- 18 Mar, 2015 25 commits
-
-
Alex Deucher authored
commit 410af8d7 upstream. Enable at init and disable on fini. Workaround for hardware problems. v2 (chk): extend commit message v3: add new function Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Christian König <christian.koenig@amd.com> (v2) Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Grazvydas Ignotas authored
commit 9cb12d7b upstream. For whatever reason, generic_access_phys() only remaps one page, but actually allows to access arbitrary size. It's quite easy to trigger large reads, like printing out large structure with gdb, which leads to a crash. Fix it by remapping correct size. Fixes: 28b2ee20 ("access_process_vm device memory infrastructure") Signed-off-by: Grazvydas Ignotas <notasas@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joonsoo Kim authored
commit 372549c2 upstream. What we want to check here is whether there is highorder freepage in buddy list of other migratetype in order to steal it without fragmentation. But, current code just checks cc->order which means allocation request order. So, this is wrong. Without this fix, non-movable synchronous compaction below pageblock order would not stopped until compaction is complete, because migratetype of most pageblocks are movable and high order freepage made by compaction is usually on movable type buddy list. There is some report related to this bug. See below link. http://www.spinics.net/lists/linux-mm/msg81666.html Although the issued system still has load spike comes from compaction, this makes that system completely stable and responsive according to his report. stress-highalloc test in mmtests with non movable order 7 allocation doesn't show any notable difference in allocation success rate, but, it shows more compaction success rate. Compaction success rate (Compaction success * 100 / Compaction stalls, %) 18.47 : 28.94 Fixes: 1fb3f8ca ("mm: compaction: capture a suitable high-order page immediately when it is made available") Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Roman Gushchin authored
commit 8138a67a upstream. I noticed that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d098 ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Roman Gushchin authored
commit 5703b087 upstream. I noticed, that "allowed" can easily overflow by falling below 0, because (total_vm / 32) can be larger than "allowed". The problem occurs in OVERCOMMIT_NONE mode. In this case, a huge allocation can success and overcommit the system (despite OVERCOMMIT_NONE mode). All subsequent allocations will fall (system-wide), so system become unusable. The problem was masked out by commit c9b1d098 ("mm: limit growth of 3% hardcoded other user reserve"), but it's easy to reproduce it on older kernels: 1) set overcommit_memory sysctl to 2 2) mmap() large file multiple times (with VM_SHARED flag) 3) try to malloc() large amount of memory It also can be reproduced on newer kernels, but miss-configured sysctl_user_reserve_kbytes is required. Fix this issue by switching to signed arithmetic here. [akpm@linux-foundation.org: use min_t] Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Cc: Andrew Shewmaker <agshew@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vlastimil Babka authored
commit 99592d59 upstream. When studying page stealing, I noticed some weird looking decisions in try_to_steal_freepages(). The first I assume is a bug (Patch 1), the following two patches were driven by evaluation. Testing was done with stress-highalloc of mmtests, using the mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how often page stealing occurs for individual migratetypes, and what migratetypes are used for fallbacks. Arguably, the worst case of page stealing is when UNMOVABLE allocation steals from MOVABLE pageblock. RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal, so the goal is to minimize these two cases. The evaluation of v2 wasn't always clear win and Joonsoo questioned the results. Here I used different baseline which includes RFC compaction improvements from [1]. I found that the compaction improvements reduce variability of stress-highalloc, so there's less noise in the data. First, let's look at stress-highalloc configured to do sync compaction, and how these patches reduce page stealing events during the test. First column is after fresh reboot, other two are reiterations of test without reboot. That was all accumulater over 5 re-iterations (so the benchmark was run 5x3 times with 5 fresh restarts). Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Page alloc extfrag event 10264225 8702233 10244125 Extfrag fragmenting 10263271 8701552 10243473 Extfrag fragmenting for unmovable 13595 17616 15960 Extfrag fragmenting unmovable placed with movable 7989 12193 8447 Extfrag fragmenting for reclaimable 658 1840 1817 Extfrag fragmenting reclaimable placed with movable 558 1677 1679 Extfrag fragmenting for movable 10249018 8682096 10225696 With Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Page alloc extfrag event 11834954 9877523 9774860 Extfrag fragmenting 11833993 9876880 9774245 Extfrag fragmenting for unmovable 7342 16129 11712 Extfrag fragmenting unmovable placed with movable 4191 10547 6270 Extfrag fragmenting for reclaimable 373 1130 923 Extfrag fragmenting reclaimable placed with movable 302 906 738 Extfrag fragmenting for movable 11826278 9859621 9761610 With Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Page alloc extfrag event 4725990 3668793 3807436 Extfrag fragmenting 4725104 3668252 3806898 Extfrag fragmenting for unmovable 6678 7974 7281 Extfrag fragmenting unmovable placed with movable 2051 3829 4017 Extfrag fragmenting for reclaimable 429 1208 1278 Extfrag fragmenting reclaimable placed with movable 369 976 1034 Extfrag fragmenting for movable 4717997 3659070 3798339 With Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Page alloc extfrag event 5016183 4700142 3850633 Extfrag fragmenting 5015325 4699613 3850072 Extfrag fragmenting for unmovable 1312 3154 3088 Extfrag fragmenting unmovable placed with movable 1115 2777 2714 Extfrag fragmenting for reclaimable 437 1193 1097 Extfrag fragmenting reclaimable placed with movable 330 969 879 Extfrag fragmenting for movable 5013576 4695266 3845887 In v2 we've seen apparent regression with Patch 1 for unmovable events, this is now gone, suggesting it was indeed noise. Here, each patch improves the situation for unmovable events. Reclaimable is improved by patch 1 and then either the same modulo noise, or perhaps sligtly worse - a small price for unmovable improvements, IMHO. The number of movable allocations falling back to other migratetypes is most noisy, but it's reduced to half at Patch 2 nevertheless. These are least critical as compaction can move them around. If we look at success rates, the patches don't affect them, that didn't change. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-nothp-1 5-nothp-2 5-nothp-3 Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%) Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%) Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%) Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%) Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%) Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%) Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%) Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-nothp-1 6-nothp-2 6-nothp-3 Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%) Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%) Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%) Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%) Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%) Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%) Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%) Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-nothp-1 7-nothp-2 7-nothp-3 Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%) Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%) Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%) Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%) Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%) Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%) Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%) Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%) Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%) Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-nothp-1 8-nothp-2 8-nothp-3 Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%) Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%) Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%) Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%) Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%) Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%) Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%) Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%) Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%) While there's no improvement here, I consider reduced fragmentation events to be worth on its own. Patch 2 also seems to reduce scanning for free pages, and migrations in compaction, suggesting it has somewhat less work to do: Patch 1: Compaction stalls 4153 3959 3978 Compaction success 1523 1441 1446 Compaction failures 2630 2517 2531 Page migrate success 4600827 4943120 5104348 Page migrate failure 19763 16656 17806 Compaction pages isolated 9597640 10305617 10653541 Compaction migrate scanned 77828948 86533283 87137064 Compaction free scanned 517758295 521312840 521462251 Compaction cost 5503 5932 6110 Patch 2: Compaction stalls 3800 3450 3518 Compaction success 1421 1316 1317 Compaction failures 2379 2134 2201 Page migrate success 4160421 4502708 4752148 Page migrate failure 19705 14340 14911 Compaction pages isolated 8731983 9382374 9910043 Compaction migrate scanned 98362797 96349194 98609686 Compaction free scanned 496512560 469502017 480442545 Compaction cost 5173 5526 5811 As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers of unmovable and reclaimable pageblocks. Configuring the benchmark to allocate like THP page fault (i.e. no sync compaction) gives much noisier results for iterations 2 and 3 after reboot. This is not so surprising given how [1] offers lower improvements in this scenario due to less restarts after deferred compaction which would change compaction pivot. Baseline: 3.19-rc4 3.19-rc4 3.19-rc4 5-thp-1 5-thp-2 5-thp-3 Page alloc extfrag event 8148965 6227815 6646741 Extfrag fragmenting 8147872 6227130 6646117 Extfrag fragmenting for unmovable 10324 12942 15975 Extfrag fragmenting unmovable placed with movable 5972 8495 10907 Extfrag fragmenting for reclaimable 601 1707 2210 Extfrag fragmenting reclaimable placed with movable 520 1570 2000 Extfrag fragmenting for movable 8136947 6212481 6627932 Patch 1: 3.19-rc4 3.19-rc4 3.19-rc4 6-thp-1 6-thp-2 6-thp-3 Page alloc extfrag event 8345457 7574471 7020419 Extfrag fragmenting 8343546 7573777 7019718 Extfrag fragmenting for unmovable 10256 18535 30716 Extfrag fragmenting unmovable placed with movable 6893 11726 22181 Extfrag fragmenting for reclaimable 465 1208 1023 Extfrag fragmenting reclaimable placed with movable 353 996 843 Extfrag fragmenting for movable 8332825 7554034 6987979 Patch 2: 3.19-rc4 3.19-rc4 3.19-rc4 7-thp-1 7-thp-2 7-thp-3 Page alloc extfrag event 3512847 3020756 2891625 Extfrag fragmenting 3511940 3020185 2891059 Extfrag fragmenting for unmovable 9017 6892 6191 Extfrag fragmenting unmovable placed with movable 1524 3053 2435 Extfrag fragmenting for reclaimable 445 1081 1160 Extfrag fragmenting reclaimable placed with movable 375 918 986 Extfrag fragmenting for movable 3502478 3012212 2883708 Patch 3: 3.19-rc4 3.19-rc4 3.19-rc4 8-thp-1 8-thp-2 8-thp-3 Page alloc extfrag event 3181699 3082881 2674164 Extfrag fragmenting 3180812 3082303 2673611 Extfrag fragmenting for unmovable 1201 4031 4040 Extfrag fragmenting unmovable placed with movable 974 3611 3645 Extfrag fragmenting for reclaimable 478 1165 1294 Extfrag fragmenting reclaimable placed with movable 387 985 1030 Extfrag fragmenting for movable 3179133 3077107 2668277 The improvements for first iteration are clear, the rest is much noisier and can appear like regression for Patch 1. Anyway, patch 2 rectifies it. Allocation success rates are again unaffected so there's no point in making this e-mail any longer. [1] http://marc.info/?l=linux-mm&m=142166196321125&w=2 This patch (of 3): When __rmqueue_fallback() is called to allocate a page of order X, it will find a page of order Y >= X of a fallback migratetype, which is different from the desired migratetype. With the help of try_to_steal_freepages(), it may change the migratetype (to the desired one) also of: 1) all currently free pages in the pageblock containing the fallback page 2) the fallback pageblock itself 3) buddy pages created by splitting the fallback page (when Y > X) These decisions take the order Y into account, as well as the desired migratetype, with the goal of preventing multiple fallback allocations that could e.g. distribute UNMOVABLE allocations among multiple pageblocks. Originally, decision for 1) has implied the decision for 3). Commit 47118af0 ("mm: mmzone: MIGRATE_CMA migration type added") changed that (probably unintentionally) so that the buddy pages in case 3) are always changed to the desired migratetype, except for CMA pageblocks. Commit fef903ef ("mm/page_allo.c: restructure free-page stealing code and fix a bug") did some refactoring and added a comment that the case of 3) is intended. Commit 0cbef29a ("mm: __rmqueue_fallback() should respect pageblock type") removed the comment and tried to restore the original behavior where 1) implies 3), but due to the previous refactoring, the result is instead that only 2) implies 3) - and the conditions for 2) are less frequently met than conditions for 1). This may increase fragmentation in situations where the code decides to steal all free pages from the pageblock (case 1)), but then gives back the buddy pages produced by splitting. This patch restores the original intended logic where 1) implies 3). During testing with stress-highalloc from mmtests, this has shown to decrease the number of events where UNMOVABLE and RECLAIMABLE allocations steal from MOVABLE pageblocks, which can lead to permanent fragmentation. In some cases it has increased the number of events when MOVABLE allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are fixable by sync compaction and thus less harmful. Note that evaluation has shown that the behavior introduced by 47118af0 for buddy pages in case 3) is actually even better than the original logic, so the following patch will introduce it properly once again. For stable backports of this patch it makes thus sense to only fix versions containing 0cbef29a. [iamjoonsoo.kim@lge.com: tracepoint fix] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Naoya Horiguchi authored
commit 9fbc1f63 upstream. If __unmap_hugepage_range() tries to unmap the address range over which hugepage migration is on the way, we get the wrong page because pte_page() doesn't work for migration entries. This patch simply clears the pte for migration entries as we do for hwpoison entries. Fixes: 290408d4 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Naoya Horiguchi authored
commit a8bda28d upstream. There is a race condition between hugepage migration and change_protection(), where hugetlb_change_protection() doesn't care about migration entries and wrongly overwrites them. That causes unexpected results like kernel crash. HWPoison entries also can cause the same problem. This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this function to do proper actions. Fixes: 290408d4 ("hugetlb: hugepage migration core") Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jiri Pirko authored
[ Upstream commit 9215f437 ] Currently the list is traversed using rcu variant. That is not correct since dev_set_mac_address can be called which eventually calls rtmsg_ifinfo_build_skb and there, skb allocation can sleep. So fix this by remove the rcu usage here. Fixes: 3d249d4c "net: introduce ethernet teaming device" Signed-off-by: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Lorenzo Colitti authored
[ Upstream commit 9145736d ] 1. For an IPv4 ping socket, ping_check_bind_addr does not check the family of the socket address that's passed in. Instead, make it behave like inet_bind, which enforces either that the address family is AF_INET, or that the family is AF_UNSPEC and the address is 0.0.0.0. 2. For an IPv6 ping socket, ping_check_bind_addr returns EINVAL if the socket family is not AF_INET6. Return EAFNOSUPPORT instead, for consistency with inet6_bind. 3. Make ping_v4_sendmsg and ping_v6_sendmsg return EAFNOSUPPORT instead of EINVAL if an incorrect socket address structure is passed in. 4. Make IPv6 ping sockets be IPv6-only. The code does not support IPv4, and it cannot easily be made to support IPv4 because the protocol numbers for ICMP and ICMPv6 are different. This makes connect(::ffff:192.0.2.1) fail with EAFNOSUPPORT instead of making the socket unusable. Among other things, this fixes an oops that can be triggered by: int s = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP); struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = in6addr_any, }; bind(s, (struct sockaddr *) &sin6, sizeof(sin6)); Change-Id: If06ca86d9f1e4593c0d6df174caca3487c57a241 Signed-off-by: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michal Kubeček authored
[ Upstream commit acf8dd0a ] If an over-MTU UDP datagram is sent through a SOCK_RAW socket to a UFO-capable device, ip_ufo_append_data() sets skb->ip_summed to CHECKSUM_PARTIAL unconditionally as all GSO code assumes transport layer checksum is to be computed on segmentation. However, in this case, skb->csum_start and skb->csum_offset are never set as raw socket transmit path bypasses udp_send_skb() where they are usually set. As a result, driver may access invalid memory when trying to calculate the checksum and store the result (as observed in virtio_net driver). Moreover, the very idea of modifying the userspace provided UDP header is IMHO against raw socket semantics (I wasn't able to find a document clearly stating this or the opposite, though). And while allowing CHECKSUM_NONE in the UFO case would be more efficient, it would be a bit too intrusive change just to handle a corner case like this. Therefore disallowing UFO for packets from SOCK_DGRAM seems to be the best option. Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ben Shelton authored
[ Upstream commit 42c972a1 ] The National Instruments USB Host-to-Host Cable is based on the Prolific PL-25A1 chipset. Add its VID/PID so the plusb driver will recognize it. Signed-off-by: Ben Shelton <ben.shelton@ni.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 2f1d8b9e ] Brian reported crashes using IPv6 traffic with macvtap/veth combo. I tracked the crashes in neigh_hh_output() -> memcpy(skb->data - HH_DATA_MOD, hh->hh_data, HH_DATA_MOD); Neighbour code assumes headroom to push Ethernet header is at least 16 bytes. It appears macvtap has only 14 bytes available on arches where NET_IP_ALIGN is 0 (like x86) Effect is a corruption of 2 bytes right before skb->head, and possible crashes if accessing non existing memory. This fix should also increase IPv4 performance, as paranoid code in ip_finish_output2() wont have to call skb_realloc_headroom() Reported-by: Brian Rak <brak@vultr.com> Tested-by: Brian Rak <brak@vultr.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Catalin Marinas authored
[ Upstream commit d720d8ce ] With commit a7526eb5 (net: Unbreak compat_sys_{send,recv}msg), the MSG_CMSG_COMPAT flag is blocked at the compat syscall entry points, changing the kernel compat behaviour from the one before the commit it was trying to fix (1be374a0, net: Block MSG_CMSG_COMPAT in send(m)msg and recv(m)msg). On 32-bit kernels (!CONFIG_COMPAT), MSG_CMSG_COMPAT is 0 and the native 32-bit sys_sendmsg() allows flag 0x80000000 to be set (it is ignored by the kernel). However, on a 64-bit kernel, the compat ABI is different with commit a7526eb5. This patch changes the compat_sys_{send,recv}msg behaviour to the one prior to commit 1be374a0. The problem was found running 32-bit LTP (sendmsg01) binary on an arm64 kernel. Arguably, LTP should not pass 0xffffffff as flags to sendmsg() but the general rule is not to break user ABI (even when the user behaviour is not entirely sane). Fixes: a7526eb5 (net: Unbreak compat_sys_{send,recv}msg) Cc: Andy Lutomirski <luto@amacapital.net> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jiri Pirko authored
[ Upstream commit 57e59563 ] Currently following race is possible in team: CPU0 CPU1 team_port_del team_upper_dev_unlink priv_flags &= ~IFF_TEAM_PORT team_handle_frame team_port_get_rcu team_port_exists priv_flags & IFF_TEAM_PORT == 0 return NULL (instead of port got from rx_handler_data) netdev_rx_handler_unregister The thing is that the flag is removed before rx_handler is unregistered. If team_handle_frame is called in between, team_port_exists returns 0 and team_port_get_rcu will return NULL. So do not check the flag here. It is guaranteed by netdev_rx_handler_unregister that team_handle_frame will always see valid rx_handler_data pointer. Signed-off-by: Jiri Pirko <jiri@resnulli.us> Fixes: 3d249d4c ("net: introduce ethernet teaming device") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Matthew Thode authored
[ Upstream commit a4176a93 ] colons are used as a separator in netdev device lookup in dev_ioctl.c Specific functions are SIOCGIFTXQLEN SIOCETHTOOL SIOCSIFNAME Signed-off-by: Matthew Thode <mthode@mthode.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ignacy Gawędzki authored
[ Upstream commit 34eea79e ] In tcf_em_validate(), after calling request_module() to load the kind-specific module, set em->ops to NULL before returning -EAGAIN, so that module_put() is not called again by tcf_em_tree_destroy(). Signed-off-by: Ignacy Gawędzki <ignacy.gawedzki@green-communications.fr> Acked-by: Cong Wang <cwang@twopensource.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Guenter Roeck authored
[ Upstream commit 54da5a8b ] phy_init_eee uses phy_find_setting(phydev->speed, phydev->duplex) to find a valid entry in the settings array for the given speed and duplex value. For full duplex 1000baseT, this will return the first matching entry, which is the entry for 1000baseKX_Full. If the phy eee does not support 1000baseKX_Full, this entry will not match, causing phy_init_eee to fail for no good reason. Fixes: 9a9c56cb ("net: phy: fix a bug when verify the EEE support") Fixes: 3e707706 ("phy: Expand phy speed/duplex settings array") Cc: Giuseppe Cavallaro <peppe.cavallaro@st.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexander Drozdov authored
[ Upstream commit 3e32e733 ] ip_check_defrag() may be used by af_packet to defragment outgoing packets. skb_network_offset() of af_packet's outgoing packets is not zero. Signed-off-by: Alexander Drozdov <al.drozdov@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexander Drozdov authored
[ Upstream commit fba04a9e ] skb_copy_bits() returns zero on success and negative value on error, so it is needed to invert the condition in ip_check_defrag(). Fixes: 1bf3751e ("ipv4: ip_check_defrag must not modify skb before unsharing") Signed-off-by: Alexander Drozdov <al.drozdov@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ignacy Gawędzki authored
[ Upstream commit 1c4cff0c ] The gnet_stats_copy_app() function gets called, more often than not, with its second argument a pointer to an automatic variable in the caller's stack. Therefore, to avoid copying garbage afterwards when calling gnet_stats_finish_copy(), this data is better copied to a dynamically allocated memory that gets freed after use. [xiyou.wangcong@gmail.com: remove a useless kfree()] Signed-off-by: Ignacy Gawędzki <ignacy.gawedzki@green-communications.fr> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
WANG Cong authored
[ Upstream commit 7afb8886 ] Ignacy reported that when eth0 is down and add a vlan device on top of it like: ip link add link eth0 name eth0.1 up type vlan id 1 We will get a refcount leak: unregister_netdevice: waiting for eth0.1 to become free. Usage count = 2 The problem is when rtnl_configure_link() fails in rtnl_newlink(), we simply call unregister_device(), but for stacked device like vlan, we almost do nothing when we unregister the upper device, more work is done when we unregister the lower device, so call its ->dellink(). Reported-by: Ignacy Gawedzki <ignacy.gawedzki@green-communications.fr> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Martin KaFai Lau authored
[ Upstream commit 3b471175 ] ipv6_cow_metrics() currently assumes only DST_HOST routes require dynamic metrics allocation from inetpeer. The assumption breaks when ndisc discovered router with RTAX_MTU and RTAX_HOPLIMIT metric. Refer to ndisc_router_discovery() in ndisc.c and note that dst_metric_set() is called after the route is created. This patch creates the metrics array (by calling dst_cow_metrics_generic) in ipv6_cow_metrics(). Test: radvd.conf: interface qemubr0 { AdvLinkMTU 1300; AdvCurHopLimit 30; prefix fd00:face:face:face::/64 { AdvOnLink on; AdvAutonomous on; AdvRouterAddr off; }; }; Before: [root@qemu1 ~]# ip -6 r show | egrep -v unreachable fd00:face:face:face::/64 dev eth0 proto kernel metric 256 expires 27sec fe80::/64 dev eth0 proto kernel metric 256 default via fe80::74df:d0ff:fe23:8ef2 dev eth0 proto ra metric 1024 expires 27sec After: [root@qemu1 ~]# ip -6 r show | egrep -v unreachable fd00:face:face:face::/64 dev eth0 proto kernel metric 256 expires 27sec mtu 1300 fe80::/64 dev eth0 proto kernel metric 256 mtu 1300 default via fe80::74df:d0ff:fe23:8ef2 dev eth0 proto ra metric 1024 expires 27sec mtu 1300 hoplimit 30 Fixes: 8e2ec639 (ipv6: don't use inetpeer to store metrics for routes.) Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Borkmann authored
[ Upstream commit 364d5716 ] ifla_vf_policy[] is wrong in advertising its individual member types as NLA_BINARY since .type = NLA_BINARY in combination with .len declares the len member as *max* attribute length [0, len]. The issue is that when do_setvfinfo() is being called to set up a VF through ndo handler, we could set corrupted data if the attribute length is less than the size of the related structure itself. The intent is exactly the opposite, namely to make sure to pass at least data of minimum size of len. Fixes: ebc08a6f ("rtnetlink: Add VF config code to rtnetlink") Cc: Mitch Williams <mitch.a.williams@intel.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sabrina Dubroca authored
[ Upstream commit 7744b5f3 ] This patch fixes two issues in UDP checksum computation in pktgen. First, the pseudo-header uses the source and destination IP addresses. Currently, the ports are used for IPv4. Second, the UDP checksum covers both header and data. So we need to generate the data earlier (move pktgen_finalize_skb up), and compute the checksum for UDP header + data. Fixes: c26bf4a5 ("pktgen: Add UDPCSUM flag to support UDP checksums") Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Acked-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 06 Mar, 2015 15 commits
-
-
Greg Kroah-Hartman authored
-
Hector Marco-Gisbert authored
commit 4e7c22d4 upstream. The issue is that the stack for processes is not properly randomized on 64 bit architectures due to an integer overflow. The affected function is randomize_stack_top() in file "fs/binfmt_elf.c": static unsigned long randomize_stack_top(unsigned long stack_top) { unsigned int random_variable = 0; if ((current->flags & PF_RANDOMIZE) && !(current->personality & ADDR_NO_RANDOMIZE)) { random_variable = get_random_int() & STACK_RND_MASK; random_variable <<= PAGE_SHIFT; } return PAGE_ALIGN(stack_top) + random_variable; return PAGE_ALIGN(stack_top) - random_variable; } Note that, it declares the "random_variable" variable as "unsigned int". Since the result of the shifting operation between STACK_RND_MASK (which is 0x3fffff on x86_64, 22 bits) and PAGE_SHIFT (which is 12 on x86_64): random_variable <<= PAGE_SHIFT; then the two leftmost bits are dropped when storing the result in the "random_variable". This variable shall be at least 34 bits long to hold the (22+12) result. These two dropped bits have an impact on the entropy of process stack. Concretely, the total stack entropy is reduced by four: from 2^28 to 2^30 (One fourth of expected entropy). This patch restores back the entropy by correcting the types involved in the operations in the functions randomize_stack_top() and stack_maxrandom_size(). The successful fix can be tested with: $ for i in `seq 1 10`; do cat /proc/self/maps | grep stack; done 7ffeda566000-7ffeda587000 rw-p 00000000 00:00 0 [stack] 7fff5a332000-7fff5a353000 rw-p 00000000 00:00 0 [stack] 7ffcdb7a1000-7ffcdb7c2000 rw-p 00000000 00:00 0 [stack] 7ffd5e2c4000-7ffd5e2e5000 rw-p 00000000 00:00 0 [stack] ... Once corrected, the leading bytes should be between 7ffc and 7fff, rather than always being 7fff. Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es> Signed-off-by: Ismael Ripoll <iripoll@upv.es> [ Rebased, fixed 80 char bugs, cleaned up commit message, added test example and CVE ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Fixes: CVE-2015-1593 Link: http://lkml.kernel.org/r/20150214173350.GA18393@www.outflux.netSigned-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thadeu Lima de Souza Cascardo authored
commit 045c47ca upstream. When reading blkio.throttle.io_serviced in a recently created blkio cgroup, it's possible to race against the creation of a throttle policy, which delays the allocation of stats_cpu. Like other functions in the throttle code, just checking for a NULL stats_cpu prevents the following oops caused by that race. [ 1117.285199] Unable to handle kernel paging request for data at address 0x7fb4d0020 [ 1117.285252] Faulting instruction address: 0xc0000000003efa2c [ 1137.733921] Oops: Kernel access of bad area, sig: 11 [#1] [ 1137.733945] SMP NR_CPUS=2048 NUMA PowerNV [ 1137.734025] Modules linked in: bridge stp llc kvm_hv kvm binfmt_misc autofs4 [ 1137.734102] CPU: 3 PID: 5302 Comm: blkcgroup Not tainted 3.19.0 #5 [ 1137.734132] task: c000000f1d188b00 ti: c000000f1d210000 task.ti: c000000f1d210000 [ 1137.734167] NIP: c0000000003efa2c LR: c0000000003ef9f0 CTR: c0000000003ef980 [ 1137.734202] REGS: c000000f1d213500 TRAP: 0300 Not tainted (3.19.0) [ 1137.734230] MSR: 9000000000009032 <SF,HV,EE,ME,IR,DR,RI> CR: 42008884 XER: 20000000 [ 1137.734325] CFAR: 0000000000008458 DAR: 00000007fb4d0020 DSISR: 40000000 SOFTE: 0 GPR00: c0000000003ed3a0 c000000f1d213780 c000000000c59538 0000000000000000 GPR04: 0000000000000800 0000000000000000 0000000000000000 0000000000000000 GPR08: ffffffffffffffff 00000007fb4d0020 00000007fb4d0000 c000000000780808 GPR12: 0000000022000888 c00000000fdc0d80 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 000001003e120200 c000000f1d5b0cc0 0000000000000200 0000000000000000 GPR24: 0000000000000001 c000000000c269e0 0000000000000020 c000000f1d5b0c80 GPR28: c000000000ca3a08 c000000000ca3dec c000000f1c667e00 c000000f1d213850 [ 1137.734886] NIP [c0000000003efa2c] .tg_prfill_cpu_rwstat+0xac/0x180 [ 1137.734915] LR [c0000000003ef9f0] .tg_prfill_cpu_rwstat+0x70/0x180 [ 1137.734943] Call Trace: [ 1137.734952] [c000000f1d213780] [d000000005560520] 0xd000000005560520 (unreliable) [ 1137.734996] [c000000f1d2138a0] [c0000000003ed3a0] .blkcg_print_blkgs+0xe0/0x1a0 [ 1137.735039] [c000000f1d213960] [c0000000003efb50] .tg_print_cpu_rwstat+0x50/0x70 [ 1137.735082] [c000000f1d2139e0] [c000000000104b48] .cgroup_seqfile_show+0x58/0x150 [ 1137.735125] [c000000f1d213a70] [c0000000002749dc] .kernfs_seq_show+0x3c/0x50 [ 1137.735161] [c000000f1d213ae0] [c000000000218630] .seq_read+0xe0/0x510 [ 1137.735197] [c000000f1d213bd0] [c000000000275b04] .kernfs_fop_read+0x164/0x200 [ 1137.735240] [c000000f1d213c80] [c0000000001eb8e0] .__vfs_read+0x30/0x80 [ 1137.735276] [c000000f1d213cf0] [c0000000001eb9c4] .vfs_read+0x94/0x1b0 [ 1137.735312] [c000000f1d213d90] [c0000000001ebb38] .SyS_read+0x58/0x100 [ 1137.735349] [c000000f1d213e30] [c000000000009218] syscall_exit+0x0/0x98 [ 1137.735383] Instruction dump: [ 1137.735405] 7c6307b4 7f891800 409d00b8 60000000 60420000 3d420004 392a63b0 786a1f24 [ 1137.735471] 7d49502a e93e01c8 7d495214 7d2ad214 <7cead02a> e9090008 e9490010 e9290018 And here is one code that allows to easily reproduce this, although this has first been found by running docker. void run(pid_t pid) { int n; int status; int fd; char *buffer; buffer = memalign(BUFFER_ALIGN, BUFFER_SIZE); n = snprintf(buffer, BUFFER_SIZE, "%d\n", pid); fd = open(CGPATH "/test/tasks", O_WRONLY); write(fd, buffer, n); close(fd); if (fork() > 0) { fd = open("/dev/sda", O_RDONLY | O_DIRECT); read(fd, buffer, 512); close(fd); wait(&status); } else { fd = open(CGPATH "/test/blkio.throttle.io_serviced", O_RDONLY); n = read(fd, buffer, BUFFER_SIZE); close(fd); } free(buffer); exit(0); } void test(void) { int status; mkdir(CGPATH "/test", 0666); if (fork() > 0) wait(&status); else run(getpid()); rmdir(CGPATH "/test"); } int main(int argc, char **argv) { int i; for (i = 0; i < NR_TESTS; i++) test(); return 0; } Reported-by: Ricardo Marin Matinata <rmm@br.ibm.com> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Sterba authored
commit 381cf658 upstream. If btrfs_find_item is called with NULL path it allocates one locally but does not free it. Affected paths are inserting an orphan item for a file and for a subvol root. Move the path allocation to the callers. Fixes: 3f870c28 ("btrfs: expand btrfs_find_item() to include find_orphan_item functionality") Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Sterba authored
commit 5efa0490 upstream. This has been confusing people for too long, the message is really just informative. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chen Jie authored
commit 164c2406 upstream. sm->offset maybe wrong but magic maybe right, the offset do not have CRC. Badness at c00c7580 [verbose debug info unavailable] NIP: c00c7580 LR: c00c718c CTR: 00000014 REGS: df07bb40 TRAP: 0700 Not tainted (2.6.34.13-WR4.3.0.0_standard) MSR: 00029000 <EE,ME,CE> CR: 22084f84 XER: 00000000 TASK = df84d6e0[908] 'mount' THREAD: df07a000 GPR00: 00000001 df07bbf0 df84d6e0 00000000 00000001 00000000 df07bb58 00000041 GPR08: 00000041 c0638860 00000000 00000010 22084f88 100636c8 df814ff8 00000000 GPR16: df84d6e0 dfa558cc c05adb90 00000048 c0452d30 00000000 000240d0 000040d0 GPR24: 00000014 c05ae734 c05be2e0 00000000 00000001 00000000 00000000 c05ae730 NIP [c00c7580] __alloc_pages_nodemask+0x4d0/0x638 LR [c00c718c] __alloc_pages_nodemask+0xdc/0x638 Call Trace: [df07bbf0] [c00c718c] __alloc_pages_nodemask+0xdc/0x638 (unreliable) [df07bc90] [c00c7708] __get_free_pages+0x20/0x48 [df07bca0] [c00f4a40] __kmalloc+0x15c/0x1ec [df07bcd0] [c01fc880] jffs2_scan_medium+0xa58/0x14d0 [df07bd70] [c01ff38c] jffs2_do_mount_fs+0x1f4/0x6b4 [df07bdb0] [c020144c] jffs2_do_fill_super+0xa8/0x260 [df07bdd0] [c020230c] jffs2_fill_super+0x104/0x184 [df07be00] [c0335814] get_sb_mtd_aux+0x9c/0xec [df07be20] [c033596c] get_sb_mtd+0x84/0x1e8 [df07be60] [c0201ed0] jffs2_get_sb+0x1c/0x2c [df07be70] [c0103898] vfs_kern_mount+0x78/0x1e8 [df07bea0] [c0103a58] do_kern_mount+0x40/0x100 [df07bec0] [c011fe90] do_mount+0x240/0x890 [df07bf10] [c0120570] sys_mount+0x90/0xd8 [df07bf40] [c00110d8] ret_from_syscall+0x0/0x4 === Exception: c01 at 0xff61a34 LR = 0x100135f0 Instruction dump: 38800005 38600000 48010f41 4bfffe1c 4bfc2d15 4bfffe8c 72e90200 4082fc28 3d20c064 39298860 8809000d 68000001 <0f000000> 2f800000 419efc0c 38000001 mount: mounting /dev/mtdblock3 on /common failed: Input/output error Signed-off-by: Chen Jie <chenjie6@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel J Blueman authored
commit 0c510cc8 upstream. When DRAM errors occur on memory controllers after EDAC_MAX_MCS (16), the kernel fatally dereferences unallocated structures, see splat below; this occurs on at least NumaConnect systems. Fix by checking if a memory controller info structure was found. BUG: unable to handle kernel NULL pointer dereference at 0000000000000320 IP: [<ffffffff819f714f>] decode_bus_error+0x2f/0x2b0 PGD 2f8b5a3067 PUD 2f8b5a2067 PMD 0 Oops: 0000 [#2] SMP Modules linked in: CPU: 224 PID: 11930 Comm: stream_c.exe.gn Tainted: G D 3.19.0 #1 Hardware name: Supermicro H8QGL/H8QGL, BIOS 3.5b 01/28/2015 task: ffff8807dbfb8c00 ti: ffff8807dd16c000 task.ti: ffff8807dd16c000 RIP: 0010:[<ffffffff819f714f>] [<ffffffff819f714f>] decode_bus_error+0x2f/0x2b0 RSP: 0000:ffff8907dfc03c48 EFLAGS: 00010297 RAX: 0000000000000001 RBX: 9c67400010080a13 RCX: 0000000000001dc6 RDX: 000000001dc61dc6 RSI: ffff8907dfc03df0 RDI: 000000000000001c RBP: ffff8907dfc03ce8 R08: 0000000000000000 R09: 0000000000000022 R10: ffff891fffa30380 R11: 00000000001cfc90 R12: 0000000000000008 R13: 0000000000000000 R14: 000000000000001c R15: 00009c6740001000 FS: 00007fa97ee18700(0000) GS:ffff8907dfc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000320 CR3: 0000003f889b8000 CR4: 00000000000407e0 Stack: 0000000000000000 ffff8907dfc03df0 0000000000000008 9c67400010080a13 000000000000001c 00009c6740001000 ffff8907dfc03c88 ffffffff810e4f9a ffff8907dfc03ce8 ffffffff81b375b9 0000000000000000 0000000000000010 Call Trace: <IRQ> ? vprintk_default ? printk amd_decode_mce notifier_call_chain atomic_notifier_call_chain mce_log machine_check_poll mce_timer_fn ? mce_cpu_restart call_timer_fn.isra.29 run_timer_softirq __do_softirq irq_exit smp_apic_timer_interrupt apic_timer_interrupt <EOI> ? down_read_trylock __do_page_fault ? __schedule do_page_fault page_fault Signed-off-by: Daniel J Blueman <daniel@numascale.com> Link: http://lkml.kernel.org/r/1424144078-24589-1-git-send-email-daniel@numascale.com [ Boris: massage commit message ] Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Tomáš Hodek authored
commit d1901ef0 upstream. When a drive is marked write-mostly it should only be the target of reads if there is no other option. This behaviour was broken by commit 9dedf603 md/raid1: read balance chooses idlest disk for SSD which causes a write-mostly device to be *preferred* is some cases. Restore correct behaviour by checking and setting best_dist_disk and best_pending_disk rather than best_disk. We only need to test one of these as they are both changed from -1 or >=0 at the same time. As we leave min_pending and best_dist unchanged, any non-write-mostly device will appear better than the write-mostly device. Reported-by: Tomáš Hodek <tomas.hodek@volny.cz> Reported-by: Dark Penguin <darkpenguin@yandex.ru> Signed-off-by: NeilBrown <neilb@suse.de> Link: http://marc.info/?l=linux-raid&m=135982797322422 Fixes: 9dedf603Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
NeilBrown authored
commit 26ac1073 upstream. Commit a7854487: md: When RAID5 is dirty, force reconstruct-write instead of read-modify-write. Causes an RCW cycle to be forced even when the array is degraded. A degraded array cannot support RCW as that requires reading all data blocks, and one may be missing. Forcing an RCW when it is not possible causes a live-lock and the code spins, repeatedly deciding to do something that cannot succeed. So change the condition to only force RCW on non-degraded arrays. Reported-by: Manibalan P <pmanibalan@amiindia.co.in> Bisected-by: Jes Sorensen <Jes.Sorensen@redhat.com> Tested-by: Jes Sorensen <Jes.Sorensen@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de> Fixes: a7854487Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
James Hogan authored
commit c2996cb2 upstream. The KSTK_EIP() and KSTK_ESP() macros should return the user program counter (PC) and stack pointer (A0StP) of the given task. These are used to determine which VMA corresponds to the user stack in /proc/<pid>/maps, and for the user PC & A0StP in /proc/<pid>/stat. However for Meta the PC & A0StP from the task's kernel context are used, resulting in broken output. For example in following /proc/<pid>/maps output, the 3afff000-3b021000 VMA should be described as the stack: # cat /proc/self/maps ... 100b0000-100b1000 rwxp 00000000 00:00 0 [heap] 3afff000-3b021000 rwxp 00000000 00:00 0 And in the following /proc/<pid>/stat output, the PC is in kernel code (1074234964 = 0x40078654) and the A0StP is in the kernel heap (1335981392 = 0x4fa17550): # cat /proc/self/stat 51 (cat) R ... 1335981392 1074234964 ... Fix the definitions of KSTK_EIP() and KSTK_ESP() to use task_pt_regs(tsk)->ctx rather than (tsk)->thread.kernel_context. This gets the registers from the user context stored after the thread info at the base of the kernel stack, which is from the last entry into the kernel from userland, regardless of where in the kernel the task may have been interrupted, which results in the following more correct /proc/<pid>/maps output: # cat /proc/self/maps ... 0800b000-08070000 r-xp 00000000 00:02 207 /lib/libuClibc-0.9.34-git.so ... 100b0000-100b1000 rwxp 00000000 00:00 0 [heap] 3afff000-3b021000 rwxp 00000000 00:00 0 [stack] And /proc/<pid>/stat now correctly reports the PC in libuClibc (134320308 = 0x80190b4) and the A0StP in the [stack] region (989864576 = 0x3b002280): # cat /proc/self/stat 51 (cat) R ... 989864576 134320308 ... Reported-by: Alexey Brodkin <Alexey.Brodkin@synopsys.com> Reported-by: Vineet Gupta <Vineet.Gupta1@synopsys.com> Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: linux-metag@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jan Kara authored
commit dfcc70a8 upstream. For filesystems without separate project quota inode field in the superblock we just reuse project quota file for group quotas (and vice versa) if project quota file is allocated and we need group quota file. When we reuse the file, quota structures on disk suddenly have wrong type stored in d_flags though. Nobody really cares about this (although structure type reported to userspace was wrong as well) except that after commit 14bf61ff (quota: Switch ->get_dqblk() and ->set_dqblk() to use bytes as space units) assertion in xfs_qm_scall_getquota() started to trigger on xfs/106 test (apparently I was testing without XFS_DEBUG so I didn't notice when submitting the above commit). Fix the problem by properly resetting ddq->d_flags when running quotacheck for a quota file. Reported-by: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nicolas Saenz Julienne authored
commit 2f97c20e upstream. The gpio_chip operations receive a pointer the gpio_chip struct which is contained in the driver's private struct, yet the container_of call in those functions point to the mfd struct defined in include/linux/mfd/tps65912.h. Signed-off-by: Nicolas Saenz Julienne <nicolassaenzj@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hans Holmberg authored
commit 9cf75e9e upstream. The change: 7b8792bb gpiolib: of: Correct error handling in of_get_named_gpiod_flags assumed that only one gpio-chip is registred per of-node. Some drivers register more than one chip per of-node, so adjust the matching function of_gpiochip_find_and_xlate to not stop looking for chips if a node-match is found and the translation fails. Fixes: 7b8792bb ("gpiolib: of: Correct error handling in of_get_named_gpiod_flags") Signed-off-by: Hans Holmberg <hans.holmberg@intel.com> Acked-by: Alexandre Courbot <acourbot@nvidia.com> Tested-by: Robert Jarzmik <robert.jarzmik@free.fr> Tested-by: Tyler Hall <tylerwhall@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Catalin Marinas authored
commit 9d42d48a upstream. The native (64-bit) sigval_t union contains sival_int (32-bit) and sival_ptr (64-bit). When a compat application invokes a syscall that takes a sigval_t value (as part of a larger structure, e.g. compat_sys_mq_notify, compat_sys_timer_create), the compat_sigval_t union is converted to the native sigval_t with sival_int overlapping with either the least or the most significant half of sival_ptr, depending on endianness. When the corresponding signal is delivered to a compat application, on big endian the current (compat_uptr_t)sival_ptr cast always returns 0 since sival_int corresponds to the top part of sival_ptr. This patch fixes copy_siginfo_to_user32() so that sival_int is copied to the compat_siginfo_t structure. Reported-by: Bamvor Jian Zhang <bamvor.zhangjian@huawei.com> Tested-by: Bamvor Jian Zhang <bamvor.zhangjian@huawei.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Martin Vajnar authored
commit a52d2093 upstream. Since the removal of CONFIG_REGULATOR_DUMMY option, the touchscreen stopped working. This patch enables the "replacement" for REGULATOR_DUMMY and allows the touchscreen to work even though there is no regulator for "vcc". Signed-off-by: Martin Vajnar <martin.vajnar@gmail.com> Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-