- 25 Feb, 2016 40 commits
-
-
Linus Walleij authored
commit 5070fb14 upstream. When trying to set the ICST 307 clock to 25174000 Hz I ran into this arithmetic error: the icst_hz_to_vco() correctly figure out DIVIDE=2, RDW=100 and VDW=99 yielding a frequency of 25174000 Hz out of the VCO. (I replicated the icst_hz() function in a spreadsheet to verify this.) However, when I called icst_hz() on these VCO settings it would instead return 4122709 Hz. This causes an error in the common clock driver for ICST as the common clock framework will call .round_rate() on the clock which will utilize icst_hz_to_vco() followed by icst_hz() suggesting the erroneous frequency, and then the clock gets set to this. The error did not manifest in the old clock framework since this high frequency was only used by the CLCD, which calls clk_set_rate() without first calling clk_round_rate() and since the old clock framework would not call clk_round_rate() before setting the frequency, the correct values propagated into the VCO. After some experimenting I figured out that it was due to a simple arithmetic overflow: the divisor for 24Mhz reference frequency as reference becomes 24000000*2*(99+8)=0x132212400 and the "1" in bit 32 overflows and is lost. But introducing an explicit 64-by-32 bit do_div() and casting the divisor into (u64) we get the right frequency back, and the right frequency gets set. Tested on the ARM Versatile. Cc: linux-clk@vger.kernel.org Cc: Pawel Moll <pawel.moll@arm.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 117159f0 upstream. In snd_timer_notify1(), the wrong timer instance was passed for slave ccallback function. This leads to the access to the wrong data when an incompatible master is handled (e.g. the master is the sequencer timer and the slave is a user timer), as spotted by syzkaller fuzzer. This patch fixes that wrong assignment. BugLink: http://lkml.kernel.org/r/CACT4Y+Y_Bm+7epAb=8Wi=AaWd+DYS7qawX52qxdCfOfY49vozQ@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit ddce57a6 upstream. Currently the selected timer backend is referred at any moment from the running PCM callbacks. When the backend is switched, it's possible to lead to inconsistency from the running backend. This was pointed by syzkaller fuzzer, and the commit [7ee96216: ALSA: dummy: Disable switching timer backend via sysfs] disabled the dynamic switching for avoiding the crash. This patch improves the handling of timer backend switching. It keeps the reference to the selected backend during the whole operation of an opened stream so that it won't be changed by other streams. Together with this change, the hrtimer parameter is reenabled as writable now. NOTE: this patch also turned out to fix the still remaining race. Namely, ops was still replaced dynamically at dummy_pcm_open: static int dummy_pcm_open(struct snd_pcm_substream *substream) { .... dummy->timer_ops = &dummy_systimer_ops; if (hrtimer) dummy->timer_ops = &dummy_hrtimer_ops; Since dummy->timer_ops is common among all streams, and when the replacement happens during accesses of other streams, it may lead to a crash. This was actually triggered by syzkaller fuzzer and KASAN. This patch rewrites the code not to use the ops shared by all streams any longer, too. BugLink: http://lkml.kernel.org/r/CACT4Y+aZ+xisrpuM6cOXbL21DuM0yVxPYXf4cD4Md9uw0C3dBQ@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
James Bottomley authored
commit 00cd29b7 upstream. The starting node for a klist iteration is often passed in from somewhere way above the klist infrastructure, meaning there's no guarantee the node is still on the list. We've seen this in SCSI where we use bus_find_device() to iterate through a list of devices. In the face of heavy hotplug activity, the last device returned by bus_find_device() can be removed before the next call. This leads to Dec 3 13:22:02 localhost kernel: WARNING: CPU: 2 PID: 28073 at include/linux/kref.h:47 klist_iter_init_node+0x3d/0x50() Dec 3 13:22:02 localhost kernel: Modules linked in: scsi_debug x86_pkg_temp_thermal kvm_intel kvm irqbypass crc32c_intel joydev iTCO_wdt dcdbas ipmi_devintf acpi_power_meter iTCO_vendor_support ipmi_si imsghandler pcspkr wmi acpi_cpufreq tpm_tis tpm shpchp lpc_ich mfd_core nfsd nfs_acl lockd grace sunrpc tg3 ptp pps_core Dec 3 13:22:02 localhost kernel: CPU: 2 PID: 28073 Comm: cat Not tainted 4.4.0-rc1+ #2 Dec 3 13:22:02 localhost kernel: Hardware name: Dell Inc. PowerEdge R320/08VT7V, BIOS 2.0.22 11/19/2013 Dec 3 13:22:02 localhost kernel: ffffffff81a20e77 ffff880613acfd18 ffffffff81321eef 0000000000000000 Dec 3 13:22:02 localhost kernel: ffff880613acfd50 ffffffff8107ca52 ffff88061176b198 0000000000000000 Dec 3 13:22:02 localhost kernel: ffffffff814542b0 ffff880610cfb100 ffff88061176b198 ffff880613acfd60 Dec 3 13:22:02 localhost kernel: Call Trace: Dec 3 13:22:02 localhost kernel: [<ffffffff81321eef>] dump_stack+0x44/0x55 Dec 3 13:22:02 localhost kernel: [<ffffffff8107ca52>] warn_slowpath_common+0x82/0xc0 Dec 3 13:22:02 localhost kernel: [<ffffffff814542b0>] ? proc_scsi_show+0x20/0x20 Dec 3 13:22:02 localhost kernel: [<ffffffff8107cb4a>] warn_slowpath_null+0x1a/0x20 Dec 3 13:22:02 localhost kernel: [<ffffffff8167225d>] klist_iter_init_node+0x3d/0x50 Dec 3 13:22:02 localhost kernel: [<ffffffff81421d41>] bus_find_device+0x51/0xb0 Dec 3 13:22:02 localhost kernel: [<ffffffff814545ad>] scsi_seq_next+0x2d/0x40 [...] And an eventual crash. It can actually occur in any hotplug system which has a device finder and a starting device. We can fix this globally by making sure the starting node for klist_iter_init_node() is actually a member of the list before using it (and by starting from the beginning if it isn't). Reported-by: Ewan D. Milne <emilne@redhat.com> Tested-by: Ewan D. Milne <emilne@redhat.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit c44d9b11 upstream. Some Sony VAIO AiO models (VGC-JS4EF and VGC-JS25G, both with PCI SSID 104d:9044) need the same quirk to make the speaker working properly. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=112031Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Herton R. Krzesinski authored
commit 1f55c718 upstream. Considering current pty code and multiple devpts instances, it's possible to umount a devpts file system while a program still has /dev/tty opened pointing to a previosuly closed pty pair in that instance. In the case all ptmx and pts/N files are closed, umount can be done. If the program closes /dev/tty after umount is done, devpts_kill_index will use now an invalid super_block, which was already destroyed in the umount operation after running ->kill_sb. This is another "use after free" type of issue, but now related to the allocated super_block instance. To avoid the problem (warning at ida_remove and potential crashes) for this specific case, I added two functions in devpts which grabs additional references to the super_block, which pty code now uses so it makes sure the super block structure is still valid until pty shutdown is done. I also moved the additional inode references to the same functions, which also covered similar case with inode being freed before /dev/tty final close/shutdown. Signed-off-by: Herton R. Krzesinski <herton@redhat.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Herton R. Krzesinski authored
commit 2831c89f upstream. This change fixes a bug for a corner case where we have the the last release from a pty master/slave coming from a previously opened /dev/tty file. When this happens, the tty->driver_data can be stale, due to all ptmx or pts/N files having already been closed before (and thus the inode related to these files, which tty->driver_data points to, being already freed/destroyed). The fix here is to keep a reference on the opened master ptmx inode. We maintain the inode referenced until the final pty_unix98_shutdown, and only pass this inode to devpts_kill_index. Signed-off-by: Herton R. Krzesinski <herton@redhat.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Peter Hurley authored
commit 308bbc9a upstream. The omap-serial driver emulates RS485 delays using software timers, but neglects to clamp the input values from the unprivileged ioctl(TIOCSRS485). Because the software implementation busy-waits, malicious userspace could stall the cpu for ~49 days. Clamp the input values to < 100ms. Fixes: 4a0ac0f5 ("OMAP: add RS485 support") Signed-off-by: Peter Hurley <peter@hurleysoftware.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [ luis: backported to 3.16: adjusted context ] Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mathias Krause authored
commit 63e41ebc upstream. We miss to take the crypto_alg_sem semaphore when traversing the crypto_alg_list for CRYPTO_MSG_GETALG dumps. This allows a race with crypto_unregister_alg() removing algorithms from the list while we're still traversing it, thereby leading to a use-after-free as show below: [ 3482.071639] general protection fault: 0000 [#1] SMP [ 3482.075639] Modules linked in: aes_x86_64 glue_helper lrw ablk_helper cryptd gf128mul ipv6 pcspkr serio_raw virtio_net microcode virtio_pci virtio_ring virtio sr_mod cdrom [last unloaded: aesni_intel] [ 3482.075639] CPU: 1 PID: 11065 Comm: crconf Not tainted 4.3.4-grsec+ #126 [ 3482.075639] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_083030-gandalf 04/01/2014 [ 3482.075639] task: ffff88001cd41a40 ti: ffff88001cd422c8 task.ti: ffff88001cd422c8 [ 3482.075639] RIP: 0010:[<ffffffff93722bd3>] [<ffffffff93722bd3>] strncpy+0x13/0x30 [ 3482.075639] RSP: 0018:ffff88001f713b60 EFLAGS: 00010202 [ 3482.075639] RAX: ffff88001f6c4430 RBX: ffff88001f6c43a0 RCX: ffff88001f6c4430 [ 3482.075639] RDX: 0000000000000040 RSI: fefefefefefeff16 RDI: ffff88001f6c4430 [ 3482.075639] RBP: ffff88001f713b60 R08: ffff88001f6c4470 R09: ffff88001f6c4480 [ 3482.075639] R10: 0000000000000002 R11: 0000000000000246 R12: ffff88001ce2aa28 [ 3482.075639] R13: ffff880000093700 R14: ffff88001f5e4bf8 R15: 0000000000003b20 [ 3482.075639] FS: 0000033826fa2700(0000) GS:ffff88001e900000(0000) knlGS:0000000000000000 [ 3482.075639] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3482.075639] CR2: ffffffffff600400 CR3: 00000000139ec000 CR4: 00000000001606f0 [ 3482.075639] Stack: [ 3482.075639] ffff88001f713bd8 ffffffff936ccd00 ffff88001e5c4200 ffff880000093700 [ 3482.075639] ffff88001f713bd0 ffffffff938ef4bf 0000000000000000 0000000000003b20 [ 3482.075639] ffff88001f5e4bf8 ffff88001f5e4848 0000000000000000 0000000000003b20 [ 3482.075639] Call Trace: [ 3482.075639] [<ffffffff936ccd00>] crypto_report_alg+0xc0/0x3e0 [ 3482.075639] [<ffffffff938ef4bf>] ? __alloc_skb+0x16f/0x300 [ 3482.075639] [<ffffffff936cd08a>] crypto_dump_report+0x6a/0x90 [ 3482.075639] [<ffffffff93935707>] netlink_dump+0x147/0x2e0 [ 3482.075639] [<ffffffff93935f99>] __netlink_dump_start+0x159/0x190 [ 3482.075639] [<ffffffff936ccb13>] crypto_user_rcv_msg+0xc3/0x130 [ 3482.075639] [<ffffffff936cd020>] ? crypto_report_alg+0x3e0/0x3e0 [ 3482.075639] [<ffffffff936cc4b0>] ? alg_test_crc32c+0x120/0x120 [ 3482.075639] [<ffffffff93933145>] ? __netlink_lookup+0xd5/0x120 [ 3482.075639] [<ffffffff936cca50>] ? crypto_add_alg+0x1d0/0x1d0 [ 3482.075639] [<ffffffff93938141>] netlink_rcv_skb+0xe1/0x130 [ 3482.075639] [<ffffffff936cc4f8>] crypto_netlink_rcv+0x28/0x40 [ 3482.075639] [<ffffffff939375a8>] netlink_unicast+0x108/0x180 [ 3482.075639] [<ffffffff93937c21>] netlink_sendmsg+0x541/0x770 [ 3482.075639] [<ffffffff938e31e1>] sock_sendmsg+0x21/0x40 [ 3482.075639] [<ffffffff938e4763>] SyS_sendto+0xf3/0x130 [ 3482.075639] [<ffffffff93444203>] ? bad_area_nosemaphore+0x13/0x20 [ 3482.075639] [<ffffffff93444470>] ? __do_page_fault+0x80/0x3a0 [ 3482.075639] [<ffffffff939d80cb>] entry_SYSCALL_64_fastpath+0x12/0x6e [ 3482.075639] Code: 88 4a ff 75 ed 5d 48 0f ba 2c 24 3f c3 66 66 2e 0f 1f 84 00 00 00 00 00 55 48 85 d2 48 89 f8 48 89 f9 4c 8d 04 17 48 89 e5 74 15 <0f> b6 16 80 fa 01 88 11 48 83 de ff 48 83 c1 01 4c 39 c1 75 eb [ 3482.075639] RIP [<ffffffff93722bd3>] strncpy+0x13/0x30 To trigger the race run the following loops simultaneously for a while: $ while : ; do modprobe aesni-intel; rmmod aesni-intel; done $ while : ; do crconf show all > /dev/null; done Fix the race by taking the crypto_alg_sem read lock, thereby preventing crypto_unregister_alg() from modifying the algorithm list during the dump. This bug has been detected by the PaX memory sanitize feature. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: PaX Team <pageexec@freemail.hu> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Konstantin Khlebnikov authored
commit 73204282 upstream. Helper radix_tree_iter_retry() resets next_index to the current index. In following radix_tree_next_slot current chunk size becomes zero. This isn't checked and it tries to dereference null pointer in slot. Tagged iterator is fine because retry happens only at slot 0 where tag bitmask in iter->tags is filled with single bit. Fixes: 46437f9a ("radix-tree: fix race in gang lookup") Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ohad Ben-Cohen <ohad@wizery.com> Cc: Jeremiah Mahler <jmmahler@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Konstantin Khlebnikov authored
commit 12352d3c upstream. Sequence vma_lock_anon_vma() - vma_unlock_anon_vma() isn't safe if anon_vma appeared between lock and unlock. We have to check anon_vma first or call anon_vma_prepare() to be sure that it's here. There are only few users of these legacy helpers. Let's get rid of them. This patch fixes anon_vma lock imbalance in validate_mm(). Write lock isn't required here, read lock is enough. And reorders expand_downwards/expand_upwards: security_mmap_addr() and wrapping-around check don't have to be under anon vma lock. Link: https://lkml.kernel.org/r/CACT4Y+Y908EjM2z=706dv4rV6dWtxTLK9nFg9_7DhRMLppBo2g@mail.gmail.comSigned-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [ luis: backported to 3.16: adjusted context ] Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
xuejiufei authored
commit c95a5180 upstream. When recovery master down, dlm_do_local_recovery_cleanup() only remove the $RECOVERY lock owned by dead node, but do not clear the refmap bit. Which will make umount thread falling in dead loop migrating $RECOVERY to the dead node. Signed-off-by: xuejiufei <xuejiufei@huawei.com> Reviewed-by: Joseph Qi <joseph.qi@huawei.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Tetsuo Handa authored
commit 564e81a5 upstream. Jan Stancek has reported that system occasionally hanging after "oom01" testcase from LTP triggers OOM. Guessing from a result that there is a kworker thread doing memory allocation and the values between "Node 0 Normal free:" and "Node 0 Normal:" differs when hanging, vmstat is not up-to-date for some reason. According to commit 373ccbe5 ("mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress"), it meant to force the kworker thread to take a short sleep, but it by error used schedule_timeout(1). We missed that schedule_timeout() in state TASK_RUNNING doesn't do anything. Fix it by using schedule_timeout_uninterruptible(1) which forces the kworker thread to take a short sleep in order to make sure that vmstat is up-to-date. Fixes: 373ccbe5 ("mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: Jan Stancek <jstancek@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Cristopher Lameter <clameter@sgi.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Arkadiusz Miskiewicz <arekm@maven.pl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Eric Dumazet authored
commit d7ce3692 upstream. Some servers experienced fatal deadlocks because of a combination of bugs, leading to multiple cpus calling dump_stack(). The checksumming bug was fixed in commit 34ae6a1a ("ipv6: update skb->csum when CE mark is propagated"). The second problem is a faulty locking in dump_stack() CPU1 runs in process context and calls dump_stack(), grabs dump_lock. CPU2 receives a TCP packet under softirq, grabs socket spinlock, and call dump_stack() from netdev_rx_csum_fault(). dump_stack() spins on atomic_cmpxchg(&dump_lock, -1, 2), since dump_lock is owned by CPU1 While dumping its stack, CPU1 is interrupted by a softirq, and happens to process a packet for the TCP socket locked by CPU2. CPU1 spins forever in spin_lock() : deadlock Stack trace on CPU1 looked like : NMI backtrace for cpu 1 RIP: _raw_spin_lock+0x25/0x30 ... Call Trace: <IRQ> tcp_v6_rcv+0x243/0x620 ip6_input_finish+0x11f/0x330 ip6_input+0x38/0x40 ip6_rcv_finish+0x3c/0x90 ipv6_rcv+0x2a9/0x500 process_backlog+0x461/0xaa0 net_rx_action+0x147/0x430 __do_softirq+0x167/0x2d0 call_softirq+0x1c/0x30 do_softirq+0x3f/0x80 irq_exit+0x6e/0xc0 smp_call_function_single_interrupt+0x35/0x40 call_function_single_interrupt+0x6a/0x70 <EOI> printk+0x4d/0x4f printk_address+0x31/0x33 print_trace_address+0x33/0x3c print_context_stack+0x7f/0x119 dump_trace+0x26b/0x28e show_trace_log_lvl+0x4f/0x5c show_stack_log_lvl+0x104/0x113 show_stack+0x42/0x44 dump_stack+0x46/0x58 netdev_rx_csum_fault+0x38/0x3c __skb_checksum_complete_head+0x6e/0x80 __skb_checksum_complete+0x11/0x20 tcp_rcv_established+0x2bd5/0x2fd0 tcp_v6_do_rcv+0x13c/0x620 sk_backlog_rcv+0x15/0x30 release_sock+0xd2/0x150 tcp_recvmsg+0x1c1/0xfc0 inet_recvmsg+0x7d/0x90 sock_recvmsg+0xaf/0xe0 ___sys_recvmsg+0x111/0x3b0 SyS_recvmsg+0x5c/0xb0 system_call_fastpath+0x16/0x1b Fixes: b58d9774 ("dump_stack: serialize the output from dump_stack()") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Alex Thorlton <athorlton@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 6c361d10 upstream. This reverts commit 0c25ad80. The original commit disabled the aamixer path due to the noise problem, but it turned out that some mobo with the same PCI SSID doesn't suffer from the issue, and the disabled function (analog loopback) is still demanded by users. Since the recent commit [e7fdd527: ALSA: hda - Implement loopback control switch for Realtek and other codecs], we have the dynamic mixer switch to enable/disable the aamix path, and we don't have to disable the path statically any longer. So, let's revert the disablement, so that only the user suffering from the noise problem can turn off the aamix on the fly. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=108301 Reported-by: <mutedbytes@gmail.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
David Henningsson authored
commit 360a8245 upstream. The static checker warning is: sound/pci/hda/patch_hdmi.c:460 hdmi_eld_ctl_get() error: __memcpy() 'eld->eld_buffer' too small (256 vs 512) I have a hard time figuring out if this can ever cause an information leak (I don't think so), but nonetheless it does not hurt to increase the robustness of the code. Fixes: 68e03de9 ('ALSA: hda - hdmi: Do not expose eld data when eld is invalid') Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Henningsson <david.henningsson@canonical.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Harry Wentland authored
commit 64566b5e upstream. drm_fixp_from_fraction allows us to create a fixed point directly from a fraction, rather than creating fixed point values and dividing later. This avoids overflow of our 64 bit value for large numbers. drm_fixp2int_ceil allows us to return the ceiling of our fixed point value. [airlied: squash Jordan's fix] 32-bit-build-fix: Jordan Lazare <Jordan.Lazare@amd.com> Signed-off-by: Harry Wentland <harry.wentland@amd.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mika Westerberg authored
commit 82c43310 upstream. I have a Marvell 88SE9230 SATA Controller that has some sort of integrated console SCSI device attached to one of the ports. ata14: SATA link up 1.5 Gbps (SStatus 113 SControl 300) ata14.00: ATAPI: MARVELL VIRTUALL, 1.09, max UDMA/66 ata14.00: configured for UDMA/66 scsi 13:0:0:0: Processor Marvell Console 1.01 PQ: 0 ANSI: 5 Sending it VPD INQUIRY command seem to always fail with following error: ata14.00: exception Emask 0x0 SAct 0x0 SErr 0x0 action 0x6 ata14.00: irq_stat 0x40000001 ata14.00: cmd a0/01:00:00:00:01/00:00:00:00:00/a0 tag 2 dma 16640 in Inquiry 12 01 00 00 ff 00res 00/00:00:00:00:00/00:00:00:00:00/00 Emask 0x3 (HSM violation) ata14: hard resetting link This has been minor annoyance (only error printed on dmesg) until commit 09e2b0b1 ("scsi: rescan VPD attributes") added call to scsi_attach_vpd() in scsi_rescan_device(). The commit causes the system to splat out following errors continuously without ever reaching the UI: ata14.00: configured for UDMA/66 ata14: EH complete ata14.00: exception Emask 0x0 SAct 0x0 SErr 0x0 action 0x6 ata14.00: irq_stat 0x40000001 ata14.00: cmd a0/01:00:00:00:01/00:00:00:00:00/a0 tag 6 dma 16640 in Inquiry 12 01 00 00 ff 00res 00/00:00:00:00:00/00:00:00:00:00/00 Emask 0x3 (HSM violation) ata14: hard resetting link ata14: SATA link up 1.5 Gbps (SStatus 113 SControl 300) ata14.00: configured for UDMA/66 ata14: EH complete ata14.00: exception Emask 0x0 SAct 0x0 SErr 0x0 action 0x6 ata14.00: irq_stat 0x40000001 ata14.00: cmd a0/01:00:00:00:01/00:00:00:00:00/a0 tag 7 dma 16640 in Inquiry 12 01 00 00 ff 00res 00/00:00:00:00:00/00:00:00:00:00/00 Emask 0x3 (HSM violation) Without in-depth understanding of SCSI layer and the Marvell controller, I suspect this happens because when the link goes down (because of an error) we schedule scsi_rescan_device() which again fails to read VPD data... ad infinitum. Since VPD data cannot be read from the device anyway we prevent the SCSI layer from even trying by blacklisting the device. This gets away the error and the system starts up normally. [mkp: Widened the match to all revisions of this device] Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Alexander Duyck <alexander.duyck@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Hannes Reinecke authored
commit d2d06d4f upstream. If MODE SELECT returns with sense '05/91/36' (command lock violation) it should always be retried without counting the number of retries. During an HBA upgrade or similar circumstances one might see a flood of MODE SELECT command from various HBAs, which will easily trigger the sense code and exceed the retry count. Signed-off-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Filipe Manana authored
commit 0c0fe3b0 upstream. While doing some tests I ran into an hang on an extent buffer's rwlock that produced the following trace: [39389.800012] NMI watchdog: BUG: soft lockup - CPU#15 stuck for 22s! [fdm-stress:32166] [39389.800016] NMI watchdog: BUG: soft lockup - CPU#14 stuck for 22s! [fdm-stress:32165] [39389.800016] Modules linked in: btrfs dm_mod ppdev xor sha256_generic hmac raid6_pq drbg ansi_cprng aesni_intel i2c_piix4 acpi_cpufreq aes_x86_64 ablk_helper tpm_tis parport_pc i2c_core sg cryptd evdev psmouse lrw tpm parport gf128mul serio_raw pcspkr glue_helper processor button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [39389.800016] irq event stamp: 0 [39389.800016] hardirqs last enabled at (0): [< (null)>] (null) [39389.800016] hardirqs last disabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800016] softirqs last enabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800016] softirqs last disabled at (0): [< (null)>] (null) [39389.800016] CPU: 14 PID: 32165 Comm: fdm-stress Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [39389.800016] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [39389.800016] task: ffff880175b1ca40 ti: ffff8800a185c000 task.ti: ffff8800a185c000 [39389.800016] RIP: 0010:[<ffffffff810902af>] [<ffffffff810902af>] queued_spin_lock_slowpath+0x57/0x158 [39389.800016] RSP: 0018:ffff8800a185fb80 EFLAGS: 00000202 [39389.800016] RAX: 0000000000000101 RBX: ffff8801710c4e9c RCX: 0000000000000101 [39389.800016] RDX: 0000000000000100 RSI: 0000000000000001 RDI: 0000000000000001 [39389.800016] RBP: ffff8800a185fb98 R08: 0000000000000001 R09: 0000000000000000 [39389.800016] R10: ffff8800a185fb68 R11: 6db6db6db6db6db7 R12: ffff8801710c4e98 [39389.800016] R13: ffff880175b1ca40 R14: ffff8800a185fc10 R15: ffff880175b1ca40 [39389.800016] FS: 00007f6d37fff700(0000) GS:ffff8802be9c0000(0000) knlGS:0000000000000000 [39389.800016] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [39389.800016] CR2: 00007f6d300019b8 CR3: 0000000037c93000 CR4: 00000000001406e0 [39389.800016] Stack: [39389.800016] ffff8801710c4e98 ffff8801710c4e98 ffff880175b1ca40 ffff8800a185fbb0 [39389.800016] ffffffff81091e11 ffff8801710c4e98 ffff8800a185fbc8 ffffffff81091895 [39389.800016] ffff8801710c4e98 ffff8800a185fbe8 ffffffff81486c5c ffffffffa067288c [39389.800016] Call Trace: [39389.800016] [<ffffffff81091e11>] queued_read_lock_slowpath+0x46/0x60 [39389.800016] [<ffffffff81091895>] do_raw_read_lock+0x3e/0x41 [39389.800016] [<ffffffff81486c5c>] _raw_read_lock+0x3d/0x44 [39389.800016] [<ffffffffa067288c>] ? btrfs_tree_read_lock+0x54/0x125 [btrfs] [39389.800016] [<ffffffffa067288c>] btrfs_tree_read_lock+0x54/0x125 [btrfs] [39389.800016] [<ffffffffa0622ced>] ? btrfs_find_item+0xa7/0xd2 [btrfs] [39389.800016] [<ffffffffa069363f>] btrfs_ref_to_path+0xd6/0x174 [btrfs] [39389.800016] [<ffffffffa0693730>] inode_to_path+0x53/0xa2 [btrfs] [39389.800016] [<ffffffffa0693e2e>] paths_from_inode+0x117/0x2ec [btrfs] [39389.800016] [<ffffffffa0670cff>] btrfs_ioctl+0xd5b/0x2793 [btrfs] [39389.800016] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800016] [<ffffffff81276727>] ? __this_cpu_preempt_check+0x13/0x15 [39389.800016] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800016] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d [39389.800016] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea [39389.800016] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71 [39389.800016] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [39389.800016] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [39389.800016] Code: b9 01 01 00 00 f7 c6 00 ff ff ff 75 32 83 fe 01 89 ca 89 f0 0f 45 d7 f0 0f b1 13 39 f0 74 04 89 c6 eb e2 ff ca 0f 84 fa 00 00 00 <8b> 03 84 c0 74 04 f3 90 eb f6 66 c7 03 01 00 e9 e6 00 00 00 e8 [39389.800012] Modules linked in: btrfs dm_mod ppdev xor sha256_generic hmac raid6_pq drbg ansi_cprng aesni_intel i2c_piix4 acpi_cpufreq aes_x86_64 ablk_helper tpm_tis parport_pc i2c_core sg cryptd evdev psmouse lrw tpm parport gf128mul serio_raw pcspkr glue_helper processor button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [39389.800012] irq event stamp: 0 [39389.800012] hardirqs last enabled at (0): [< (null)>] (null) [39389.800012] hardirqs last disabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800012] softirqs last enabled at (0): [<ffffffff8104e58d>] copy_process+0x638/0x1a35 [39389.800012] softirqs last disabled at (0): [< (null)>] (null) [39389.800012] CPU: 15 PID: 32166 Comm: fdm-stress Tainted: G L 4.4.0-rc6-btrfs-next-18+ #1 [39389.800012] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [39389.800012] task: ffff880179294380 ti: ffff880034a60000 task.ti: ffff880034a60000 [39389.800012] RIP: 0010:[<ffffffff81091e8d>] [<ffffffff81091e8d>] queued_write_lock_slowpath+0x62/0x72 [39389.800012] RSP: 0018:ffff880034a639f0 EFLAGS: 00000206 [39389.800012] RAX: 0000000000000101 RBX: ffff8801710c4e98 RCX: 0000000000000000 [39389.800012] RDX: 00000000000000ff RSI: 0000000000000000 RDI: ffff8801710c4e9c [39389.800012] RBP: ffff880034a639f8 R08: 0000000000000001 R09: 0000000000000000 [39389.800012] R10: ffff880034a639b0 R11: 0000000000001000 R12: ffff8801710c4e98 [39389.800012] R13: 0000000000000001 R14: ffff880172cbc000 R15: ffff8801710c4e00 [39389.800012] FS: 00007f6d377fe700(0000) GS:ffff8802be9e0000(0000) knlGS:0000000000000000 [39389.800012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [39389.800012] CR2: 00007f6d3d3c1000 CR3: 0000000037c93000 CR4: 00000000001406e0 [39389.800012] Stack: [39389.800012] ffff8801710c4e98 ffff880034a63a10 ffffffff81091963 ffff8801710c4e98 [39389.800012] ffff880034a63a30 ffffffff81486f1b ffffffffa0672cb3 ffff8801710c4e00 [39389.800012] ffff880034a63a78 ffffffffa0672cb3 ffff8801710c4e00 ffff880034a63a58 [39389.800012] Call Trace: [39389.800012] [<ffffffff81091963>] do_raw_write_lock+0x72/0x8c [39389.800012] [<ffffffff81486f1b>] _raw_write_lock+0x3a/0x41 [39389.800012] [<ffffffffa0672cb3>] ? btrfs_tree_lock+0x119/0x251 [btrfs] [39389.800012] [<ffffffffa0672cb3>] btrfs_tree_lock+0x119/0x251 [btrfs] [39389.800012] [<ffffffffa061aeba>] ? rcu_read_unlock+0x5b/0x5d [btrfs] [39389.800012] [<ffffffffa061ce13>] ? btrfs_root_node+0xda/0xe6 [btrfs] [39389.800012] [<ffffffffa061ce83>] btrfs_lock_root_node+0x22/0x42 [btrfs] [39389.800012] [<ffffffffa062046b>] btrfs_search_slot+0x1b8/0x758 [btrfs] [39389.800012] [<ffffffff810fc6b0>] ? time_hardirqs_on+0x15/0x28 [39389.800012] [<ffffffffa06365db>] btrfs_lookup_inode+0x31/0x95 [btrfs] [39389.800012] [<ffffffff8108d62f>] ? trace_hardirqs_on+0xd/0xf [39389.800012] [<ffffffff8148482b>] ? mutex_lock_nested+0x397/0x3bc [39389.800012] [<ffffffffa068821b>] __btrfs_update_delayed_inode+0x59/0x1c0 [btrfs] [39389.800012] [<ffffffffa068858e>] __btrfs_commit_inode_delayed_items+0x194/0x5aa [btrfs] [39389.800012] [<ffffffff81486ab7>] ? _raw_spin_unlock+0x31/0x44 [39389.800012] [<ffffffffa0688a48>] __btrfs_run_delayed_items+0xa4/0x15c [btrfs] [39389.800012] [<ffffffffa0688d62>] btrfs_run_delayed_items+0x11/0x13 [btrfs] [39389.800012] [<ffffffffa064048e>] btrfs_commit_transaction+0x234/0x96e [btrfs] [39389.800012] [<ffffffffa0618d10>] btrfs_sync_fs+0x145/0x1ad [btrfs] [39389.800012] [<ffffffffa0671176>] btrfs_ioctl+0x11d2/0x2793 [btrfs] [39389.800012] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800012] [<ffffffff81140261>] ? __might_fault+0x4c/0xa7 [39389.800012] [<ffffffff81140261>] ? __might_fault+0x4c/0xa7 [39389.800012] [<ffffffff8108a8b0>] ? arch_local_irq_save+0x9/0xc [39389.800012] [<ffffffff8118b3d4>] ? rcu_read_unlock+0x3e/0x5d [39389.800012] [<ffffffff811822f8>] do_vfs_ioctl+0x42b/0x4ea [39389.800012] [<ffffffff8118b4f3>] ? __fget_light+0x62/0x71 [39389.800012] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [39389.800012] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [39389.800012] Code: f0 0f b1 13 85 c0 75 ef eb 2a f3 90 8a 03 84 c0 75 f8 f0 0f b0 13 84 c0 75 f0 ba ff 00 00 00 eb 0a f0 0f b1 13 ff c8 74 0b f3 90 <8b> 03 83 f8 01 75 f7 eb ed c6 43 04 00 5b 5d c3 0f 1f 44 00 00 This happens because in the code path executed by the inode_paths ioctl we end up nesting two calls to read lock a leaf's rwlock when after the first call to read_lock() and before the second call to read_lock(), another task (running the delayed items as part of a transaction commit) has already called write_lock() against the leaf's rwlock. This situation is illustrated by the following diagram: Task A Task B btrfs_ref_to_path() btrfs_commit_transaction() read_lock(&eb->lock); btrfs_run_delayed_items() __btrfs_commit_inode_delayed_items() __btrfs_update_delayed_inode() btrfs_lookup_inode() write_lock(&eb->lock); --> task waits for lock read_lock(&eb->lock); --> makes this task hang forever (and task B too of course) So fix this by avoiding doing the nested read lock, which is easily avoidable. This issue does not happen if task B calls write_lock() after task A does the second call to read_lock(), however there does not seem to exist anything in the documentation that mentions what is the expected behaviour for recursive locking of rwlocks (leaving the idea that doing so is not a good usage of rwlocks). Also, as a side effect necessary for this fix, make sure we do not needlessly read lock extent buffers when the input path has skip_locking set (used when called from send). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mauro Carvalho Chehab authored
commit ac75fe5d upstream. That prevents this bug: [ 2382.269496] BUG: unable to handle kernel NULL pointer dereference at 0000000000000540 [ 2382.270013] IP: [<ffffffffa01fe616>] snd_card_free+0x36/0x70 [snd] [ 2382.270013] PGD 0 [ 2382.270013] Oops: 0002 [#1] SMP [ 2382.270013] Modules linked in: saa7134_alsa(-) tda1004x saa7134_dvb videobuf2_dvb dvb_core tda827x tda8290 tuner saa7134 tveeprom videobuf2_dma_sg videobuf2_memops videobuf2_v4l2 videobuf2_core v4l2_common videodev media auth_rpcgss nfsv4 dns_resolver nfs lockd grace sunrpc tun bridge stp llc ebtables ip6table_filter ip6_tables nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack it87 hwmon_vid snd_hda_codec_idt snd_hda_codec_generic iTCO_wdt iTCO_vendor_support snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_seq pcspkr i2c_i801 snd_seq_device snd_pcm snd_timer lpc_ich snd mfd_core soundcore binfmt_misc i915 video i2c_algo_bit drm_kms_helper drm r8169 ata_generic serio_raw pata_acpi mii i2c_core [last unloaded: videobuf2_memops] [ 2382.270013] CPU: 0 PID: 4899 Comm: rmmod Not tainted 4.5.0-rc1+ #4 [ 2382.270013] Hardware name: PCCHIPS P17G/P17G, BIOS 080012 05/14/2008 [ 2382.270013] task: ffff880039c38000 ti: ffff88003c764000 task.ti: ffff88003c764000 [ 2382.270013] RIP: 0010:[<ffffffffa01fe616>] [<ffffffffa01fe616>] snd_card_free+0x36/0x70 [snd] [ 2382.270013] RSP: 0018:ffff88003c767ea0 EFLAGS: 00010286 [ 2382.270013] RAX: ffff88003c767eb8 RBX: 0000000000000000 RCX: 0000000000006260 [ 2382.270013] RDX: ffffffffa020a060 RSI: ffffffffa0206de1 RDI: ffff88003c767eb0 [ 2382.270013] RBP: ffff88003c767ed8 R08: 0000000000019960 R09: ffffffff811a5412 [ 2382.270013] R10: ffffea0000d7c200 R11: 0000000000000000 R12: ffff88003c767ea8 [ 2382.270013] R13: 00007ffe760617f7 R14: 0000000000000000 R15: 0000557625d7f1e0 [ 2382.270013] FS: 00007f80bb1c0700(0000) GS:ffff88003f400000(0000) knlGS:0000000000000000 [ 2382.270013] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2382.270013] CR2: 0000000000000540 CR3: 000000003c00f000 CR4: 00000000000006f0 [ 2382.270013] Stack: [ 2382.270013] 000000003c767ed8 ffffffff00000000 ffff880000000000 ffff88003c767eb8 [ 2382.270013] ffff88003c767eb8 ffffffffa049a890 00007ffe76060060 ffff88003c767ef0 [ 2382.270013] ffffffffa049889d ffffffffa049a500 ffff88003c767f48 ffffffff8111079c [ 2382.270013] Call Trace: [ 2382.270013] [<ffffffffa049889d>] saa7134_alsa_exit+0x1d/0x780 [saa7134_alsa] [ 2382.270013] [<ffffffff8111079c>] SyS_delete_module+0x19c/0x1f0 [ 2382.270013] [<ffffffff8170fc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 [ 2382.270013] Code: 20 a0 48 c7 c6 e1 6d 20 a0 48 89 e5 41 54 53 4c 8d 65 d0 48 89 fb 48 83 ec 28 c7 45 d0 00 00 00 00 49 8d 7c 24 08 e8 7a 55 ed e0 <4c> 89 a3 40 05 00 00 48 89 df e8 eb fd ff ff 85 c0 75 1a 48 8d [ 2382.270013] RIP [<ffffffffa01fe616>] snd_card_free+0x36/0x70 [snd] [ 2382.270013] RSP <ffff88003c767ea0> [ 2382.270013] CR2: 0000000000000540 Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 094fd3be upstream. In ALSA timer core, the active timer instance is managed in active_list linked list. Each element is added / removed dynamically at timer start, stop and in timer interrupt. The problem is that snd_timer_interrupt() has a thinko and leaves the element in active_list when it's the last opened element. This eventually leads to list corruption or use-after-free error. This hasn't been revealed because we used to delete the list forcibly in snd_timer_stop() in the past. However, the recent fix avoids the double-stop behavior (in commit [f784beb7: ALSA: timer: Fix link corruption due to double start or stop]), and this leak hits reality. This patch fixes the link management in snd_timer_interrupt(). Now it simply unlinks no matter which stream is. BugLink: http://lkml.kernel.org/r/CACT4Y+Yy2aukHP-EDp8-ziNqNNmb-NTf=jDWXMP7jB8HDa2vng@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mauro Carvalho Chehab authored
commit e8beb023 upstream. The tda1004x was updating the properties cache before locking. If the device is not locked, the data at the registers are just random values with no real meaning. This caused the driver to fail with libdvbv5, as such library calls GET_PROPERTY from time to time, in order to return the DVB stats. Tested with a saa7134 card 78: ASUSTeK P7131 Dual, vendor PCI ID: 1043:4862 Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mathias Nyman authored
commit 5c821711 upstream. xhci driver frees data for all devices, both usb2 and and usb3 the first time usb_remove_hcd() is called, including td_list and and xhci_ring structures. When usb_remove_hcd() is called a second time for the second xhci bus it will try to dequeue all pending urbs, and touches td_list which is already freed for that endpoint. Reported-by: Joe Lawrence <joe.lawrence@stratus.com> Tested-by: Joe Lawrence <joe.lawrence@stratus.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Lu Baolu authored
commit ccc04afb upstream. Intel Broxton M was verifed to require XHCI_PME_STUCK_QUIRK quirk as well. Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Mathias Nyman authored
commit a6835090 upstream. This reverts commit e210c422 ("xhci: don't finish a TD if we get a short transfer event mid TD") Turns out that most host controllers do not follow the xHCI specs and never send the second event for the last TRB in the TD if there was a short event mid-TD. Returning the URB directly after the first short-transfer event is far better than never returning the URB. (class drivers usually timeout after 30sec). For the hosts that do send the second event we will go back to treating it as misplaced event and print an error message for it. The origial patch was sent to stable kernels and needs to be reverted from there as well Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [ luis: backported to 3.16: adjusted context ] Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Matthew Wilcox authored
commit 46437f9a upstream. If the indirect_ptr bit is set on a slot, that indicates we need to redo the lookup. Introduce a new function radix_tree_iter_retry() which forces the loop to retry the lookup by setting 'slot' to NULL and turning the iterator back to point at the problematic entry. This is a pretty rare problem to hit at the moment; the lookup has to race with a grow of the radix tree from a height of 0. The consequences of hitting this race are that gang lookup could return a pointer to a radix_tree_node instead of a pointer to whatever the user had inserted in the tree. Fixes: cebbd29e ("radix-tree: rewrite gang lookup using iterator") Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ohad Ben-Cohen <ohad@wizery.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Kirill A. Shutemov authored
commit 461c7fa1 upstream. Reduced testcase: #include <fcntl.h> #include <unistd.h> #include <sys/mman.h> #include <numaif.h> #define SIZE 0x2000 int main() { int fd; void *p; fd = open("/dev/sg0", O_RDWR); p = mmap(NULL, SIZE, PROT_EXEC, MAP_PRIVATE | MAP_LOCKED, fd, 0); mbind(p, SIZE, 0, NULL, 0, MPOL_MF_MOVE); return 0; } We shouldn't try to migrate pages in sg VMA as we don't have a way to update Sg_scatter_hold::pages accordingly from mm core. Let's mark the VMA as VM_IO to indicate to mm core that the VMA is not migratable. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Doug Gilbert <dgilbert@interlog.com> Cc: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Shiraz Hashim <shashim@codeaurora.org> Cc: Hugh Dickins <hughd@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 7f0973e9 upstream. The port subscription code uses double mutex locks for source and destination ports, and this may become racy once when wrongly set up. It leads to lockdep warning splat, typically triggered by fuzzer like syzkaller, although the actual deadlock hasn't been seen, so far. This patch simplifies the handling by reducing to two single locks, so that no lockdep warning will be trigger any longer. By splitting to two actions, a still-in-progress element shall be added in one list while handling another. For ignoring this element, a new check is added in deliver_to_subscribers(). Along with it, the code to add/remove the subscribers list element was cleaned up and refactored. BugLink: http://lkml.kernel.org/r/CACT4Y+aKQXV7xkBW9hpQbzaDO7LrUvohxWh-UwMxXjDy-yBD=A@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 81f57754 upstream. The rawmidi read and write functions manage runtime stream status such as runtime->appl_ptr and runtime->avail. These point where to copy the new data and how many bytes have been copied (or to be read). The problem is that rawmidi read/write call copy_from_user() or copy_to_user(), and the runtime spinlock is temporarily unlocked and relocked while copying user-space. Since the current code advances and updates the runtime status after the spin unlock/relock, the copy and the update may be asynchronous, and eventually runtime->avail might go to a negative value when many concurrent accesses are done. This may lead to memory corruption in the end. For fixing this race, in this patch, the status update code is performed in the same lock before the temporary unlock. Also, the spinlock is now taken more widely in snd_rawmidi_kernel_read1() for protecting more properly during the whole operation. BugLink: http://lkml.kernel.org/r/CACT4Y+b-dCmNf1GpgPKfDO0ih+uZCL2JV4__j-r1kdhPLSgQCQ@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 06ab3003 upstream. A kernel WARNING in snd_rawmidi_transmit_ack() is triggered by syzkaller fuzzer: WARNING: CPU: 1 PID: 20739 at sound/core/rawmidi.c:1136 Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff82999e2d>] dump_stack+0x6f/0xa2 lib/dump_stack.c:50 [<ffffffff81352089>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:482 [<ffffffff813522b9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:515 [<ffffffff84f80bd5>] snd_rawmidi_transmit_ack+0x275/0x400 sound/core/rawmidi.c:1136 [<ffffffff84fdb3c1>] snd_virmidi_output_trigger+0x4b1/0x5a0 sound/core/seq/seq_virmidi.c:163 [< inline >] snd_rawmidi_output_trigger sound/core/rawmidi.c:150 [<ffffffff84f87ed9>] snd_rawmidi_kernel_write1+0x549/0x780 sound/core/rawmidi.c:1223 [<ffffffff84f89fd3>] snd_rawmidi_write+0x543/0xb30 sound/core/rawmidi.c:1273 [<ffffffff817b0323>] __vfs_write+0x113/0x480 fs/read_write.c:528 [<ffffffff817b1db7>] vfs_write+0x167/0x4a0 fs/read_write.c:577 [< inline >] SYSC_write fs/read_write.c:624 [<ffffffff817b50a1>] SyS_write+0x111/0x220 fs/read_write.c:616 [<ffffffff86336c36>] entry_SYSCALL_64_fastpath+0x16/0x7a arch/x86/entry/entry_64.S:185 Also a similar warning is found but in another path: Call Trace: [< inline >] __dump_stack lib/dump_stack.c:15 [<ffffffff82be2c0d>] dump_stack+0x6f/0xa2 lib/dump_stack.c:50 [<ffffffff81355139>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:482 [<ffffffff81355369>] warn_slowpath_null+0x29/0x30 kernel/panic.c:515 [<ffffffff8527e69a>] rawmidi_transmit_ack+0x24a/0x3b0 sound/core/rawmidi.c:1133 [<ffffffff8527e851>] snd_rawmidi_transmit_ack+0x51/0x80 sound/core/rawmidi.c:1163 [<ffffffff852d9046>] snd_virmidi_output_trigger+0x2b6/0x570 sound/core/seq/seq_virmidi.c:185 [< inline >] snd_rawmidi_output_trigger sound/core/rawmidi.c:150 [<ffffffff85285a0b>] snd_rawmidi_kernel_write1+0x4bb/0x760 sound/core/rawmidi.c:1252 [<ffffffff85287b73>] snd_rawmidi_write+0x543/0xb30 sound/core/rawmidi.c:1302 [<ffffffff817ba5f3>] __vfs_write+0x113/0x480 fs/read_write.c:528 [<ffffffff817bc087>] vfs_write+0x167/0x4a0 fs/read_write.c:577 [< inline >] SYSC_write fs/read_write.c:624 [<ffffffff817bf371>] SyS_write+0x111/0x220 fs/read_write.c:616 [<ffffffff86660276>] entry_SYSCALL_64_fastpath+0x16/0x7a arch/x86/entry/entry_64.S:185 In the former case, the reason is that virmidi has an open code calling snd_rawmidi_transmit_ack() with the value calculated outside the spinlock. We may use snd_rawmidi_transmit() in a loop just for consuming the input data, but even there, there is a race between snd_rawmidi_transmit_peek() and snd_rawmidi_tranmit_ack(). Similarly in the latter case, it calls snd_rawmidi_transmit_peek() and snd_rawmidi_tranmit_ack() separately without protection, so they are racy as well. The patch tries to address these issues by the following ways: - Introduce the unlocked versions of snd_rawmidi_transmit_peek() and snd_rawmidi_transmit_ack() to be called inside the explicit lock. - Rewrite snd_rawmidi_transmit() to be race-free (the former case). - Make the split calls (the latter case) protected in the rawmidi spin lock. BugLink: http://lkml.kernel.org/r/CACT4Y+YPq1+cYLkadwjWa5XjzF1_Vki1eHnVn-Lm0hzhSpu5PA@mail.gmail.com BugLink: http://lkml.kernel.org/r/CACT4Y+acG4iyphdOZx47Nyq_VHGbpJQK-6xNpiqUjaZYqsXOGw@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 2154cc0e upstream. Mac Mini 7,1 model with CS4208 codec reports the headphone jack detection wrongly in an inverted way. Moreover, the advertised pins for the audio input and SPDIF output have actually no jack detection. This patch addresses these issues. The inv_jack_detect flag is set for fixing the headphone jack detection, and the pin configs for audio input and SPDIF output are marked as non-detectable. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=105161 Report-and-tested-by: moosotc@gmail.com Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Rusty Russell authored
commit 2e7bac53 upstream. This trivial wrapper adds clarity and makes the following patch smaller. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Vinod Koul authored
commit 5e82d2be upstream. While performing hw_free, DPCM checks the BE state but leaves out the suspend state. The suspend state needs to be checked as well, as we might be suspended and then usermode closes rather than resuming the audio stream. This was found by a stress testing of system with playback in loop and killed after few seconds running in background and second script running suspend-resume test in loop Signed-off-by: Vinod Koul <vinod.koul@intel.com> Acked-by: Liam Girdwood <liam.r.girdwood@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
zengtao authored
commit 0f26922f upstream. The datatype __kernel_time_t is u32 on 32bit platform, so its subject to overflows in the timeval/timespec to cputime conversion. Currently the following functions are affected: 1. setitimer() 2. timer_create/timer_settime() 3. sys_clock_nanosleep This can happen on MIPS32 and ARM32 with "Full dynticks CPU time accounting" enabled, which is required for CONFIG_NO_HZ_FULL. Enforce u64 conversion to prevent the overflow. Fixes: 31c1fc81 ("ARM: Kconfig: allow full nohz CPU accounting") Signed-off-by: zengtao <prime.zeng@huawei.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Cc: <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1454384314-154784-1-git-send-email-prime.zeng@huawei.comSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
James Hogan authored
commit f4dce1ff upstream. Since commit 4c21b8fd ("MIPS: seccomp: Handle indirect system calls (o32)"), syscall_get_arguments() attempts to handle o32 indirect syscall arguments by incrementing both the start argument number and the number of arguments to fetch. However only the start argument number needs to be incremented. The number of arguments does not change, they're just shifted up by one, and in fact the output array is provided by the caller and is likely only n entries long, so reading more arguments overflows the output buffer. In the case of seccomp, this results in it fetching 7 arguments starting at the 2nd one, which overflows the unsigned long args[6] in populate_seccomp_data(). This clobbers the $s0 register from syscall_trace_enter() which __seccomp_phase1_filter() saved onto the stack, into which syscall_trace_enter() had placed its syscall number argument. This caused Chromium to crash. Credit goes to Milko for tracking it down as far as $s0 being clobbered. Fixes: 4c21b8fd ("MIPS: seccomp: Handle indirect system calls (o32)") Reported-by: Milko Leporis <milko.leporis@imgtec.com> Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/12213/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Tejun Heo authored
commit 8eee1d3e upstream. The bulk of ATA host state machine is implemented by ata_sff_hsm_move(). The function is called from either the interrupt handler or, if polling, a work item. Unlike from the interrupt path, the polling path calls the function without holding the host lock and ata_sff_hsm_move() selectively grabs the lock. This is completely broken. If an IRQ triggers while polling is in progress, the two can easily race and end up accessing the hardware and updating state machine state at the same time. This can put the state machine in an illegal state and lead to a crash like the following. kernel BUG at drivers/ata/libata-sff.c:1302! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN Modules linked in: CPU: 1 PID: 10679 Comm: syz-executor Not tainted 4.5.0-rc1+ #300 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff88002bd00000 ti: ffff88002e048000 task.ti: ffff88002e048000 RIP: 0010:[<ffffffff83a83409>] [<ffffffff83a83409>] ata_sff_hsm_move+0x619/0x1c60 ... Call Trace: <IRQ> [<ffffffff83a84c31>] __ata_sff_port_intr+0x1e1/0x3a0 drivers/ata/libata-sff.c:1584 [<ffffffff83a85611>] ata_bmdma_port_intr+0x71/0x400 drivers/ata/libata-sff.c:2877 [< inline >] __ata_sff_interrupt drivers/ata/libata-sff.c:1629 [<ffffffff83a85bf3>] ata_bmdma_interrupt+0x253/0x580 drivers/ata/libata-sff.c:2902 [<ffffffff81479f98>] handle_irq_event_percpu+0x108/0x7e0 kernel/irq/handle.c:157 [<ffffffff8147a717>] handle_irq_event+0xa7/0x140 kernel/irq/handle.c:205 [<ffffffff81484573>] handle_edge_irq+0x1e3/0x8d0 kernel/irq/chip.c:623 [< inline >] generic_handle_irq_desc include/linux/irqdesc.h:146 [<ffffffff811a92bc>] handle_irq+0x10c/0x2a0 arch/x86/kernel/irq_64.c:78 [<ffffffff811a7e4d>] do_IRQ+0x7d/0x1a0 arch/x86/kernel/irq.c:240 [<ffffffff86653d4c>] common_interrupt+0x8c/0x8c arch/x86/entry/entry_64.S:520 <EOI> [< inline >] rcu_lock_acquire include/linux/rcupdate.h:490 [< inline >] rcu_read_lock include/linux/rcupdate.h:874 [<ffffffff8164b4a1>] filemap_map_pages+0x131/0xba0 mm/filemap.c:2145 [< inline >] do_fault_around mm/memory.c:2943 [< inline >] do_read_fault mm/memory.c:2962 [< inline >] do_fault mm/memory.c:3133 [< inline >] handle_pte_fault mm/memory.c:3308 [< inline >] __handle_mm_fault mm/memory.c:3418 [<ffffffff816efb16>] handle_mm_fault+0x2516/0x49a0 mm/memory.c:3447 [<ffffffff8127dc16>] __do_page_fault+0x376/0x960 arch/x86/mm/fault.c:1238 [<ffffffff8127e358>] trace_do_page_fault+0xe8/0x420 arch/x86/mm/fault.c:1331 [<ffffffff8126f514>] do_async_page_fault+0x14/0xd0 arch/x86/kernel/kvm.c:264 [<ffffffff86655578>] async_page_fault+0x28/0x30 arch/x86/entry/entry_64.S:986 Fix it by ensuring that the polling path is holding the host lock before entering ata_sff_hsm_move() so that all hardware accesses and state updates are performed under the host lock. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Dmitry Vyukov <dvyukov@google.com> Link: http://lkml.kernel.org/g/CACT4Y+b_JsOxJu2EZyEf+mOXORc_zid5V1-pLZSroJVxyWdSpw@mail.gmail.comSigned-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit f784beb7 upstream. Although ALSA timer code got hardening for races, it still causes use-after-free error. This is however rather a corrupted linked list, not actually the concurrent accesses. Namely, when timer start is triggered twice, list_add_tail() is called twice, too. This ends up with the link corruption and triggers KASAN error. The simplest fix would be replacing list_add_tail() with list_move_tail(), but fundamentally it's the problem that we don't check the double start/stop correctly. So, the right fix here is to add the proper checks to snd_timer_start() and snd_timer_stop() (and their variants). BugLink: http://lkml.kernel.org/r/CACT4Y+ZyPRoMQjmawbvmCEDrkBD2BQuH7R09=eOkf5ESK8kJAw@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit c3b16813 upstream. This is a minor code cleanup without any functional changes: - Kill keep_flag argument from _snd_timer_stop(), as all callers pass only it false. - Remove redundant NULL check in _snd_timer_stop(). Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-
Takashi Iwai authored
commit 2cdc7b63 upstream. ALSA sequencer may open/close and control ALSA timer instance dynamically either via sequencer events or direct ioctls. These are done mostly asynchronously, and it may call still some timer action like snd_timer_start() while another is calling snd_timer_close(). Since the instance gets removed by snd_timer_close(), it may lead to a use-after-free. This patch tries to address such a race by protecting each snd_timer_*() call via the existing spinlock and also by avoiding the access to timer during close call. BugLink: http://lkml.kernel.org/r/CACT4Y+Z6RzW5MBr-HUdV-8zwg71WQfKTdPpYGvOeS7v4cyurNQ@mail.gmail.comReported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
-