- 08 Aug, 2018 40 commits
-
-
Nicolai Stange authored
vmx_l1d_flush() gets invoked only if l1tf_flush_l1d is true. There's no point in setting l1tf_flush_l1d to true from there again. Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Josh Poimboeuf authored
If SMT is disabled in BIOS, the CPU code doesn't properly detect it. The /sys/devices/system/cpu/smt/control file shows 'on', and the 'l1tf' vulnerabilities file shows SMT as vulnerable. Fix it by forcing 'cpu_smt_control' to CPU_SMT_NOT_SUPPORTED in such a case. Unfortunately the detection can only be done after bringing all the CPUs online, so we have to overwrite any previous writes to the variable. Reported-by: Joe Mario <jmario@redhat.com> Tested-by: Jiri Kosina <jkosina@suse.cz> Fixes: f048c399 ("x86/topology: Provide topology_smt_supported()") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Tony Luck authored
Fix spelling and other typos Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Location changed to Documentation/security/l1tf.txt] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Nicolai Stange authored
The slow path in vmx_l1d_flush() reads from vmx_l1d_flush_pages in order to evict the L1d cache. However, these pages are never cleared and, in theory, their data could be leaked. More importantly, KSM could merge a nested hypervisor's vmx_l1d_flush_pages to fewer than 1 << L1D_CACHE_ORDER host physical pages and this would break the L1d flushing algorithm: L1D on x86_64 is tagged by physical addresses. Fix this by initializing the individual vmx_l1d_flush_pages with a different pattern each. Rename the "empty_zp" asm constraint identifier in vmx_l1d_flush() to "flush_pages" to reflect this change. Fixes: a47dd5f0 ("x86/KVM/VMX: Add L1D flush algorithm") Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Jiri Kosina authored
pfn_modify_allowed() and arch_has_pfn_modify_check() are outside of the !__ASSEMBLY__ section in include/asm-generic/pgtable.h, which confuses assembler on archs that don't have __HAVE_ARCH_PFN_MODIFY_ALLOWED (e.g. ia64) and breaks build: include/asm-generic/pgtable.h: Assembler messages: include/asm-generic/pgtable.h:538: Error: Unknown opcode `static inline bool pfn_modify_allowed(unsigned long pfn,pgprot_t prot)' include/asm-generic/pgtable.h:540: Error: Unknown opcode `return true' include/asm-generic/pgtable.h:543: Error: Unknown opcode `static inline bool arch_has_pfn_modify_check(void)' include/asm-generic/pgtable.h:545: Error: Unknown opcode `return false' arch/ia64/kernel/entry.S:69: Error: `mov' does not fit into bundle Move those two static inlines into the !__ASSEMBLY__ section so that they don't confuse the asm build pass. Fixes: 42e4089c ("x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappings") Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Reviewed and accepted two fuzz hunks] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Add documentation for the L1TF vulnerability and the mitigation mechanisms: - Explain the problem and risks - Document the mitigation mechanisms - Document the command line controls - Document the sysfs files Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lkml.kernel.org/r/20180713142323.287429944@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Added document as Documentation/security/l1tf.txt instead.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Jiri Kosina authored
Introduce the 'l1tf=' kernel command line option to allow for boot-time switching of mitigation that is used on processors affected by L1TF. The possible values are: full Provides all available mitigations for the L1TF vulnerability. Disables SMT and enables all mitigations in the hypervisors. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. full,force Same as 'full', but disables SMT control. Implies the 'nosmt=force' command line option. sysfs control of SMT and the hypervisor flush control is disabled. flush Leaves SMT enabled and enables the conditional hypervisor mitigation. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nosmt Disables SMT and enables the conditional hypervisor mitigation. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. If SMT is reenabled or flushing disabled at runtime hypervisors will issue a warning. flush,nowarn Same as 'flush', but hypervisors will not warn when a VM is started in a potentially insecure configuration. off Disables hypervisor mitigations and doesn't emit any warnings. Default is 'flush'. Let KVM adhere to these semantics, which means: - 'lt1f=full,force' : Performe L1D flushes. No runtime control possible. - 'l1tf=full' - 'l1tf-flush' - 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if SMT has been runtime enabled or L1D flushing has been run-time enabled - 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted. - 'l1tf=off' : L1D flushes are not performed and no warnings are emitted. KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush' module parameter except when lt1f=full,force is set. This makes KVM's private 'nosmt' option redundant, and as it is a bit non-systematic anyway (this is something to control globally, not on hypervisor level), remove that option. Add the missing Documentation entry for the l1tf vulnerability sysfs file while at it. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustments and adapt location of l1tf doc.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support SMT) when the sysfs SMT control file is initialized. That was fine so far as this was only required to make the output of the control file correct and to prevent writes in that case. With the upcoming l1tf command line parameter, this needs to be set up before the L1TF mitigation selection and command line parsing happens. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Jiri Kosina authored
The L1TF mitigation will gain a commend line parameter which allows to set a combination of hypervisor mitigation and SMT control. Expose cpu_smt_disable() so the command line parser can tweak SMT settings. [ tglx: Split out of larger patch and made it preserve an already existing force off state ] Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
All mitigation modes can be switched at run time with a static key now: - Use sysfs_streq() instead of strcmp() to handle the trailing new line from sysfs writes correctly. - Make the static key management handle multiple invocations properly. - Set the module parameter file to RW Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.954525119@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Reviewed and accepted fuzz in last hunk] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Writes to the parameter files are not serialized at the sysfs core level, so local serialization is required. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.873642605@linutronix.de CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Avoid the conditional in the L1D flush control path. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.790914912@linutronix.de CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
In preparation of allowing run time control for L1D flushing, move the setup code to the module parameter handler. In case of pre module init parsing, just store the value and let vmx_init() do the actual setup after running kvm_init() so that enable_ept is having the correct state. During run-time invoke it directly from the parameter setter to prepare for run-time control. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.694063239@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Accept/reviewed fuzz] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
If Extended Page Tables (EPT) are disabled or not supported, no L1D flushing is required. The setup function can just avoid setting up the L1D flush for the EPT=n case. Invoke it after the hardware setup has be done and enable_ept has the correct state and expose the EPT disabled state in the mitigation status as well. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.612160168@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Adjusted to work around missing hyperv support in vmx_exit()] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
The VMX module parameter to control the L1D flush should become writeable. The MSR list is set up at VM init per guest VCPU, but the run time switching is based on a static key which is global. Toggling the MSR list at run time might be feasible, but for now drop this optimization and use the regular MSR write to make run-time switching possible. The default mitigation is the conditional flush anyway, so for extra paranoid setups this will add some small overhead, but the extra code executed is in the noise compared to the flush itself. Aside of that the EPT disabled case is not handled correctly at the moment and the MSR list magic is in the way for fixing that as well. If it's really providing a significant advantage, then this needs to be revisited after the code is correct and the control is writable. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.516940445@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustment in one hunk. FIXME: Should be merged with the patch that adds this and possibly dropped completely.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Store the effective mitigation of VMX in a status variable and use it to report the VMX state in the l1tf sysfs file. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.433098358@linutronix.de CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustment in last hunk] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT siblings. Writing 'on' merily enables the abilify to online them, but does not online them automatically. Make 'on' more useful by onlining all offline siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: _cpu_up() only has 2 arguments] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
If the L1D flush module parameter is set to 'always' and the IA32_FLUSH_CMD MSR is available, optimize the VMENTER code with the MSR save list. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustments and ensure hubk #2 does not get applied into the wrong place.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
The IA32_FLUSH_CMD MSR needs only to be written on VMENTER. Extend add_atomic_switch_msr() with an entry_only parameter to allow storing the MSR only in the guest (ENTRY) MSR array. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
This allows to load a different number of MSRs depending on the context: VMEXIT or VMENTER. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustments] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
.. to help find the MSR on either the guest or host MSR list. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
There is no semantic change but this change allows an unbalanced amount of MSRs to be loaded on VMEXIT and VMENTER, i.e. the number of MSRs to save or restore on VMEXIT or VMENTER may be different. That is the number of MSRs to save or restore on VMEXIT or VMENTER may be different. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Drop 2 hunks modifying nested which does not exist, yet] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Paolo Bonzini authored
Add the logic for flushing L1D on VMENTER. The flush depends on the static key being enabled and the new l1tf_flush_l1d flag being set. The flags is set: - Always, if the flush module parameter is 'always' - Conditionally at: - Entry to vcpu_run(), i.e. after executing user space - From the sched_in notifier, i.e. when switching to a vCPU thread. - From vmexit handlers which are considered unsafe, i.e. where sensitive data can be brought into L1D: - The emulator, which could be a good target for other speculative execution-based threats, - The MMU, which can bring host page tables in the L1 cache. - External interrupts - Nested operations that require the MMU (see above). That is vmptrld, vmptrst, vmclear,vmwrite,vmread. - When handling invept,invvpid [ tglx: Split out from combo patch and reduced to a single flag ] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Moved change to kvm/mmu.c(kvm_handle_page_fault) into kvm/vmx.c before calling kvm_mmu_page_fault(). Left kvm/svm.c unmodified as AMD is not said to be affected.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Paolo Bonzini authored
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR (IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other MSRs defined in the document. The semantics of this MSR is to allow "finer granularity invalidation of caching structures than existing mechanisms like WBINVD. It will writeback and invalidate the L1 data cache, including all cachelines brought in by preceding instructions, without invalidating all caches (eg. L2 or LLC). Some processors may also invalidate the first level level instruction cache on a L1D_FLUSH command. The L1 data and instruction caches may be shared across the logical processors of a core." Use it instead of the loop based L1 flush algorithm. A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199511 [ tglx: Avoid allocating pages when the MSR is available ] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Paolo Bonzini authored
To mitigate the L1 Terminal Fault vulnerability it's required to flush L1D on VMENTER to prevent rogue guests from snooping host memory. CPUs will have a new control MSR via a microcode update to flush L1D with a single MSR write, but in the absence of microcode a fallback to a software based flush algorithm is required. Add a software flush loop which is based on code from Intel. [ tglx: Split out from combo patch ] [ bpetkov: Polish the asm code ] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Minor context adaptions] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
Add a mitigation mode parameter "vmentry_l1d_flush" for CVE-2018-3620, aka L1 terminal fault. The valid arguments are: - "always" L1D cache flush on every VMENTER. - "cond" Conditional L1D cache flush, explained below - "never" Disable the L1D cache flush mitigation "cond" is trying to avoid L1D cache flushes on VMENTER if the code executed between VMEXIT and VMENTER is considered safe, i.e. is not bringing any interesting information into L1D which might exploited. [ tglx: Split out from a larger patch ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustments] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
If the L1TF CPU bug is present we allow the KVM module to be loaded as the major of users that use Linux and KVM have trusted guests and do not want a broken setup. Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as such they are the ones that should set nosmt to one. Setting 'nosmt' means that the system administrator also needs to disable SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line parameter, or via the /sys/devices/system/cpu/smt/control. See commit 05736e4a ("cpu/hotplug: Provide knobs to control SMT"). Other mitigations are to use task affinity, cpu sets, interrupt binding, etc - anything to make sure that _only_ the same guests vCPUs are running on sibling threads. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 [smb: Added vm_init function to vmx.c, squashed v4, re- arranged for v6] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Suravee Suthikulpanit authored
Adding function pointers in struct kvm_x86_ops for processor-specific layer to provide hooks for when KVM initialize and destroy VM. Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> CVE-2018-3620 CVE-2018-3646 (backported from commit 03543133 upstream) Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Due to the way Machine Check Exceptions work on X86 hyperthreads it's required to boot up _all_ logical cores at least once in order to set the CR4.MCE bit. So instead of ignoring the sibling threads right away, let them boot up once so they can configure themselves. After they came out of the initial boot stage check whether its a "secondary" sibling and cancel the operation which puts the CPU back into offline state. Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tony Luck <tony.luck@intel.com> CVE-2018-3620 CVE-2018-3646 [smb: Heavily modified to get around backporting all of the new hotplug state machine code.] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Stefan Bader authored
Currently the hotplug notifier is registered in device init. This is too late to handle events at early SMP boot stage. Later upstream code (around 4.10) changes this, but relies on the work done to make the whole CPU hotplug code a state machine. CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Dave Hansen reported, that it's outright dangerous to keep SMT siblings disabled completely so they are stuck in the BIOS and wait for SIPI. The reason is that Machine Check Exceptions are broadcasted to siblings and the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or reboots the machine. The MCE chapter in the SDM contains the following blurb: Because the logical processors within a physical package are tightly coupled with respect to shared hardware resources, both logical processors are notified of machine check errors that occur within a given physical processor. If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the logical processors enter the shutdown state and assert the IERR# signal. When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical processor. Reverting the commit which ignores siblings at enumeration time solves only half of the problem. The core cpuhotplug logic needs to be adjusted as well. This thoughtful engineered mechanism also turns the boot process on all Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU before the secondary CPUs are brought up. Depending on the number of physical cores the window in which this situation can happen is smaller or larger. On a HSW-EX it's about 750ms: MCE is enabled on the boot CPU: [ 0.244017] mce: CPU supports 22 MCE banks The corresponding sibling #72 boots: [ 1.008005] .... node #0, CPUs: #72 That means if an MCE hits on physical core 0 (logical CPUs 0 and 72) between these two points the machine is going to shutdown. At least it's a known safe state. It's obvious that the early boot can be hit by an MCE as well and then runs into the same situation because MCEs are not yet enabled on the boot CPU. But after enabling them on the boot CPU, it does not make any sense to prevent the kernel from recovering. Adjust the nosmt kernel parameter documentation as well. Reverts: 2207def7 ("x86/apic: Ignore secondary threads if nosmt=force") Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tony Luck <tony.luck@intel.com> CVE-2018-3620 CVE-2018-3646 [smb: Adjust doc path, minor context adjustments] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Michal Hocko authored
Jan has noticed that pte_pfn and co. resp. pfn_pte are incorrect for CONFIG_PAE because phys_addr_t is wider than unsigned long and so the pte_val reps. shift left would get truncated. Fix this up by using proper types. Fixes: 6b28baca ("x86/speculation/l1tf: Protect PROT_NONE PTEs against speculation") Reported-by: Jan Beulich <JBeulich@suse.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> CVE-2018-3620 CVE-2018-3646 [smb: Drop change to pfn_pud which does not exist] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Vlastimil Babka authored
The PAE 3-level paging code currently doesn't mitigate L1TF by flipping the offset bits, and uses the high PTE word, thus bits 32-36 for type, 37-63 for offset. The lower word is zeroed, thus systems with less than 4GB memory are safe. With 4GB to 128GB the swap type selects the memory locations vulnerable to L1TF; with even more memory, also the swap offfset influences the address. This might be a problem with 32bit PAE guests running on large 64bit hosts. By continuing to keep the whole swap entry in either high or low 32bit word of PTE we would limit the swap size too much. Thus this patch uses the whole PAE PTE with the same layout as the 64bit version does. The macros just become a bit tricky since they assume the arch-dependent swp_entry_t to be 32bit. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> CVE-2018-3620 CVE-2018-3646 [smb: Minor context adjustments] Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Konrad Rzeszutek Wilk authored
336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR (IA32_FLUSH_CMD) which is detected by CPUID.7.EDX[28]=1 bit being set. This new MSR "gives software a way to invalidate structures with finer granularity than other architectual methods like WBINVD." A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199511Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Borislav Petkov authored
The TOPOEXT reenablement is a workaround for broken BIOSen which didn't enable the CPUID bit. amd_get_topology_early(), however, relies on that bit being set so that it can read out the CPUID leaf and set smp_num_siblings properly. Move the reenablement up to early_init_amd(). While at it, simplify amd_get_topology_early(). Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Vlastimil Babka authored
The previous patch has limited swap file size so that large offsets cannot clear bits above MAX_PA/2 in the pte and interfere with L1TF mitigation. It assumed that offsets are encoded starting with bit 12, same as pfn. But on x86_64, offsets are encoded starting with bit 9. Thus the limit can be raised by 3 bits. That means 16TB with 42bit MAX_PA and 256TB with 46bit MAX_PA. Fixes: 377eeaa8 ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
nosmt on the kernel command line merely prevents the onlining of the secondary SMT siblings. nosmt=force makes the APIC detection code ignore the secondary SMT siblings completely, so they even do not show up as possible CPUs. That reduces the amount of memory allocations for per cpu variables and saves other resources from being allocated too large. This is not fully equivalent to disabling SMT in the BIOS because the low level SMT enabling in the BIOS can result in partitioning of resources between the siblings, which is not undone by just ignoring them. Some CPUs can use the full resources when their sibling is not onlined, but this is depending on the CPU family and model and it's not well documented whether this applies to all partitioned resources. That means depending on the workload disabling SMT in the BIOS might result in better performance. Linus analysis of the Intel manual: The intel optimization manual is not very clear on what the partitioning rules are. I find: "In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers include µop queues after the execution trace cache, the queues after the register rename stage, the reorder buffer which stages instructions for retirement, and the load and store buffers. In the case of load and store buffers, partitioning also provided an easier implementation to maintain memory ordering for each logical processor and detect memory ordering violations" but some of that partitioning may be relaxed if the HT thread is "not active": "In Intel microarchitecture code name Sandy Bridge, the micro-op queue is statically partitioned to provide 28 entries for each logical processor, irrespective of software executing in single thread or multiple threads. If one logical processor is not active in Intel microarchitecture code name Ivy Bridge, then a single thread executing on that processor core can use the 56 entries in the micro-op queue" but I do not know what "not active" means, and how dynamic it is. Some of that partitioning may be entirely static and depend on the early BIOS disabling of HT, and even if we park the cores, the resources will just be wasted. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
To support force disabling of SMT it's required to know the number of thread siblings early. amd_get_topology() cannot be called before the APIC driver is selected, so split out the part which initializes smp_num_siblings and invoke it from amd_early_init(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
Make use of the new early detection function to initialize smp_num_siblings on the boot cpu before the MP-Table or ACPI/MADT scan happens. That's required for force disabling SMT. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-
Thomas Gleixner authored
To support force disabling of SMT it's required to know the number of thread siblings early. detect_extended_topology() cannot be called before the APIC driver is selected, so split out the part which initializes smp_num_siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> CVE-2018-3620 CVE-2018-3646 Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
-