
init.parent_names = &parent_name;
init.num_parents = 1;
mult->reg = reg;
mult->shift = shift;
mult->width = width;
mult->flags = clk_mult_flags;
mult->lock = lock;
mult->hw.init = &init;
clk = clk_register(dev, &mult->hw);
if (IS_ERR(clk))
kfree(mult);
return clk;
}
EXPORT_SYMBOL_GPL(clk_register_multiplier);
void clk_unregister_multiplier(struct clk *clk)
{
struct clk_multiplier *mult;
struct clk_hw *hw;
hw = __clk_get_hw(clk);
if (!hw)
return;
mult = to_clk_multiplier(hw);
clk_unregister(clk);
kfree(mult);
}
EXPORT_SYMBOL_GPL(clk_unregister_multiplier);
...@@ -518,6 +518,48 @@ struct clk *clk_register_fractional_divider(struct device *dev, ...@@ -518,6 +518,48 @@ struct clk *clk_register_fractional_divider(struct device *dev,
void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
u8 clk_divider_flags, spinlock_t *lock); u8 clk_divider_flags, spinlock_t *lock);
/**
* struct clk_multiplier - adjustable multiplier clock
*
* @hw: handle between common and hardware-specific interfaces
* @reg: register containing the multiplier
* @shift: shift to the multiplier bit field
* @width: width of the multiplier bit field
* @lock: register lock
*
* Clock with an adjustable multiplier affecting its output frequency.
* Implements .recalc_rate, .set_rate and .round_rate
*
* Flags:
* CLK_MULTIPLIER_ZERO_BYPASS - By default, the multiplier is the value read
* from the register, with 0 being a valid value effectively
* zeroing the output clock rate. If CLK_MULTIPLIER_ZERO_BYPASS is
* set, then a null multiplier will be considered as a bypass,
* leaving the parent rate unmodified.
* CLK_MULTIPLIER_ROUND_CLOSEST - Makes the best calculated divider to be
* rounded to the closest integer instead of the down one.
*/
struct clk_multiplier {
struct clk_hw hw;
void __iomem *reg;
u8 shift;
u8 width;
u8 flags;
spinlock_t *lock;
};
#define CLK_MULTIPLIER_ZERO_BYPASS BIT(0)
#define CLK_MULTIPLIER_ROUND_CLOSEST BIT(1)
extern const struct clk_ops clk_multiplier_ops;
struct clk *clk_register_multiplier(struct device *dev, const char *name,
const char *parent_name,
unsigned long flags,
void __iomem *reg, u8 shift, u8 width,
u8 clk_mult_flags, spinlock_t *lock);
void clk_unregister_multiplier(struct clk *clk);
/*** /***
* struct clk_composite - aggregate clock of mux, divider and gate clocks * struct clk_composite - aggregate clock of mux, divider and gate clocks
* *
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment