- 30 Dec, 2015 9 commits
-
-
David Woodhouse authored
commit 1bcb49e6 upstream. The Honeywell HGI80 is a wireless interface to the evohome connected thermostat. It uses a TI 3410 USB-serial port. Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Johan Hovold <johan@kernel.org> [bwh: Backported to 3.2: adjust context; update array sizes] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Ben Hutchings authored
Commit 35a2fbc9 ("USB: serial: ti_usb_3410_5052: new device id for Abbot strip port cable") failed to update the size of the ti_id_table_3410 array. This doesn't need to be fixed upstream following commit d7ece651 ("USB: ti_usb_3410_5052: remove vendor/product module parameters") but should be fixed in stable branches older than 3.12. Backports of commit c9d09dc7 ("USB: serial: ti_usb_3410_5052: add Abbott strip port ID to combined table as well.") similarly failed to update the size of the ti_id_table_combined array. Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Diego Elio Pettenò authored
commit c9d09dc7 upstream. Without this change, the USB cable for Freestyle Option and compatible glucometers will not be detected by the driver. Signed-off-by: Diego Elio Pettenò <flameeyes@flameeyes.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Aleksander Morgado authored
commit e07af133 upstream. Also known as Verizon U620L. The device is modeswitched from 1410:9020 to 1410:9022 by selecting the 4th USB configuration: $ sudo usb_modeswitch –v 0x1410 –p 0x9020 –u 4 This configuration provides a ECM interface as well as TTYs ('Enterprise Mode' according to the U620 Linux integration guide). Signed-off-by: Aleksander Morgado <aleksander@aleksander.es> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Clemens Ladisch authored
commit a91e627e upstream. One of the many faults of the QinHeng CH345 USB MIDI interface chip is that it does not handle received SysEx messages correctly -- every second event packet has a wrong code index number, which is the one from the last seen message, instead of 4. For example, the two messages "FE F0 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E F7" result in the following event packets: correct: CH345: 0F FE 00 00 0F FE 00 00 04 F0 01 02 04 F0 01 02 04 03 04 05 0F 03 04 05 04 06 07 08 04 06 07 08 04 09 0A 0B 0F 09 0A 0B 04 0C 0D 0E 04 0C 0D 0E 05 F7 00 00 05 F7 00 00 A class-compliant driver must interpret an event packet with CIN 15 as having a single data byte, so the other two bytes would be ignored. The message received by the host would then be missing two bytes out of six; in this example, "F0 01 02 03 06 07 08 09 0C 0D 0E F7". These corrupted SysEx event packages contain only data bytes, while the CH345 uses event packets with a correct CIN value only for messages with a status byte, so it is possible to distinguish between these two cases by checking for the presence of this status byte. (Other bugs in the CH345's input handling, such as the corruption resulting from running status, cannot be worked around.) Signed-off-by: Clemens Ladisch <clemens@ladisch.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Clemens Ladisch authored
commit 1ca8b201 upstream. The CH345 USB MIDI chip has two output ports. However, they are multiplexed through one pin, and the number of ports cannot be reduced even for hardware that implements only one connector, so for those devices, data sent to either port ends up on the same hardware output. This becomes a problem when both ports are used at the same time, as longer MIDI commands (such as SysEx messages) are likely to be interrupted by messages from the other port, and thus to get lost. It would not be possible for the driver to detect how many ports the device actually has, except that in practice, _all_ devices built with the CH345 have only one port. So we can just ignore the device's descriptors, and hardcode one output port. Signed-off-by: Clemens Ladisch <clemens@ladisch.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Clemens Ladisch authored
commit 98d362be upstream. Signed-off-by: Clemens Ladisch <clemens@ladisch.de> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
lucien authored
commit ed5a377d upstream. now sctp auth cannot work well when setting a hmacid manually, which is caused by that we didn't use the network order for hmacid, so fix it by adding the transformation in sctp_auth_ep_set_hmacs. even we set hmacid with the network order in userspace, it still can't work, because of this condition in sctp_auth_ep_set_hmacs(): if (id > SCTP_AUTH_HMAC_ID_MAX) return -EOPNOTSUPP; so this wasn't working before and thus it won't break compatibility. Fixes: 65b07e5d ("[SCTP]: API updates to suport SCTP-AUTH extensions.") Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Roman Gushchin authored
commit 3ca8138f upstream. I got a report about unkillable task eating CPU. Further investigation shows, that the problem is in the fuse_fill_write_pages() function. If iov's first segment has zero length, we get an infinite loop, because we never reach iov_iter_advance() call. Fix this by calling iov_iter_advance() before repeating an attempt to copy data from userspace. A similar problem is described in 124d3b70 ("fix writev regression: pan hanging unkillable and un-straceable"). If zero-length segmend is followed by segment with invalid address, iov_iter_fault_in_readable() checks only first segment (zero-length), iov_iter_copy_from_user_atomic() skips it, fails at second and returns zero -> goto again without skipping zero-length segment. Patch calls iov_iter_advance() before goto again: we'll skip zero-length segment at second iteraction and iov_iter_fault_in_readable() will detect invalid address. Special thanks to Konstantin Khlebnikov, who helped a lot with the commit description. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Maxim Patlasov <mpatlasov@parallels.com> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Fixes: ea9b9907 ("fuse: implement perform_write") Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
- 27 Nov, 2015 31 commits
-
-
Ben Hutchings authored
-
Christophe Leroy authored
commit 0ff28d9f upstream. Using sendfile with below small program to get MD5 sums of some files, it appear that big files (over 64kbytes with 4k pages system) get a wrong MD5 sum while small files get the correct sum. This program uses sendfile() to send a file to an AF_ALG socket for hashing. /* md5sum2.c */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <sys/socket.h> #include <sys/stat.h> #include <sys/types.h> #include <linux/if_alg.h> int main(int argc, char **argv) { int sk = socket(AF_ALG, SOCK_SEQPACKET, 0); struct stat st; struct sockaddr_alg sa = { .salg_family = AF_ALG, .salg_type = "hash", .salg_name = "md5", }; int n; bind(sk, (struct sockaddr*)&sa, sizeof(sa)); for (n = 1; n < argc; n++) { int size; int offset = 0; char buf[4096]; int fd; int sko; int i; fd = open(argv[n], O_RDONLY); sko = accept(sk, NULL, 0); fstat(fd, &st); size = st.st_size; sendfile(sko, fd, &offset, size); size = read(sko, buf, sizeof(buf)); for (i = 0; i < size; i++) printf("%2.2x", buf[i]); printf(" %s\n", argv[n]); close(fd); close(sko); } exit(0); } Test below is done using official linux patch files. First result is with a software based md5sum. Second result is with the program above. root@vgoip:~# ls -l patch-3.6.* -rw-r--r-- 1 root root 64011 Aug 24 12:01 patch-3.6.2.gz -rw-r--r-- 1 root root 94131 Aug 24 12:01 patch-3.6.3.gz root@vgoip:~# md5sum patch-3.6.* b3ffb9848196846f31b2ff133d2d6443 patch-3.6.2.gz c5e8f687878457db77cb7158c38a7e43 patch-3.6.3.gz root@vgoip:~# ./md5sum2 patch-3.6.* b3ffb9848196846f31b2ff133d2d6443 patch-3.6.2.gz 5fd77b24e68bb24dcc72d6e57c64790e patch-3.6.3.gz After investivation, it appears that sendfile() sends the files by blocks of 64kbytes (16 times PAGE_SIZE). The problem is that at the end of each block, the SPLICE_F_MORE flag is missing, therefore the hashing operation is reset as if it was the end of the file. This patch adds SPLICE_F_MORE to the flags when more data is pending. With the patch applied, we get the correct sums: root@vgoip:~# md5sum patch-3.6.* b3ffb9848196846f31b2ff133d2d6443 patch-3.6.2.gz c5e8f687878457db77cb7158c38a7e43 patch-3.6.3.gz root@vgoip:~# ./md5sum2 patch-3.6.* b3ffb9848196846f31b2ff133d2d6443 patch-3.6.2.gz c5e8f687878457db77cb7158c38a7e43 patch-3.6.3.gz Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
[ Upstream commit 8fa677d2 ] Under low memory conditions, tcp_sk_init() and icmp_sk_init() can both iterate on all possible cpus and call inet_ctl_sock_destroy(), with eventual NULL pointer. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Ani Sinha authored
[ Upstream commit 44f49dd8 ] Fixes the following kernel BUG : BUG: using __this_cpu_add() in preemptible [00000000] code: bash/2758 caller is __this_cpu_preempt_check+0x13/0x15 CPU: 0 PID: 2758 Comm: bash Tainted: P O 3.18.19 #2 ffffffff8170eaca ffff880110d1b788 ffffffff81482b2a 0000000000000000 0000000000000000 ffff880110d1b7b8 ffffffff812010ae ffff880007cab800 ffff88001a060800 ffff88013a899108 ffff880108b84240 ffff880110d1b7c8 Call Trace: [<ffffffff81482b2a>] dump_stack+0x52/0x80 [<ffffffff812010ae>] check_preemption_disabled+0xce/0xe1 [<ffffffff812010d4>] __this_cpu_preempt_check+0x13/0x15 [<ffffffff81419d60>] ipmr_queue_xmit+0x647/0x70c [<ffffffff8141a154>] ip_mr_forward+0x32f/0x34e [<ffffffff8141af76>] ip_mroute_setsockopt+0xe03/0x108c [<ffffffff810553fc>] ? get_parent_ip+0x11/0x42 [<ffffffff810e6974>] ? pollwake+0x4d/0x51 [<ffffffff81058ac0>] ? default_wake_function+0x0/0xf [<ffffffff810553fc>] ? get_parent_ip+0x11/0x42 [<ffffffff810613d9>] ? __wake_up_common+0x45/0x77 [<ffffffff81486ea9>] ? _raw_spin_unlock_irqrestore+0x1d/0x32 [<ffffffff810618bc>] ? __wake_up_sync_key+0x4a/0x53 [<ffffffff8139a519>] ? sock_def_readable+0x71/0x75 [<ffffffff813dd226>] do_ip_setsockopt+0x9d/0xb55 [<ffffffff81429818>] ? unix_seqpacket_sendmsg+0x3f/0x41 [<ffffffff813963fe>] ? sock_sendmsg+0x6d/0x86 [<ffffffff813959d4>] ? sockfd_lookup_light+0x12/0x5d [<ffffffff8139650a>] ? SyS_sendto+0xf3/0x11b [<ffffffff810d5738>] ? new_sync_read+0x82/0xaa [<ffffffff813ddd19>] compat_ip_setsockopt+0x3b/0x99 [<ffffffff813fb24a>] compat_raw_setsockopt+0x11/0x32 [<ffffffff81399052>] compat_sock_common_setsockopt+0x18/0x1f [<ffffffff813c4d05>] compat_SyS_setsockopt+0x1a9/0x1cf [<ffffffff813c4149>] compat_SyS_socketcall+0x180/0x1e3 [<ffffffff81488ea1>] cstar_dispatch+0x7/0x1e Signed-off-by: Ani Sinha <ani@arista.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: ipmr doesn't implement IPSTATS_MIB_OUTOCTETS] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Sowmini Varadhan authored
[ Upstream commit 8ce675ff ] Either of pskb_pull() or pskb_trim() may fail under low memory conditions. If rds_tcp_data_recv() ignores such failures, the application will receive corrupted data because the skb has not been correctly carved to the RDS datagram size. Avoid this by handling pskb_pull/pskb_trim failure in the same manner as the skb_clone failure: bail out of rds_tcp_data_recv(), and retry via the deferred call to rds_send_worker() that gets set up on ENOMEM from rds_tcp_read_sock() Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dan Carpenter authored
[ Upstream commit 50010c20 ] This is decrementing the pointer, instead of the value stored in the pointer. KASan detects it as an out of bounds reference. Reported-by: "Berry Cheng 程君(成淼)" <chengmiao.cj@alibaba-inc.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jann Horn authored
commit fbb18169 upstream. It was possible for an attacking user to trick root (or another user) into writing his coredumps into an attacker-readable, pre-existing file using rename() or link(), causing the disclosure of secret data from the victim process' virtual memory. Depending on the configuration, it was also possible to trick root into overwriting system files with coredumps. Fix that issue by never writing coredumps into existing files. Requirements for the attack: - The attack only applies if the victim's process has a nonzero RLIMIT_CORE and is dumpable. - The attacker can trick the victim into coredumping into an attacker-writable directory D, either because the core_pattern is relative and the victim's cwd is attacker-writable or because an absolute core_pattern pointing to a world-writable directory is used. - The attacker has one of these: A: on a system with protected_hardlinks=0: execute access to a folder containing a victim-owned, attacker-readable file on the same partition as D, and the victim-owned file will be deleted before the main part of the attack takes place. (In practice, there are lots of files that fulfill this condition, e.g. entries in Debian's /var/lib/dpkg/info/.) This does not apply to most Linux systems because most distros set protected_hardlinks=1. B: on a system with protected_hardlinks=1: execute access to a folder containing a victim-owned, attacker-readable and attacker-writable file on the same partition as D, and the victim-owned file will be deleted before the main part of the attack takes place. (This seems to be uncommon.) C: on any system, independent of protected_hardlinks: write access to a non-sticky folder containing a victim-owned, attacker-readable file on the same partition as D (This seems to be uncommon.) The basic idea is that the attacker moves the victim-owned file to where he expects the victim process to dump its core. The victim process dumps its core into the existing file, and the attacker reads the coredump from it. If the attacker can't move the file because he does not have write access to the containing directory, he can instead link the file to a directory he controls, then wait for the original link to the file to be deleted (because the kernel checks that the link count of the corefile is 1). A less reliable variant that requires D to be non-sticky works with link() and does not require deletion of the original link: link() the file into D, but then unlink() it directly before the kernel performs the link count check. On systems with protected_hardlinks=0, this variant allows an attacker to not only gain information from coredumps, but also clobber existing, victim-writable files with coredumps. (This could theoretically lead to a privilege escalation.) Signed-off-by: Jann Horn <jann@thejh.net> Cc: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kees Cook authored
commit 9520628e upstream. When the suid_dumpable sysctl is set to "2", and there is no core dump pipe defined in the core_pattern sysctl, a local user can cause core files to be written to root-writable directories, potentially with user-controlled content. This means an admin can unknowningly reintroduce a variation of CVE-2006-2451, allowing local users to gain root privileges. $ cat /proc/sys/fs/suid_dumpable 2 $ cat /proc/sys/kernel/core_pattern core $ ulimit -c unlimited $ cd / $ ls -l core ls: cannot access core: No such file or directory $ touch core touch: cannot touch `core': Permission denied $ OHAI="evil-string-here" ping localhost >/dev/null 2>&1 & $ pid=$! $ sleep 1 $ kill -SEGV $pid $ ls -l core -rw------- 1 root kees 458752 Jun 21 11:35 core $ sudo strings core | grep evil OHAI=evil-string-here While cron has been fixed to abort reading a file when there is any parse error, there are still other sensitive directories that will read any file present and skip unparsable lines. Instead of introducing a suid_dumpable=3 mode and breaking all users of mode 2, this only disables the unsafe portion of mode 2 (writing to disk via relative path). Most users of mode 2 (e.g. Chrome OS) already use a core dump pipe handler, so this change will not break them. For the situations where a pipe handler is not defined but mode 2 is still active, crash dumps will only be written to fully qualified paths. If a relative path is defined (e.g. the default "core" pattern), dump attempts will trigger a printk yelling about the lack of a fully qualified path. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alan Cox <alan@linux.intel.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Reviewed-by: James Morris <james.l.morris@oracle.com>
-
Maciej W. Rozycki authored
commit b582ef5c upstream. Do not clobber the buffer space passed from `search_binary_handler' and originally preloaded by `prepare_binprm' with the executable's file header by overwriting it with its interpreter's file header. Instead keep the buffer space intact and directly use the data structure locally allocated for the interpreter's file header, fixing a bug introduced in 2.1.14 with loadable module support (linux-mips.org commit beb11695 [Import of Linux/MIPS 2.1.14], predating kernel.org repo's history). Adjust the amount of data read from the interpreter's file accordingly. This was not an issue before loadable module support, because back then `load_elf_binary' was executed only once for a given ELF executable, whether the function succeeded or failed. With loadable module support supported and enabled, upon a failure of `load_elf_binary' -- which may for example be caused by architecture code rejecting an executable due to a missing hardware feature requested in the file header -- a module load is attempted and then the function reexecuted by `search_binary_handler'. With the executable's file header replaced with its interpreter's file header the executable can then be erroneously accepted in this subsequent attempt. Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Howells authored
commit 102f4d90 upstream. Handle a write being requested to the page immediately beyond the EOF marker on a cache object. Currently this gets an assertion failure in CacheFiles because the EOF marker is used there to encode information about a partial page at the EOF - which could lead to an unknown blank spot in the file if we extend the file over it. The problem is actually in fscache where we check the index of the page being written against store_limit. store_limit is set to the number of pages that we're allowed to store by fscache_set_store_limit() - which means it's one more than the index of the last page we're allowed to store. The problem is that we permit writing to a page with an index _equal_ to the store limit - when we should reject that case. Whilst we're at it, change the triggered assertion in CacheFiles to just return -ENOBUFS instead. The assertion failure looks something like this: CacheFiles: Assertion failed 1000 < 7b1 is false ------------[ cut here ]------------ kernel BUG at fs/cachefiles/rdwr.c:962! ... RIP: 0010:[<ffffffffa02c9e83>] [<ffffffffa02c9e83>] cachefiles_write_page+0x273/0x2d0 [cachefiles] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [bwh: Backported to 3.2: we don't have __kernel_write() so keep using the open-coded equivalent] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kinglong Mee authored
commit b130ed59 upstream. Only override netfs->primary_index when registering success. Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [bwh: Backported to 3.2: no n_active or flags fields in fscache_cookie] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kinglong Mee authored
commit 86108c2e upstream. If netfs exist, fscache should not increase the reference of parent's usage and n_children, otherwise, never be decreased. v2: thanks David's suggest, move increasing reference of parent if success use kmem_cache_free() freeing primary_index directly v3: don't move "netfs->primary_index->parent = &fscache_fsdef_index;" Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Paolo Bonzini authored
commit cbdb967a upstream. This is needed to avoid the possibility that the guest triggers an infinite stream of #DB exceptions (CVE-2015-8104). VMX is not affected: because it does not save DR6 in the VMCS, it already intercepts #DB unconditionally. Reported-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2, with thanks to Paolo: - update_db_bp_intercept() was called update_db_intercept() - The remaining call is in svm_guest_debug() rather than through svm_x86_ops] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
commit d69bbf88 upstream. Only cpu seeing dst refcount going to 0 can safely dereference dst->flags. Otherwise an other cpu might already have freed the dst. Fixes: 27b75c95 ("net: avoid RCU for NOCACHE dst") Reported-by: Greg Thelen <gthelen@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit f1cd1f0b upstream. When listing a inode's xattrs we have a time window where we race against a concurrent operation for adding a new hard link for our inode that makes us not return any xattr to user space. In order for this to happen, the first xattr of our inode needs to be at slot 0 of a leaf and the previous leaf must still have room for an inode ref (or extref) item, and this can happen because an inode's listxattrs callback does not lock the inode's i_mutex (nor does the VFS does it for us), but adding a hard link to an inode makes the VFS lock the inode's i_mutex before calling the inode's link callback. If we have the following leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 XATTR_ITEM 12345), ... ] slot N - 2 slot N - 1 slot 0 The race illustrated by the following sequence diagram is possible: CPU 1 CPU 2 btrfs_listxattr() searches for key (257 XATTR_ITEM 0) gets path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() releases the path adds key (257 INODE_REF 666) to the end of leaf X (slot N), and leaf X now has N + 1 items searches for the key (257 INODE_REF 256), with path->keep_locks == 1, because that is the last key it saw in leaf X before releasing the path ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in leaf X, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 666) btrfs_listxattr's loop iteration sees that the type of the key pointed by the path is different from the type BTRFS_XATTR_ITEM_KEY and so it breaks the loop and stops looking for more xattr items --> the application doesn't get any xattr listed for our inode So fix this by breaking the loop only if the key's type is greater than BTRFS_XATTR_ITEM_KEY and skip the current key if its type is smaller. Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: old code used the trivial accessor btrfs_key_type()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Peter Oberparleiter authored
commit 863e02d0 upstream. Writing a number to /sys/bus/scsi/devices/<sdev>/queue_ramp_up_period returns the value of that number instead of the number of bytes written. This behavior can confuse programs expecting POSIX write() semantics. Fix this by returning the number of bytes written instead. Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com> Reviewed-by: Ewan D. Milne <emilne@redhat.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Peter Zijlstra authored
commit b71b437e upstream. Arnaldo reported that tracepoint filters seem to misbehave (ie. not apply) on inherited events. The fix is obvious; filters are only set on the actual (parent) event, use the normal pattern of using this parent event for filters. This is safe because each child event has a reference to it. Reported-by: Arnaldo Carvalho de Melo <acme@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/20151102095051.GN17308@twins.programming.kicks-ass.netSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 1d512cb7 upstream. If we are using the NO_HOLES feature, we have a tiny time window when running delalloc for a nodatacow inode where we can race with a concurrent link or xattr add operation leading to a BUG_ON. This happens because at run_delalloc_nocow() we end up casting a leaf item of type BTRFS_INODE_[REF|EXTREF]_KEY or of type BTRFS_XATTR_ITEM_KEY to a file extent item (struct btrfs_file_extent_item) and then analyse its extent type field, which won't match any of the expected extent types (values BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]) and therefore trigger an explicit BUG_ON(1). The following sequence diagram shows how the race happens when running a no-cow dellaloc range [4K, 8K[ for inode 257 and we have the following neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 (Note the implicit hole for inode 257 regarding the [0, 8K[ range) CPU 1 CPU 2 run_dealloc_nocow() btrfs_lookup_file_extent() --> searches for a key with value (257 EXTENT_DATA 4096) in the fs/subvol tree --> returns us a path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() --> releases the path hard link added to our inode, with key (257 INODE_REF 500) added to the end of leaf X, so leaf X now has N + 1 keys --> searches for the key (257 INODE_REF 256), because it was the last key in leaf X before it released the path, with path->keep_locks set to 1 --> ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in the leaf, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 500) the loop iteration of run_dealloc_nocow() does not break out the loop and continues because the key referenced in the path at path->nodes[0] and path->slots[0] is for inode 257, its type is < BTRFS_EXTENT_DATA_KEY and its offset (500) is less then our delalloc range's end (8192) the item pointed by the path, an inode reference item, is (incorrectly) interpreted as a file extent item and we get an invalid extent type, leading to the BUG_ON(1): if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) } else { BUG_ON(1) } The same can happen if a xattr is added concurrently and ends up having a key with an offset smaller then the delalloc's range end. So fix this by skipping keys with a type smaller than BTRFS_EXTENT_DATA_KEY. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit aeafbf84 upstream. While running a stress test I got the following warning triggered: [191627.672810] ------------[ cut here ]------------ [191627.673949] WARNING: CPU: 8 PID: 8447 at fs/btrfs/file.c:779 __btrfs_drop_extents+0x391/0xa50 [btrfs]() (...) [191627.701485] Call Trace: [191627.702037] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [191627.702992] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2 [191627.704091] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [191627.705380] [<ffffffffa0664499>] ? __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.706637] [<ffffffff8104b46d>] warn_slowpath_null+0x1a/0x1c [191627.707789] [<ffffffffa0664499>] __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.709155] [<ffffffff8115663c>] ? cache_alloc_debugcheck_after.isra.32+0x171/0x1d0 [191627.712444] [<ffffffff81155007>] ? kmemleak_alloc_recursive.constprop.40+0x16/0x18 [191627.714162] [<ffffffffa06570c9>] insert_reserved_file_extent.constprop.40+0x83/0x24e [btrfs] [191627.715887] [<ffffffffa065422b>] ? start_transaction+0x3bb/0x610 [btrfs] [191627.717287] [<ffffffffa065b604>] btrfs_finish_ordered_io+0x273/0x4e2 [btrfs] [191627.728865] [<ffffffffa065b888>] finish_ordered_fn+0x15/0x17 [btrfs] [191627.730045] [<ffffffffa067d688>] normal_work_helper+0x14c/0x32c [btrfs] [191627.731256] [<ffffffffa067d96a>] btrfs_endio_write_helper+0x12/0x14 [btrfs] [191627.732661] [<ffffffff81061119>] process_one_work+0x24c/0x4ae [191627.733822] [<ffffffff810615b0>] worker_thread+0x206/0x2c2 [191627.734857] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.736052] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.737349] [<ffffffff810669a6>] kthread+0xef/0xf7 [191627.738267] [<ffffffff810f3b3a>] ? time_hardirqs_on+0x15/0x28 [191627.739330] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.741976] [<ffffffff81465592>] ret_from_fork+0x42/0x70 [191627.743080] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.744206] ---[ end trace bbfddacb7aaada8d ]--- $ cat -n fs/btrfs/file.c 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, (...) 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 if (key.objectid > ino || 760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 761 break; 762 763 fi = btrfs_item_ptr(leaf, path->slots[0], 764 struct btrfs_file_extent_item); 765 extent_type = btrfs_file_extent_type(leaf, fi); 766 767 if (extent_type == BTRFS_FILE_EXTENT_REG || 768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) 774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) 778 } else { 779 WARN_ON(1); 780 extent_end = search_start; 781 } (...) This happened because the item we were processing did not match a file extent item (its key type != BTRFS_EXTENT_DATA_KEY), and even on this case we cast the item to a struct btrfs_file_extent_item pointer and then find a type field value that does not match any of the expected values (BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]). This scenario happens due to a tiny time window where a race can happen as exemplified below. For example, consider the following scenario where we're using the NO_HOLES feature and we have the following two neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 Our inode 257 has an implicit hole in the range [0, 8K[ (implicit rather than explicit because NO_HOLES is enabled). Now if our inode has an ordered extent for the range [4K, 8K[ that is finishing, the following can happen: CPU 1 CPU 2 btrfs_finish_ordered_io() insert_reserved_file_extent() __btrfs_drop_extents() Searches for the key (257 EXTENT_DATA 4096) through btrfs_lookup_file_extent() Key not found and we get a path where path->nodes[0] == leaf X and path->slots[0] == N Because path->slots[0] is >= btrfs_header_nritems(leaf X), we call btrfs_next_leaf() btrfs_next_leaf() releases the path inserts key (257 INODE_REF 4096) at the end of leaf X, leaf X now has N + 1 keys, and the new key is at slot N btrfs_next_leaf() searches for key (257 INODE_REF 256), with path->keep_locks set to 1, because it was the last key it saw in leaf X finds it in leaf X again and notices it's no longer the last key of the leaf, so it returns 0 with path->nodes[0] == leaf X and path->slots[0] == N (which is now < btrfs_header_nritems(leaf X)), pointing to the new key (257 INODE_REF 4096) __btrfs_drop_extents() casts the item at path->nodes[0], slot path->slots[0], to a struct btrfs_file_extent_item - it does not skip keys for the target inode with a type less than BTRFS_EXTENT_DATA_KEY (BTRFS_INODE_REF_KEY < BTRFS_EXTENT_DATA_KEY) sees a bogus value for the type field triggering the WARN_ON in the trace shown above, and sets extent_end = search_start (4096) does the if-then-else logic to fixup 0 length extent items created by a past bug from hole punching: if (extent_end == key.offset && extent_end >= search_start) goto delete_extent_item; that evaluates to true and it ends up deleting the key pointed to by path->slots[0], (257 INODE_REF 4096), from leaf X The same could happen for example for a xattr that ends up having a key with an offset value that matches search_start (very unlikely but not impossible). So fix this by ensuring that keys smaller than BTRFS_EXTENT_DATA_KEY are skipped, never casted to struct btrfs_file_extent_item and never deleted by accident. Also protect against the unexpected case of getting a key for a lower inode number by skipping that key and issuing a warning. Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: drop use of ASSERT()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Borislav Petkov authored
commit 04633df0 upstream. When we get loaded by a 64-bit bootloader, kernel entry point is startup_64 in head_64.S. We don't trust any and all bootloaders because some will fiddle with CPU configuration so we go ahead and massage each CPU into sanity again. For example, some dell BIOSes have this XD disable feature which set IA32_MISC_ENABLE[34] and disable NX. This might be some dumb workaround for other OSes but Linux sure doesn't need it. A similar thing is present in the Surface 3 firmware - see https://bugzilla.kernel.org/show_bug.cgi?id=106051 - which sets this bit only on the BSP: # rdmsr -a 0x1a0 400850089 850089 850089 850089 I know, right?! There's not even an off switch in there. So fix all those cases by sanitizing the 64-bit entry point too. For that, make verify_cpu() callable in 64-bit mode also. Requested-and-debugged-by: "H. Peter Anvin" <hpa@zytor.com> Reported-and-tested-by: Bastien Nocera <bugzilla@hadess.net> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1446739076-21303-1-git-send-email-bp@alien8.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Christoph Hellwig authored
commit 40998193 upstream. When dropping a lock while iterating a list we must restart the search as other threads could have manipulated the list under us. Without this we can get stuck in an endless loop. This bug was introduced by commit bc3f02a7 Author: Dan Williams <djbw@fb.com> Date: Tue Aug 28 22:12:10 2012 -0700 [SCSI] scsi_remove_target: fix softlockup regression on hot remove Which was itself trying to fix a reported soft lockup issue http://thread.gmane.org/gmane.linux.kernel/1348679 However, we believe even with this revert of the original patch, the soft lockup problem has been fixed by commit f2495e22 Author: James Bottomley <JBottomley@Parallels.com> Date: Tue Jan 21 07:01:41 2014 -0800 [SCSI] dual scan thread bug fix Thanks go to Dan Williams <dan.j.williams@intel.com> for tracking all this prior history down. Reported-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Fixes: bc3f02a7Signed-off-by: James Bottomley <JBottomley@Odin.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Stefan Richter authored
commit 100ceb66 upstream. Reported by Clifford and Craig for JMicron OHCI-1394 + SDHCI combo controllers: Often or even most of the time, the controller is initialized with the message "added OHCI v1.10 device as card 0, 4 IR + 0 IT contexts, quirks 0x10". With 0 isochronous transmit DMA contexts (IT contexts), applications like audio output are impossible. However, OHCI-1394 demands that at least 4 IT contexts are implemented by the link layer controller, and indeed JMicron JMB38x do implement four of them. Only their IsoXmitIntMask register is unreliable at early access. With my own JMB381 single function controller I found: - I can reproduce the problem with a lower probability than Craig's. - If I put a loop around the section which clears and reads IsoXmitIntMask, then either the first or the second attempt will return the correct initial mask of 0x0000000f. I never encountered a case of needing more than a second attempt. - Consequently, if I put a dummy reg_read(...IsoXmitIntMaskSet) before the first write, the subsequent read will return the correct result. - If I merely ignore a wrong read result and force the known real result, later isochronous transmit DMA usage works just fine. So let's just fix this chip bug up by the latter method. Tested with JMB381 on kernel 3.13 and 4.3. Since OHCI-1394 generally requires 4 IT contexts at a minium, this workaround is simply applied whenever the initial read of IsoXmitIntMask returns 0, regardless whether it's a JMicron chip or not. I never heard of this issue together with any other chip though. I am not 100% sure that this fix works on the OHCI-1394 part of JMB380 and JMB388 combo controllers exactly the same as on the JMB381 single- function controller, but so far I haven't had a chance to let an owner of a combo chip run a patched kernel. Strangely enough, IsoRecvIntMask is always reported correctly, even though it is probed right before IsoXmitIntMask. Reported-by: Clifford Dunn Reported-by: Craig Moore <craig.moore@qenos.com> Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de> [bwh: Backported to 3.2: log with fw_notify() instead of ohci_notice()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit c932b98c upstream. HP ProBook 6550b needs the same pin fixup applied to other HP B-series laptops with docks for making its headphone and dock headphone jacks working properly. We just need to add the codec SSID to the list. Bugzilla: https://bugzilla.kernel.org/attachment.cgi?id=191971Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Michal Kubeček authored
commit ebac62fe upstream. Both tunnel6_protocol and tunnel46_protocol share the same error handler, tunnel6_err(), which traverses through tunnel6_handlers list. For ipip6 tunnels, we need to traverse tunnel46_handlers as we do e.g. in tunnel46_rcv(). Current code can generate an ICMPv6 error message with an IPv4 packet embedded in it. Fixes: 73d605d1 ("[IPSEC]: changing API of xfrm6_tunnel_register") Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
libin authored
commit c84da8b9 upstream. In nop_mcount, shdr->sh_offset and welp->r_offset should handle endianness properly, otherwise it will trigger Segmentation fault if the recordmcount main and file.o have different endianness. Link: http://lkml.kernel.org/r/563806C7.7070606@huawei.comSigned-off-by: Li Bin <huawei.libin@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 323c4a02 upstream. This is an issue on SMAP enabled CPUs and 32 bit apps running on 64 bit OS. Do not access user memory from kernel code. The SMAP bit restricts accessing user memory from kernel code. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Herbert Xu authored
commit 4afa5f96 upstream. The hash_accept call fails to work on sockets that have not received any data. For some algorithm implementations it may cause crashes. This patch fixes this by ensuring that we only export and import on sockets that have received data. Reported-by: Harsh Jain <harshjain.prof@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Brian Norris authored
commit f3c63795 upstream. Commit 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") fixed a race condition but due to poor ordering of the mutex acquisition, introduced a potential deadlock. The deadlock can occur, for example, when rmmod'ing the m25p80 module, which will delete one or more MTDs, along with any corresponding mtdblock devices. This could potentially race with an acquisition of the block device as follows. -> blktrans_open() -> mutex_lock(&dev->lock); -> mutex_lock(&mtd_table_mutex); -> del_mtd_device() -> mutex_lock(&mtd_table_mutex); -> blktrans_notify_remove() -> del_mtd_blktrans_dev() -> mutex_lock(&dev->lock); This is a classic (potential) ABBA deadlock, which can be fixed by making the A->B ordering consistent everywhere. There was no real purpose to the ordering in the original patch, AFAIR, so this shouldn't be a problem. This ordering was actually already present in del_mtd_blktrans_dev(), for one, where the function tried to ensure that its caller already held mtd_table_mutex before it acquired &dev->lock: if (mutex_trylock(&mtd_table_mutex)) { mutex_unlock(&mtd_table_mutex); BUG(); } So, reverse the ordering of acquisition of &dev->lock and &mtd_table_mutex so we always acquire mtd_table_mutex first. Snippets of the lockdep output follow: # modprobe -r m25p80 [ 53.419251] [ 53.420838] ====================================================== [ 53.427300] [ INFO: possible circular locking dependency detected ] [ 53.433865] 4.3.0-rc6 #96 Not tainted [ 53.437686] ------------------------------------------------------- [ 53.444220] modprobe/372 is trying to acquire lock: [ 53.449320] (&new->lock){+.+...}, at: [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.457271] [ 53.457271] but task is already holding lock: [ 53.463372] (mtd_table_mutex){+.+.+.}, at: [<c0439994>] del_mtd_device+0x18/0x100 [ 53.471321] [ 53.471321] which lock already depends on the new lock. [ 53.471321] [ 53.479856] [ 53.479856] the existing dependency chain (in reverse order) is: [ 53.487660] -> #1 (mtd_table_mutex){+.+.+.}: [ 53.492331] [<c043fc5c>] blktrans_open+0x34/0x1a4 [ 53.497879] [<c01afce0>] __blkdev_get+0xc4/0x3b0 [ 53.503364] [<c01b0bb8>] blkdev_get+0x108/0x320 [ 53.508743] [<c01713c0>] do_dentry_open+0x218/0x314 [ 53.514496] [<c0180454>] path_openat+0x4c0/0xf9c [ 53.519959] [<c0182044>] do_filp_open+0x5c/0xc0 [ 53.525336] [<c0172758>] do_sys_open+0xfc/0x1cc [ 53.530716] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.536375] -> #0 (&new->lock){+.+...}: [ 53.540587] [<c063f124>] mutex_lock_nested+0x38/0x3cc [ 53.546504] [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.552606] [<c043f164>] blktrans_notify_remove+0x7c/0x84 [ 53.558891] [<c04399f0>] del_mtd_device+0x74/0x100 [ 53.564544] [<c043c670>] del_mtd_partitions+0x80/0xc8 [ 53.570451] [<c0439aa0>] mtd_device_unregister+0x24/0x48 [ 53.576637] [<c046ce6c>] spi_drv_remove+0x1c/0x34 [ 53.582207] [<c03de0f0>] __device_release_driver+0x88/0x114 [ 53.588663] [<c03de19c>] device_release_driver+0x20/0x2c [ 53.594843] [<c03dd9e8>] bus_remove_device+0xd8/0x108 [ 53.600748] [<c03dacc0>] device_del+0x10c/0x210 [ 53.606127] [<c03dadd0>] device_unregister+0xc/0x20 [ 53.611849] [<c046d878>] __unregister+0x10/0x20 [ 53.617211] [<c03da868>] device_for_each_child+0x50/0x7c [ 53.623387] [<c046eae8>] spi_unregister_master+0x58/0x8c [ 53.629578] [<c03e12f0>] release_nodes+0x15c/0x1c8 [ 53.635223] [<c03de0f8>] __device_release_driver+0x90/0x114 [ 53.641689] [<c03de900>] driver_detach+0xb4/0xb8 [ 53.647147] [<c03ddc78>] bus_remove_driver+0x4c/0xa0 [ 53.652970] [<c00cab50>] SyS_delete_module+0x11c/0x1e4 [ 53.658976] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.664621] [ 53.664621] other info that might help us debug this: [ 53.664621] [ 53.672979] Possible unsafe locking scenario: [ 53.672979] [ 53.679169] CPU0 CPU1 [ 53.683900] ---- ---- [ 53.688633] lock(mtd_table_mutex); [ 53.692383] lock(&new->lock); [ 53.698306] lock(mtd_table_mutex); [ 53.704658] lock(&new->lock); [ 53.707946] [ 53.707946] *** DEADLOCK *** Fixes: 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") Reported-by: Felipe Balbi <balbi@ti.com> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marek Vasut authored
commit 562b103a upstream. The sizeof() is invoked on an incorrect variable, likely due to some copy-paste error, and this might result in memory corruption. Fix this. Signed-off-by: Marek Vasut <marex@denx.de> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: netdev@vger.kernel.org Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> [bwh: Backported to 3.2: - Keep using the old NLA_PUT macro - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 357ae967 upstream. Do not use PAGE_SIZE marco to calculate max_sectors per I/O request. Driver code assumes PAGE_SIZE will be always 4096 which can lead to wrongly calculated value if PAGE_SIZE is not 4096. This issue was reported in Ubuntu Bugzilla Bug #1475166. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit cadd16ea upstream. We've had many reports that some Creative sound cards with CA0132 don't work well. Some reported that it starts working after reloading the module, while some reported it starts working when a 32bit kernel is used. All these facts seem implying that the chip fails to communicate when the buffer is located in 64bit address. This patch addresses these issues by just adding AZX_DCAPS_NO_64BIT flag to the corresponding PCI entries. I casually had a chance to test an SB Recon3D board, and indeed this seems helping. Although this hasn't been tested on all Creative devices, it's safer to assume that this restriction applies to the rest of them, too. So the flag is applied to all Creative entries. Signed-off-by: Takashi Iwai <tiwai@suse.de> [bwh: Backported to 3.2: drop the change to AZX_DCAPS_PRESET_CTHDA] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-