- 25 May, 2017 40 commits
-
-
Johan Hovold authored
commit 41318a2b upstream. Add missing endianness conversion when using the USB device-descriptor idProduct field to apply a hardware quirk. Fixes: 1ba47da5 ("uwb: add the i1480 DFU driver") Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Micay authored
stackprotector: Increase the per-task stack canary's random range from 32 bits to 64 bits on 64-bit platforms commit 5ea30e4e upstream. The stack canary is an 'unsigned long' and should be fully initialized to random data rather than only 32 bits of random data. Signed-off-by: Daniel Micay <danielmicay@gmail.com> Acked-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Arjan van Ven <arjan@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kernel-hardening@lists.openwall.com Link: http://lkml.kernel.org/r/20170504133209.3053-1-danielmicay@gmail.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
James Hogan authored
commit 3a158a62 upstream. The metag implementation of strncpy_from_user() doesn't validate the src pointer, which could allow reading of arbitrary kernel memory. Add a short access_ok() check to prevent that. Its still possible for it to read across the user/kernel boundary, but it will invariably reach a NUL character after only 9 bytes, leaking only a static kernel address being loaded into D0Re0 at the beginning of __start, which is acceptable for the immediate fix. Reported-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: linux-metag@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
James Hogan authored
commit 8a8b5663 upstream. The __user_bad() macro used by access_ok() has a few corner cases noticed by Al Viro where it doesn't behave correctly: - The kernel range check has off by 1 errors which permit access to the first and last byte of the kernel mapped range. - The kernel range check ends at LINCORE_BASE rather than META_MEMORY_LIMIT, which is ineffective when the kernel is in global space (an extremely uncommon configuration). There are a couple of other shortcomings here too: - Access to the whole of the other address space is permitted (i.e. the global half of the address space when the kernel is in local space). This isn't ideal as it could theoretically still contain privileged mappings set up by the bootloader. - The size argument is unused, permitting user copies which start on valid pages at the end of the user address range and cross the boundary into the kernel address space (e.g. addr = 0x3ffffff0, size > 0x10). It isn't very convenient to add size checks when disallowing certain regions, and it seems far safer to be sure and explicit about what userland is able to access, so invert the logic to allow certain regions instead, and fix the off by 1 errors and missing size checks. This also allows the get_fs() == KERNEL_DS check to be more easily optimised into the user address range case. We now have 3 such allowed regions: - The user address range (incorporating the get_fs() == KERNEL_DS check). - NULL (some kernel code expects this to work, and we'll always catch the fault anyway). - The core code memory region. Fixes: 373cd784 ("metag: Memory handling") Reported-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: linux-metag@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Li, Fei authored
commit 41dc750e upstream. In case of there is no cpuidle devices registered, dev will be null, and panic will be triggered like below; In this patch, add checking of dev before usage, like that done in cpuidle_idle_call. Panic without fix: [ 184.961328] BUG: unable to handle kernel NULL pointer dereference at (null) [ 184.961328] IP: cpuidle_use_deepest_state+0x30/0x60 ... [ 184.961328] play_idle+0x8d/0x210 [ 184.961328] ? __schedule+0x359/0x8e0 [ 184.961328] ? _raw_spin_unlock_irqrestore+0x28/0x50 [ 184.961328] ? kthread_queue_delayed_work+0x41/0x80 [ 184.961328] clamp_idle_injection_func+0x64/0x1e0 Fixes: bb8313b6 (cpuidle: Allow enforcing deepest idle state selection) Signed-off-by: Li, Fei <fei.li@intel.com> Tested-by: Shi, Feng <fengx.shi@intel.com> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
KarimAllah Ahmed authored
commit f73a7eee upstream. Ever since commit 091d42e4 ("iommu/vt-d: Copy translation tables from old kernel") the kdump kernel copies the IOMMU context tables from the previous kernel. Each device mappings will be destroyed once the driver for the respective device takes over. This unfortunately breaks the workflow of mapping and unmapping a new context to the IOMMU. The mapping function assumes that either: 1) Unmapping did the proper IOMMU flushing and it only ever flush if the IOMMU unit supports caching invalid entries. 2) The system just booted and the initialization code took care of flushing all IOMMU caches. This assumption is not true for the kdump kernel since the context tables have been copied from the previous kernel and translations could have been cached ever since. So make sure to flush the IOTLB as well when we destroy these old copied mappings. Cc: Joerg Roedel <joro@8bytes.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Anthony Liguori <aliguori@amazon.com> Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Fixes: 091d42e4 ("iommu/vt-d: Copy translation tables from old kernel") Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Malcolm Priestley authored
commit 95d93e27 upstream. TID 7 is a valid value for QoS IEEE 802.11e. The switch statement that follows states 7 is valid. Remove function IsACValid and use the default case to filter invalid TIDs. Signed-off-by: Malcolm Priestley <tvboxspy@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Malcolm Priestley authored
commit 90be652c upstream. EPROM_CMD is 2 byte aligned on PCI map so calling with rtl92e_readl will return invalid data so use rtl92e_readw. The device is unable to select the right eeprom type. Signed-off-by: Malcolm Priestley <tvboxspy@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Malcolm Priestley authored
commit 867510bd upstream. BSSIDR has two byte alignment on PCI ioremap correct the write by swapping to 16 bits first. This fixes a problem that the device associates fail because the filter is not set correctly. Signed-off-by: Malcolm Priestley <tvboxspy@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Malcolm Priestley authored
commit baabd567 upstream. The driver attempts to alter memory that is mapped to PCI device. This is because tx_fwinfo_8190pci points to skb->data Move the pci_map_single to when completed buffer is ready to be mapped with psdec is empty to drop on mapping error. Signed-off-by: Malcolm Priestley <tvboxspy@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Phil Elwell authored
commit ff92b9e3 upstream. vchiq_arm supports transfers less than one page and at arbitrary alignment, using the dma-mapping API to perform its cache maintenance (even though the VPU drives the DMA hardware). Read (DMA_FROM_DEVICE) operations use cache invalidation for speed, falling back to clean+invalidate on partial cache lines, with writes (DMA_TO_DEVICE) using flushes. If a read transfer has ends which aren't page-aligned, performing cache maintenance as if they were whole pages can lead to memory corruption since the partial cache lines at the ends (and any cache lines before or after the transfer area) will be invalidated. This bug was masked until the disabling of the cache flush in flush_dcache_page(). Honouring the requested transfer start- and end-points prevents the corruption. Fixes: cf9caf19 ("staging: vc04_services: Replace dmac_map_area with dmac_map_sg") Signed-off-by: Phil Elwell <phil@raspberrypi.org> Reported-by: Stefan Wahren <stefan.wahren@i2se.com> Tested-by: Stefan Wahren <stefan.wahren@i2se.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kristina Martsenko authored
commit f0e421b1 upstream. Some kernel features don't currently work if a task puts a non-zero address tag in its stack pointer, frame pointer, or frame record entries (FP, LR). For example, with a tagged stack pointer, the kernel can't deliver signals to the process, and the task is killed instead. As another example, with a tagged frame pointer or frame records, perf fails to generate call graphs or resolve symbols. For now, just document these limitations, instead of finding and fixing everything that doesn't work, as it's not known if anyone needs to use tags in these places anyway. In addition, as requested by Dave Martin, generalize the limitations into a general kernel address tag policy, and refactor tagged-pointers.txt to include it. Fixes: d50240a5 ("arm64: mm: permit use of tagged pointers at EL0") Reviewed-by: Dave Martin <Dave.Martin@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kristina Martsenko authored
commit 276e9327 upstream. When handling a data abort from EL0, we currently zero the top byte of the faulting address, as we assume the address is a TTBR0 address, which may contain a non-zero address tag. However, the address may be a TTBR1 address, in which case we should not zero the top byte. This patch fixes that. The effect is that the full TTBR1 address is passed to the task's signal handler (or printed out in the kernel log). When handling a data abort from EL1, we leave the faulting address intact, as we assume it's either a TTBR1 address or a TTBR0 address with tag 0x00. This is true as far as I'm aware, we don't seem to access a tagged TTBR0 address anywhere in the kernel. Regardless, it's easy to forget about address tags, and code added in the future may not always remember to remove tags from addresses before accessing them. So add tag handling to the EL1 data abort handler as well. This also makes it consistent with the EL0 data abort handler. Fixes: d50240a5 ("arm64: mm: permit use of tagged pointers at EL0") Reviewed-by: Dave Martin <Dave.Martin@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kristina Martsenko authored
commit 7dcd9dd8 upstream. When we take a watchpoint exception, the address that triggered the watchpoint is found in FAR_EL1. We compare it to the address of each configured watchpoint to see which one was hit. The configured watchpoint addresses are untagged, while the address in FAR_EL1 will have an address tag if the data access was done using a tagged address. The tag needs to be removed to compare the address to the watchpoints. Currently we don't remove it, and as a result can report the wrong watchpoint as being hit (specifically, always either the highest TTBR0 watchpoint or lowest TTBR1 watchpoint). This patch removes the tag. Fixes: d50240a5 ("arm64: mm: permit use of tagged pointers at EL0") Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kristina Martsenko authored
commit 81cddd65 upstream. When we emulate userspace cache maintenance in the kernel, we can currently send the task a SIGSEGV even though the maintenance was done on a valid address. This happens if the address has a non-zero address tag, and happens to not be mapped in. When we get the address from a user register, we don't currently remove the address tag before performing cache maintenance on it. If the maintenance faults, we end up in either __do_page_fault, where find_vma can't find the VMA if the address has a tag, or in do_translation_fault, where the tagged address will appear to be above TASK_SIZE. In both cases, the address is not mapped in, and the task is sent a SIGSEGV. This patch removes the tag from the address before using it. With this patch, the fault is handled correctly, the address gets mapped in, and the cache maintenance succeeds. As a second bug, if cache maintenance (correctly) fails on an invalid tagged address, the address gets passed into arm64_notify_segfault, where find_vma fails to find the VMA due to the tag, and the wrong si_code may be sent as part of the siginfo_t of the segfault. With this patch, the correct si_code is sent. Fixes: 7dd01aef ("arm64: trap userspace "dc cvau" cache operation on errata-affected core") Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mark Rutland authored
commit a06040d7 upstream. Our access_ok() simply hands its arguments over to __range_ok(), which implicitly assummes that the addr parameter is 64 bits wide. This isn't necessarily true for compat code, which might pass down a 32-bit address parameter. In these cases, we don't have a guarantee that the address has been zero extended to 64 bits, and the upper bits of the register may contain unknown values, potentially resulting in a suprious failure. Avoid this by explicitly casting the addr parameter to an unsigned long (as is done on other architectures), ensuring that the parameter is widened appropriately. Fixes: 0aea86a2 ("arm64: User access library functions") Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mark Rutland authored
commit 55de49f9 upstream. Our compat swp emulation holds the compat user address in an unsigned int, which it passes to __user_swpX_asm(). When a 32-bit value is passed in a register, the upper 32 bits of the register are unknown, and we must extend the value to 64 bits before we can use it as a base address. This patch casts the address to unsigned long to ensure it has been suitably extended, avoiding the potential issue, and silencing a related warning from clang. Fixes: bd35a4ad ("arm64: Port SWP/SWPB emulation support from arm") Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mark Rutland authored
commit 994870be upstream. When an inline assembly operand's type is narrower than the register it is allocated to, the least significant bits of the register (up to the operand type's width) are valid, and any other bits are permitted to contain any arbitrary value. This aligns with the AAPCS64 parameter passing rules. Our __smp_store_release() implementation does not account for this, and implicitly assumes that operands have been zero-extended to the width of the type being stored to. Thus, we may store unknown values to memory when the value type is narrower than the pointer type (e.g. when storing a char to a long). This patch fixes the issue by casting the value operand to the same width as the pointer operand in all cases, which ensures that the value is zero-extended as we expect. We use the same union trickery as __smp_load_acquire and {READ,WRITE}_ONCE() to avoid GCC complaining that pointers are potentially cast to narrower width integers in unreachable paths. A whitespace issue at the top of __smp_store_release() is also corrected. No changes are necessary for __smp_load_acquire(). Load instructions implicitly clear any upper bits of the register, and the compiler will only consider the least significant bits of the register as valid regardless. Fixes: 47933ad4 ("arch: Introduce smp_load_acquire(), smp_store_release()") Fixes: 878a84d5 ("arm64: add missing data types in smp_load_acquire/smp_store_release") Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mark Rutland authored
commit fee960be upstream. The inline assembly in __XCHG_CASE() uses a +Q constraint to hazard against other accesses to the memory location being exchanged. However, the pointer passed to the constraint is a u8 pointer, and thus the hazard only applies to the first byte of the location. GCC can take advantage of this, assuming that other portions of the location are unchanged, as demonstrated with the following test case: union u { unsigned long l; unsigned int i[2]; }; unsigned long update_char_hazard(union u *u) { unsigned int a, b; a = u->i[1]; asm ("str %1, %0" : "+Q" (*(char *)&u->l) : "r" (0UL)); b = u->i[1]; return a ^ b; } unsigned long update_long_hazard(union u *u) { unsigned int a, b; a = u->i[1]; asm ("str %1, %0" : "+Q" (*(long *)&u->l) : "r" (0UL)); b = u->i[1]; return a ^ b; } The linaro 15.08 GCC 5.1.1 toolchain compiles the above as follows when using -O2 or above: 0000000000000000 <update_char_hazard>: 0: d2800001 mov x1, #0x0 // #0 4: f9000001 str x1, [x0] 8: d2800000 mov x0, #0x0 // #0 c: d65f03c0 ret 0000000000000010 <update_long_hazard>: 10: b9400401 ldr w1, [x0,#4] 14: d2800002 mov x2, #0x0 // #0 18: f9000002 str x2, [x0] 1c: b9400400 ldr w0, [x0,#4] 20: 4a000020 eor w0, w1, w0 24: d65f03c0 ret This patch fixes the issue by passing an unsigned long pointer into the +Q constraint, as we do for our cmpxchg code. This may hazard against more than is necessary, but this is better than missing a necessary hazard. Fixes: 305d454a ("arm64: atomics: implement native {relaxed, acquire, release} atomics") Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Lezcano authored
commit 0fbdf995 upstream. The MMC hosts could be left in an unconsistent or uninitialized state from the firmware. Instead of assuming, the firmware did the right things, let's reset the host controllers. This change fixes a bug when the mmc2/sdio is initialized leading to a hung task: [ 242.704294] INFO: task kworker/7:1:675 blocked for more than 120 seconds. [ 242.711129] Not tainted 4.9.0-rc8-00017-gcf0251f #3 [ 242.716571] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 242.724435] kworker/7:1 D 0 675 2 0x00000000 [ 242.729973] Workqueue: events_freezable mmc_rescan [ 242.734796] Call trace: [ 242.737269] [<ffff00000808611c>] __switch_to+0xa8/0xb4 [ 242.742437] [<ffff000008d07c04>] __schedule+0x1c0/0x67c [ 242.747689] [<ffff000008d08254>] schedule+0x40/0xa0 [ 242.752594] [<ffff000008d0b284>] schedule_timeout+0x1c4/0x35c [ 242.758366] [<ffff000008d08e38>] wait_for_common+0xd0/0x15c [ 242.763964] [<ffff000008d09008>] wait_for_completion+0x28/0x34 [ 242.769825] [<ffff000008a1a9f4>] mmc_wait_for_req_done+0x40/0x124 [ 242.775949] [<ffff000008a1ab98>] mmc_wait_for_req+0xc0/0xf8 [ 242.781549] [<ffff000008a1ac3c>] mmc_wait_for_cmd+0x6c/0x84 [ 242.787149] [<ffff000008a26610>] mmc_io_rw_direct_host+0x9c/0x114 [ 242.793270] [<ffff000008a26aa0>] sdio_reset+0x34/0x7c [ 242.798347] [<ffff000008a1d46c>] mmc_rescan+0x2fc/0x360 [ ... ] Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: Wei Xu <xuwei5@hisilicon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Leonard Crestez authored
commit d8581c7c upstream. The board file for imx6sx-sdb overrides cpufreq operating points to use higher voltages. This is done because the board has a shared rail for VDD_ARM_IN and VDD_SOC_IN and when using LDO bypass the shared voltage needs to be a value suitable for both ARM and SOC. This only applies to LDO bypass mode, a feature not present in upstream. When LDOs are enabled the effect is to use higher voltages than necessary for no good reason. Setting these higher voltages can make some boards fail to boot with ugly semi-random crashes reminiscent of memory corruption. These failures only happen on board rev. C, rev. B is reported to still work. Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com> Fixes: 54183bd7 ("ARM: imx6sx-sdb: add revb board and make it default") Signed-off-by: Shawn Guo <shawnguo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ludovic Desroches authored
commit d3df1ec0 upstream. Remove ADC channels that are not available by default on the sama5d3_xplained board (resistor not populated) in order to not create confusion. Signed-off-by: Ludovic Desroches <ludovic.desroches@microchip.com> Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com> Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ludovic Desroches authored
commit 9cdd31e5 upstream. The voltage reference for the ADC is not 3V but 3.3V since it is connected to VDDANA. Signed-off-by: Ludovic Desroches <ludovic.desroches@microchip.com> Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com> Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vladimir Murzin authored
commit 6d805949 upstream. We save/restore registers around v7m_invalidate_l1 to address pointed by r12, which is vector table, so the first eight entries are overwritten with a garbage. We already have stack setup at that stage, so use it to save/restore register. Fixes: 6a8146f4 ("ARM: 8609/1: V7M: Add support for the Cortex-M7 processor") Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jon Medhurst authored
commit b089c31c upstream. To cope with the variety in ARM architectures and configurations, the pagetable attributes for kernel memory are generated at runtime to match the system the kernel finds itself on. This calculated value is stored in pgprot_kernel. However, when early fixmap support was added for ARM (commit a5f4c561) the attributes used for mappings were hard coded because pgprot_kernel is not set up early enough. Unfortunately, when fixmap is used after early boot this means the memory being mapped can have different attributes to existing mappings, potentially leading to unpredictable behaviour. A specific problem also exists due to the hard coded values not include the 'shareable' attribute which means on systems where this matters (e.g. those with multiple CPU clusters) the cache contents for a memory location can become inconsistent between CPUs. To resolve these issues we change fixmap to use the same memory attributes (from pgprot_kernel) that the rest of the kernel uses. To enable this we need to refactor the initialisation code so build_mem_type_table() is called early enough. Note, that relies on early param parsing for memory type overrides passed via the kernel command line, so we need to make sure this call is still after parse_early_params(). [ardb: keep early_fixmap_init() before param parsing, for earlycon] Fixes: a5f4c561 ("ARM: 8415/1: early fixmap support for earlycon") Tested-by: afzal mohammed <afzal.mohd.ma@gmail.com> Signed-off-by: Jon Medhurst <tixy@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ard Biesheuvel authored
commit b7ede5a1 upstream. Since commit 35fa91ee ("ARM: kernel: merge core and init PLTs"), the ARM module PLT code allocates all PLT entries in a single core section, since the overhead of having a separate init PLT section is not justified by the small number of PLT entries usually required for init code. However, the core and init module regions are allocated independently, and there is a corner case where the core region may be allocated from the VMALLOC region if the dedicated module region is exhausted, but the init region, being much smaller, can still be allocated from the module region. This puts the PLT entries out of reach of the relocated branch instructions, defeating the whole purpose of PLTs. So split the core and init PLT regions, and name the latter ".init.plt" so it gets allocated along with (and sufficiently close to) the .init sections that it serves. Also, given that init PLT entries may need to be emitted for branches that target the core module, modify the logic that disregards defined symbols to only disregard symbols that are defined in the same section. Fixes: 35fa91ee ("ARM: kernel: merge core and init PLTs") Reported-by: Angus Clark <angus@angusclark.org> Tested-by: Angus Clark <angus@angusclark.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Zhichao Huang authored
commit 661e6b02 upstream. Hardware debugging in guests is not intercepted currently, it means that a malicious guest can bring down the entire machine by writing to the debug registers. This patch enable trapping of all debug registers, preventing the guests to access the debug registers. This includes access to the debug mode(DBGDSCR) in the guest world all the time which could otherwise mess with the host state. Reads return 0 and writes are ignored (RAZ_WI). The result is the guest cannot detect any working hardware based debug support. As debug exceptions are still routed to the guest normal debug using software based breakpoints still works. To support debugging using hardware registers we need to implement a debug register aware world switch as well as special trapping for registers that may affect the host state. Signed-off-by: Zhichao Huang <zhichao.huang@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marc Zyngier authored
commit 3d6e77ad upstream. When an interrupt is injected with the HW bit set (indicating that deactivation should be propagated to the physical distributor), special care must be taken so that we never mark the corresponding LR with the Active+Pending state (as the pending state is kept in the physycal distributor). Fixes: 59529f69 ("KVM: arm/arm64: vgic-new: Add GICv3 world switch backend") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marc Zyngier authored
commit ddf42d06 upstream. When an interrupt is injected with the HW bit set (indicating that deactivation should be propagated to the physical distributor), special care must be taken so that we never mark the corresponding LR with the Active+Pending state (as the pending state is kept in the physycal distributor). Fixes: 140b086d ("KVM: arm/arm64: vgic-new: Add GICv2 world switch backend") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marc Zyngier authored
commit 501ad27c upstream. We like living dangerously. Nothing explicitely forbids stack-protector to be used in the HYP code, while distributions routinely compile their kernel with it. We're just lucky that no code actually triggers the instrumentation. Let's not try our luck for much longer, and disable stack-protector for code living at HYP. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Marc Zyngier authored
commit cde13b5d upstream. We like living dangerously. Nothing explicitely forbids stack-protector to be used in the EL2 code, while distributions routinely compile their kernel with it. We're just lucky that no code actually triggers the instrumentation. Let's not try our luck for much longer, and disable stack-protector for code living at EL2. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michael Neuling authored
commit f48e91e8 upstream. In commit dc310669 ("powerpc: tm: Always use fp_state and vr_state to store live registers"), a section of code was removed that copied the current state to checkpointed state. That code should not have been removed. When an FP (Floating Point) unavailable is taken inside a transaction, we need to abort the transaction. This is because at the time of the tbegin, the FP state is bogus so the state stored in the checkpointed registers is incorrect. To fix this, we treclaim (to get the checkpointed GPRs) and then copy the thread_struct FP live state into the checkpointed state. We then trecheckpoint so that the FP state is correctly restored into the CPU. The copying of the FP registers from live to checkpointed is what was missing. This simplifies the logic slightly from the original patch. tm_reclaim_thread() will now always write the checkpointed FP state. Either the checkpointed FP state will be written as part of the actual treclaim (in tm.S), or it'll be a copy of the live state. Which one we use is based on MSR[FP] from userspace. Similarly for VMX. Fixes: dc310669 ("powerpc: tm: Always use fp_state and vr_state to store live registers") Signed-off-by: Michael Neuling <mikey@neuling.org> Reviewed-by: cyrilbur@gmail.com Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michael Ellerman authored
commit bfb9956a upstream. The page table dump code doesn't know about huge pages, so currently it crashes (or walks random memory, usually leading to a crash), if it finds a huge page. On Book3S we only see huge pages in the Linux page tables when we're using the P9 Radix MMU. Teaching the code to properly handle huge pages is a bit more involved, so for now just prevent the crash. Fixes: 8eb07b18 ("powerpc/mm: Dump linux pagetables") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
LiuHailong authored
commit fd615f69 upstream. Debug interrupts can be taken during interrupt entry, since interrupt entry does not automatically turn them off. The kernel will check whether the faulting instruction is between [interrupt_base_book3e, __end_interrupts], and if so clear MSR[DE] and return. However, when the kernel is built with CONFIG_RELOCATABLE, it can't use LOAD_REG_IMMEDIATE(r14,interrupt_base_book3e) and LOAD_REG_IMMEDIATE(r15,__end_interrupts), as they ignore relocation. Thus, if the kernel is actually running at a different address than it was built at, the address comparison will fail, and the exception entry code will hang at kernel_dbg_exc. r2(toc) is also not usable here, as r2 still holds data from the interrupted context, so LOAD_REG_ADDR() doesn't work either. So we use the *name@got* to get the EV of two labels directly. Test programs test.c shows as follows: int main(int argc, char *argv[]) { if (access("/proc/sys/kernel/perf_event_paranoid", F_OK) == -1) printf("Kernel doesn't have perf_event support\n"); } Steps to reproduce the bug, for example: 1) ./gdb ./test 2) (gdb) b access 3) (gdb) r 4) (gdb) s Signed-off-by: Liu Hailong <liu.hailong6@zte.com.cn> Signed-off-by: Jiang Xuexin <jiang.xuexin@zte.com.cn> Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn> Reviewed-by: Liu Song <liu.song11@zte.com.cn> Reviewed-by: Huang Jian <huang.jian@zte.com.cn> [scottwood: cleaned up commit message, and specified bad behavior as a hang rather than an oops to correspond to mainline kernel behavior] Fixes: 1cb6e064 ("powerpc/book3e: support CONFIG_RELOCATABLE") Signed-off-by: Scott Wood <oss@buserror.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alistair Popple authored
commit 6b3d12a9 upstream. Commit 616badd2 ("powerpc/powernv: Use OPAL call for TCE kill on NVLink2") forced all TCE kills to go via the OPAL call for NVLink2. However the PHB3 implementation of TCE kill was still being called directly from some functions which in some circumstances caused a machine check. This patch adds an equivalent IODA2 version of the function which uses the correct invalidation method depending on PHB model and changes all external callers to use it instead. Fixes: 616badd2 ("powerpc/powernv: Use OPAL call for TCE kill on NVLink2") Signed-off-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexey Kardashevskiy authored
commit e889e96e upstream. The CMA pages migration code does not support compound pages at the moment so it performs few tests before proceeding to actual page migration. One of the tests - PageTransHuge() - has VM_BUG_ON_PAGE(PageTail()) as it is designed to be called on head pages only. Since we also test for PageCompound(), and it contains PageTail() and PageHead(), we can simplify the check by leaving just PageCompound() and therefore avoid possible VM_BUG_ON_PAGE. Fixes: 2e5bbb54 ("KVM: PPC: Book3S HV: Migrate pinned pages out of CMA") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Tyrel Datwyler authored
commit e76ca277 upstream. For CPUs present at boot each logical CPU acquires a reference to the associated device node of the core. This happens in register_cpu() which is called by topology_init(). The result of this is that we end up with a reference held by each thread of the core. However, these references are never freed if the CPU core is DLPAR removed. This patch fixes the reference leaks by acquiring and releasing the references in the CPU hotplug callbacks un/register_cpu_online(). With this patch symmetric reference counting is observed with both CPUs present at boot, and those DLPAR added after boot. Fixes: f86e4718 ("driver/core: cpu: initialize of_node in cpu's device struture") Signed-off-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Tyrel Datwyler authored
commit 68baf692 upstream. Historically struct device_node references were tracked using a kref embedded as a struct field. Commit 75b57ecf ("of: Make device nodes kobjects so they show up in sysfs") (Mar 2014) refactored device_nodes to be kobjects such that the device tree could by more simply exposed to userspace using sysfs. Commit 0829f6d1 ("of: device_node kobject lifecycle fixes") (Mar 2014) followed up these changes to better control the kobject lifecycle and in particular the referecne counting via of_node_get(), of_node_put(), and of_node_init(). A result of this second commit was that it introduced an of_node_put() call when a dynamic node is detached, in of_node_remove(), that removes the initial kobj reference created by of_node_init(). Traditionally as the original dynamic device node user the pseries code had assumed responsibilty for releasing this final reference in its platform specific DLPAR detach code. This patch fixes a refcount underflow introduced by commit 0829f6d1, and recently exposed by the upstreaming of the recount API. Messages like the following are no longer seen in the kernel log with this patch following DLPAR remove operations of cpus and pci devices. rpadlpar_io: slot PHB 72 removed refcount_t: underflow; use-after-free. ------------[ cut here ]------------ WARNING: CPU: 5 PID: 3335 at lib/refcount.c:128 refcount_sub_and_test+0xf4/0x110 Fixes: 0829f6d1 ("of: device_node kobject lifecycle fixes") Signed-off-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com> [mpe: Make change log commit references more verbose] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mahesh Salgaonkar authored
commit d93b0ac0 upstream. machine_check_early() gets called in real mode. The very first time when add_taint() is called, it prints a warning which ends up calling opal call (that uses OPAL_CALL wrapper) for writing it to console. If we get a very first machine check while we are in opal we are doomed. OPAL_CALL overwrites the PACASAVEDMSR in r13 and in this case when we are done with MCE handling the original opal call will use this new MSR on it's way back to opal_return. This usually leads to unexpected behaviour or the kernel to panic. Instead move the add_taint() call later in the virtual mode where it is safe to call. This is broken with current FW level. We got lucky so far for not getting very first MCE hit while in OPAL. But easily reproducible on Mambo. Fixes: 27ea2c42 ("powerpc: Set the correct kernel taint on machine check errors.") Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Russell Currey authored
commit daeba295 upstream. eeh_handle_special_event() is called when an EEH event is detected but can't be narrowed down to a specific PE. This function looks through every PE to find one in an erroneous state, then calls the regular event handler eeh_handle_normal_event() once it knows which PE has an error. However, if eeh_handle_normal_event() found that the PE cannot possibly be recovered, it will free it, rendering the passed PE stale. This leads to a use after free in eeh_handle_special_event() as it attempts to clear the "recovering" state on the PE after eeh_handle_normal_event() returns. Thus, make sure the PE is valid when attempting to clear state in eeh_handle_special_event(). Fixes: 8a6b1bc7 ("powerpc/eeh: EEH core to handle special event") Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Russell Currey <ruscur@russell.cc> Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-