Commit f7ebd9ed authored by Ralph Campbell's avatar Ralph Campbell Committed by Jonathan Corbet

mm/doc: add usage description for migrate_vma_*()

The migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize()
API usage by device drivers is not well documented.
Add a description for how device drivers are expected to use it.
Signed-off-by: default avatarRalph Campbell <rcampbell@nvidia.com>
Reviewed-by: default avatarAlistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/r/20200909212956.20104-1-rcampbell@nvidia.comSigned-off-by: default avatarJonathan Corbet <corbet@lwn.net>
parent b854e831
......@@ -271,10 +271,139 @@ map those pages from the CPU side.
Migration to and from device memory
===================================
Because the CPU cannot access device memory, migration must use the device DMA
engine to perform copy from and to device memory. For this we need to use
migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize() helpers.
Because the CPU cannot access device memory directly, the device driver must
use hardware DMA or device specific load/store instructions to migrate data.
The migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize()
functions are designed to make drivers easier to write and to centralize common
code across drivers.
Before migrating pages to device private memory, special device private
``struct page`` need to be created. These will be used as special "swap"
page table entries so that a CPU process will fault if it tries to access
a page that has been migrated to device private memory.
These can be allocated and freed with::
struct resource *res;
struct dev_pagemap pagemap;
res = request_free_mem_region(&iomem_resource, /* number of bytes */,
"name of driver resource");
pagemap.type = MEMORY_DEVICE_PRIVATE;
pagemap.range.start = res->start;
pagemap.range.end = res->end;
pagemap.nr_range = 1;
pagemap.ops = &device_devmem_ops;
memremap_pages(&pagemap, numa_node_id());
memunmap_pages(&pagemap);
release_mem_region(pagemap.range.start, range_len(&pagemap.range));
There are also devm_request_free_mem_region(), devm_memremap_pages(),
devm_memunmap_pages(), and devm_release_mem_region() when the resources can
be tied to a ``struct device``.
The overall migration steps are similar to migrating NUMA pages within system
memory (see :ref:`Page migration <page_migration>`) but the steps are split
between device driver specific code and shared common code:
1. ``mmap_read_lock()``
The device driver has to pass a ``struct vm_area_struct`` to
migrate_vma_setup() so the mmap_read_lock() or mmap_write_lock() needs to
be held for the duration of the migration.
2. ``migrate_vma_setup(struct migrate_vma *args)``
The device driver initializes the ``struct migrate_vma`` fields and passes
the pointer to migrate_vma_setup(). The ``args->flags`` field is used to
filter which source pages should be migrated. For example, setting
``MIGRATE_VMA_SELECT_SYSTEM`` will only migrate system memory and
``MIGRATE_VMA_SELECT_DEVICE_PRIVATE`` will only migrate pages residing in
device private memory. If the latter flag is set, the ``args->pgmap_owner``
field is used to identify device private pages owned by the driver. This
avoids trying to migrate device private pages residing in other devices.
Currently only anonymous private VMA ranges can be migrated to or from
system memory and device private memory.
One of the first steps migrate_vma_setup() does is to invalidate other
device's MMUs with the ``mmu_notifier_invalidate_range_start(()`` and
``mmu_notifier_invalidate_range_end()`` calls around the page table
walks to fill in the ``args->src`` array with PFNs to be migrated.
The ``invalidate_range_start()`` callback is passed a
``struct mmu_notifier_range`` with the ``event`` field set to
``MMU_NOTIFY_MIGRATE`` and the ``migrate_pgmap_owner`` field set to
the ``args->pgmap_owner`` field passed to migrate_vma_setup(). This is
allows the device driver to skip the invalidation callback and only
invalidate device private MMU mappings that are actually migrating.
This is explained more in the next section.
While walking the page tables, a ``pte_none()`` or ``is_zero_pfn()``
entry results in a valid "zero" PFN stored in the ``args->src`` array.
This lets the driver allocate device private memory and clear it instead
of copying a page of zeros. Valid PTE entries to system memory or
device private struct pages will be locked with ``lock_page()``, isolated
from the LRU (if system memory since device private pages are not on
the LRU), unmapped from the process, and a special migration PTE is
inserted in place of the original PTE.
migrate_vma_setup() also clears the ``args->dst`` array.
3. The device driver allocates destination pages and copies source pages to
destination pages.
The driver checks each ``src`` entry to see if the ``MIGRATE_PFN_MIGRATE``
bit is set and skips entries that are not migrating. The device driver
can also choose to skip migrating a page by not filling in the ``dst``
array for that page.
The driver then allocates either a device private struct page or a
system memory page, locks the page with ``lock_page()``, and fills in the
``dst`` array entry with::
dst[i] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
Now that the driver knows that this page is being migrated, it can
invalidate device private MMU mappings and copy device private memory
to system memory or another device private page. The core Linux kernel
handles CPU page table invalidations so the device driver only has to
invalidate its own MMU mappings.
The driver can use ``migrate_pfn_to_page(src[i])`` to get the
``struct page`` of the source and either copy the source page to the
destination or clear the destination device private memory if the pointer
is ``NULL`` meaning the source page was not populated in system memory.
4. ``migrate_vma_pages()``
This step is where the migration is actually "committed".
If the source page was a ``pte_none()`` or ``is_zero_pfn()`` page, this
is where the newly allocated page is inserted into the CPU's page table.
This can fail if a CPU thread faults on the same page. However, the page
table is locked and only one of the new pages will be inserted.
The device driver will see that the ``MIGRATE_PFN_MIGRATE`` bit is cleared
if it loses the race.
If the source page was locked, isolated, etc. the source ``struct page``
information is now copied to destination ``struct page`` finalizing the
migration on the CPU side.
5. Device driver updates device MMU page tables for pages still migrating,
rolling back pages not migrating.
If the ``src`` entry still has ``MIGRATE_PFN_MIGRATE`` bit set, the device
driver can update the device MMU and set the write enable bit if the
``MIGRATE_PFN_WRITE`` bit is set.
6. ``migrate_vma_finalize()``
This step replaces the special migration page table entry with the new
page's page table entry and releases the reference to the source and
destination ``struct page``.
7. ``mmap_read_unlock()``
The lock can now be released.
Memory cgroup (memcg) and rss accounting
========================================
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment