- 09 Feb, 2023 1 commit
-
-
Filipe Manana authored
Currently fiemap does not take the inode's lock (VFS lock), it only locks a file range in the inode's io tree. This however can lead to a deadlock if we have a concurrent fsync on the file and fiemap code triggers a fault when accessing the user space buffer with fiemap_fill_next_extent(). The deadlock happens on the inode's i_mmap_lock semaphore, which is taken both by fsync and btrfs_page_mkwrite(). This deadlock was recently reported by syzbot and triggers a trace like the following: task:syz-executor361 state:D stack:20264 pid:5668 ppid:5119 flags:0x00004004 Call Trace: <TASK> context_switch kernel/sched/core.c:5293 [inline] __schedule+0x995/0xe20 kernel/sched/core.c:6606 schedule+0xcb/0x190 kernel/sched/core.c:6682 wait_on_state fs/btrfs/extent-io-tree.c:707 [inline] wait_extent_bit+0x577/0x6f0 fs/btrfs/extent-io-tree.c:751 lock_extent+0x1c2/0x280 fs/btrfs/extent-io-tree.c:1742 find_lock_delalloc_range+0x4e6/0x9c0 fs/btrfs/extent_io.c:488 writepage_delalloc+0x1ef/0x540 fs/btrfs/extent_io.c:1863 __extent_writepage+0x736/0x14e0 fs/btrfs/extent_io.c:2174 extent_write_cache_pages+0x983/0x1220 fs/btrfs/extent_io.c:3091 extent_writepages+0x219/0x540 fs/btrfs/extent_io.c:3211 do_writepages+0x3c3/0x680 mm/page-writeback.c:2581 filemap_fdatawrite_wbc+0x11e/0x170 mm/filemap.c:388 __filemap_fdatawrite_range mm/filemap.c:421 [inline] filemap_fdatawrite_range+0x175/0x200 mm/filemap.c:439 btrfs_fdatawrite_range fs/btrfs/file.c:3850 [inline] start_ordered_ops fs/btrfs/file.c:1737 [inline] btrfs_sync_file+0x4ff/0x1190 fs/btrfs/file.c:1839 generic_write_sync include/linux/fs.h:2885 [inline] btrfs_do_write_iter+0xcd3/0x1280 fs/btrfs/file.c:1684 call_write_iter include/linux/fs.h:2189 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x7dc/0xc50 fs/read_write.c:584 ksys_write+0x177/0x2a0 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f7d4054e9b9 RSP: 002b:00007f7d404fa2f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007f7d405d87a0 RCX: 00007f7d4054e9b9 RDX: 0000000000000090 RSI: 0000000020000000 RDI: 0000000000000006 RBP: 00007f7d405a51d0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 61635f65646f6e69 R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87a8 </TASK> INFO: task syz-executor361:5697 blocked for more than 145 seconds. Not tainted 6.2.0-rc3-syzkaller-00376-g7c698440 #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor361 state:D stack:21216 pid:5697 ppid:5119 flags:0x00004004 Call Trace: <TASK> context_switch kernel/sched/core.c:5293 [inline] __schedule+0x995/0xe20 kernel/sched/core.c:6606 schedule+0xcb/0x190 kernel/sched/core.c:6682 rwsem_down_read_slowpath+0x5f9/0x930 kernel/locking/rwsem.c:1095 __down_read_common+0x54/0x2a0 kernel/locking/rwsem.c:1260 btrfs_page_mkwrite+0x417/0xc80 fs/btrfs/inode.c:8526 do_page_mkwrite+0x19e/0x5e0 mm/memory.c:2947 wp_page_shared+0x15e/0x380 mm/memory.c:3295 handle_pte_fault mm/memory.c:4949 [inline] __handle_mm_fault mm/memory.c:5073 [inline] handle_mm_fault+0x1b79/0x26b0 mm/memory.c:5219 do_user_addr_fault+0x69b/0xcb0 arch/x86/mm/fault.c:1428 handle_page_fault arch/x86/mm/fault.c:1519 [inline] exc_page_fault+0x7a/0x110 arch/x86/mm/fault.c:1575 asm_exc_page_fault+0x22/0x30 arch/x86/include/asm/idtentry.h:570 RIP: 0010:copy_user_short_string+0xd/0x40 arch/x86/lib/copy_user_64.S:233 Code: 74 0a 89 (...) RSP: 0018:ffffc9000570f330 EFLAGS: 00050202 RAX: ffffffff843e6601 RBX: 00007fffffffefc8 RCX: 0000000000000007 RDX: 0000000000000000 RSI: ffffc9000570f3e0 RDI: 0000000020000120 RBP: ffffc9000570f490 R08: 0000000000000000 R09: fffff52000ae1e83 R10: fffff52000ae1e83 R11: 1ffff92000ae1e7c R12: 0000000000000038 R13: ffffc9000570f3e0 R14: 0000000020000120 R15: ffffc9000570f3e0 copy_user_generic arch/x86/include/asm/uaccess_64.h:37 [inline] raw_copy_to_user arch/x86/include/asm/uaccess_64.h:58 [inline] _copy_to_user+0xe9/0x130 lib/usercopy.c:34 copy_to_user include/linux/uaccess.h:169 [inline] fiemap_fill_next_extent+0x22e/0x410 fs/ioctl.c:144 emit_fiemap_extent+0x22d/0x3c0 fs/btrfs/extent_io.c:3458 fiemap_process_hole+0xa00/0xad0 fs/btrfs/extent_io.c:3716 extent_fiemap+0xe27/0x2100 fs/btrfs/extent_io.c:3922 btrfs_fiemap+0x172/0x1e0 fs/btrfs/inode.c:8209 ioctl_fiemap fs/ioctl.c:219 [inline] do_vfs_ioctl+0x185b/0x2980 fs/ioctl.c:810 __do_sys_ioctl fs/ioctl.c:868 [inline] __se_sys_ioctl+0x83/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f7d4054e9b9 RSP: 002b:00007f7d390d92f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f7d405d87b0 RCX: 00007f7d4054e9b9 RDX: 0000000020000100 RSI: 00000000c020660b RDI: 0000000000000005 RBP: 00007f7d405a51d0 R08: 00007f7d390d9700 R09: 0000000000000000 R10: 00007f7d390d9700 R11: 0000000000000246 R12: 61635f65646f6e69 R13: 65646f7475616f6e R14: 7261637369646f6e R15: 00007f7d405d87b8 </TASK> What happens is the following: 1) Task A is doing an fsync, enters btrfs_sync_file() and flushes delalloc before locking the inode and the i_mmap_lock semaphore, that is, before calling btrfs_inode_lock(); 2) After task A flushes delalloc and before it calls btrfs_inode_lock(), another task dirties a page; 3) Task B starts a fiemap without FIEMAP_FLAG_SYNC, so the page dirtied at step 2 remains dirty and unflushed. Then when it enters extent_fiemap() and it locks a file range that includes the range of the page dirtied in step 2; 4) Task A calls btrfs_inode_lock() and locks the inode (VFS lock) and the inode's i_mmap_lock semaphore in write mode. Then it tries to flush delalloc by calling start_ordered_ops(), which will block, at find_lock_delalloc_range(), when trying to lock the range of the page dirtied at step 2, since this range was locked by the fiemap task (at step 3); 5) Task B generates a page fault when accessing the user space fiemap buffer with a call to fiemap_fill_next_extent(). The fault handler needs to call btrfs_page_mkwrite() for some other page of our inode, and there we deadlock when trying to lock the inode's i_mmap_lock semaphore in read mode, since the fsync task locked it in write mode (step 4) and the fsync task can not progress because it's waiting to lock a file range that is currently locked by us (the fiemap task, step 3). Fix this by taking the inode's lock (VFS lock) in shared mode when entering fiemap. This effectively serializes fiemap with fsync (except the most expensive part of fsync, the log sync), preventing this deadlock. Reported-by: syzbot+cc35f55c41e34c30dcb5@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000032dc7305f2a66f46@google.com/ CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 06 Feb, 2023 1 commit
-
-
Filipe Manana authored
When logging a directory, we always set the inode's last_dir_index_offset to the offset of the last dir index item we found. This is using an extra field in the log context structure, and it makes more sense to update it only after we insert dir index items, and we could directly update the inode's last_dir_index_offset field instead. So make this simpler by updating the inode's last_dir_index_offset only when we actually insert dir index keys in the log tree, and getting rid of the last_dir_item_offset field in the log context structure. Reported-by: David Arendt <admin@prnet.org> Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com> Link: https://lore.kernel.org/linux-btrfs/Y8voyTXdnPDz8xwY@mail.gmail.com/Reported-by: Hunter Wardlaw <wardlawhunter@gmail.com> Link: https://bugzilla.suse.com/show_bug.cgi?id=1207231 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216851 CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 27 Jan, 2023 2 commits
-
-
Qu Wenruo authored
In the rework of raid56 code, there is very limited concurrency in the endio context. Most of the work is done inside the sectors arrays, which different bios will never touch the same sector. But there is a concurrency here for error_bitmap. Both read and write endio functions need to touch them, and we can have multiple write bios touching the same error bitmap if they all hit some errors. Here we fix the unprotected bitmap operation by going set_bit() in a loop. Since we have a very small ceiling of the sectors (at most 16 sectors), such set_bit() in a loop should be very acceptable. Fixes: 2942a50d ("btrfs: raid56: introduce btrfs_raid_bio::error_bitmap") Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The arg->clone_sources_count is u64 and can trigger a warning when a huge value is passed from user space and a huge array is allocated. Limit the allocated memory to 8MiB (can be increased if needed), which in turn limits the number of clone sources to 8M / sizeof(struct clone_root) = 8M / 40 = 209715. Real world number of clones is from tens to hundreds, so this is future proof. Reported-by: syzbot+4376a9a073770c173269@syzkaller.appspotmail.com Signed-off-by: David Sterba <dsterba@suse.com>
-
- 25 Jan, 2023 3 commits
-
-
Alexander Potapenko authored
KMSAN reports uses of uninitialized memory in zlib's longest_match() called on memory originating from zlib_alloc_workspace(). This issue is known by zlib maintainers and is claimed to be harmless, but to be on the safe side we'd better initialize the memory. Link: https://zlib.net/zlib_faq.html#faq36 Reported-by: syzbot+14d9e7602ebdf7ec0a60@syzkaller.appspotmail.com CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
There was a recent regression in btrfs/177 that started happening with the size class patches ("btrfs: introduce size class to block group allocator"). This however isn't a regression introduced by those patches, but rather the bug was uncovered by a change in behavior in these patches. The patches triggered more chunk allocations in the ^free-space-tree case, which uncovered a race with device shrink. The problem is we will set the device total size to the new size, and use this to find a hole for a device extent. However during shrink we may have device extents allocated past this range, so we could potentially find a hole in a range past our new shrink size. We don't actually limit our found extent to the device size anywhere, we assume that we will not find a hole past our device size. This isn't true with shrink as we're relocating block groups and thus creating holes past the device size. Fix this by making sure we do not search past the new device size, and if we wander into any device extents that start after our device size simply break from the loop and use whatever hole we've already found. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Tanmay Bhushan authored
We take two stripe numbers if vertical errors are found. In case it is just a pstripe it does not matter but in case of raid 6 it matters as both stripes need to be fixed. Fixes: 7a315072 ("btrfs: raid56: do data csum verification during RMW cycle") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Tanmay Bhushan <007047221b@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 16 Jan, 2023 4 commits
-
-
Filipe Manana authored
If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/ Fixes: e804861b ("btrfs: fix deadlock between quota disable and qgroup rescan worker") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During lseek, for SEEK_DATA and SEEK_HOLE modes, we access the disk_bytenr of an extent without checking its type. However inline extents have their data starting the offset of the disk_bytenr field, so accessing that field when we have an inline extent can result in either of the following: 1) Interpret the inline extent's data as a disk_bytenr value; 2) In case the inline data is less than 8 bytes, we access part of some other item in the leaf, or unused space in the leaf; 3) In case the inline data is less than 8 bytes and the extent item is the first item in the leaf, we can access beyond the leaf's limit. So fix this by not accessing the disk_bytenr field if we have an inline extent. Fixes: b6e83356 ("btrfs: make hole and data seeking a lot more efficient") Reported-by: Matthias Schoepfer <matthias.schoepfer@googlemail.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216908 Link: https://lore.kernel.org/linux-btrfs/7f25442f-b121-2a3a-5a3d-22bcaae83cd4@leemhuis.info/ CC: stable@vger.kernel.org # 6.1 Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
write_one_page is an awkward interface that expects the page locked and ->writepage to be implemented. Replace that by zeroing the signature bytes and synchronize the block device page using the proper bdev helpers. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
btrfs_scratch_superblocks open codes scratching super block of a non-zoned super block. Split the code to read, zero and write the superblock for regular devices into a separate helper. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
- 12 Jan, 2023 5 commits
-
-
Filipe Manana authored
When syncing a log, if we fail to update a log root in the log root tree, we are aborting the transaction if the failure was not -ENOSPC. This is excessive because there is a chance that a transaction commit can succeed, and therefore avoid to turn the filesystem into RO mode. All we need to be careful about is to mark the log for a full commit, which we already do, to make sure no one commits a super block pointing to an outdated log root tree. So don't abort the transaction if we fail to update a log root in the log root tree, and log an error if the failure is not -ENOSPC, so that it does not go completely unnoticed. CC: stable@vger.kernel.org # 6.0+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When syncing the log, if we fail to write log tree extent buffers, we mark the log for a full commit and abort the transaction. However we don't need to abort the transaction, all we really need to do is to make sure no one can commit a superblock pointing to new log tree roots. Just because we got a failure writing extent buffers for a log tree, it does not mean we will also fail to do a transaction commit. One particular case is if due to a bug somewhere, when writing log tree extent buffers, the tree checker detects some corruption and the writeout fails because of that. Aborting the transaction can be very disruptive for a user, specially if the issue happened on a root filesystem. One example is the scenario in the Link tag below, where an isolated corruption on log tree leaves was causing transaction aborts when syncing the log. Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/ CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When logging conflicting inodes, if we reach the maximum limit of inodes, we return BTRFS_LOG_FORCE_COMMIT to force a transaction commit. However we don't mark the log for full commit (with btrfs_set_log_full_commit()), which means that once we leave the log transaction and before we commit the transaction, some other task may sync the log, which is incomplete as we have not logged all conflicting inodes, leading to some inconsistent in case that log ends up being replayed. So also call btrfs_set_log_full_commit() at add_conflicting_inode(). Fixes: e09d94c9 ("btrfs: log conflicting inodes without holding log mutex of the initial inode") CC: stable@vger.kernel.org # 6.1 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Sometimes we log a directory without holding its VFS lock, so while we logging it, dir index entries may be added or removed. This typically happens when logging a dentry from a parent directory that points to a new directory, through log_new_dir_dentries(), or when while logging some other inode we also need to log its parent directories (through btrfs_log_all_parents()). This means that while we are at log_dir_items(), we may not find a dir index key we found before, because it was deleted in the meanwhile, so a call to btrfs_search_slot() may return 1 (key not found). In that case we return from log_dir_items() with a success value (the variable 'err' has a value of 0). This can lead to a few problems, specially in the case where the variable 'last_offset' has a value of (u64)-1 (and it's initialized to that when it was declared): 1) By returning from log_dir_items() with success (0) and a value of (u64)-1 for '*last_offset_ret', we end up not logging any other dir index keys that follow the missing, just deleted, index key. The (u64)-1 value makes log_directory_changes() not call log_dir_items() again; 2) Before returning with success (0), log_dir_items(), will log a dir index range item covering a range from the last old dentry index (stored in the variable 'last_old_dentry_offset') to the value of 'last_offset'. If 'last_offset' has a value of (u64)-1, then it means if the log is persisted and replayed after a power failure, it will cause deletion of all the directory entries that have an index number between last_old_dentry_offset + 1 and (u64)-1; 3) We can end up returning from log_dir_items() with ctx->last_dir_item_offset having a lower value than inode->last_dir_index_offset, because the former is set to the current key we are processing at process_dir_items_leaf(), and at the end of log_directory_changes() we set inode->last_dir_index_offset to the current value of ctx->last_dir_item_offset. So if for example a deletion of a lower dir index key happened, we set ctx->last_dir_item_offset to that index value, then if we return from log_dir_items() because btrfs_search_slot() returned 1, we end up returning from log_dir_items() with success (0) and then log_directory_changes() sets inode->last_dir_index_offset to a lower value than it had before. This can result in unpredictable and unexpected behaviour when we need to log again the directory in the same transaction, and can result in ending up with a log tree leaf that has duplicated keys, as we do batch insertions of dir index keys into a log tree. So fix this by making log_dir_items() move on to the next dir index key if it does not find the one it was looking for. Reported-by: David Arendt <admin@prnet.org> Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/ CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When logging a directory, at log_dir_items(), if we get an error when attempting to search the subvolume tree for a dir index item, we end up returning 0 (success) from log_dir_items() because 'err' is left with a value of 0. This can lead to a few problems, specially in the case the variable 'last_offset' has a value of (u64)-1 (and it's initialized to that when it was declared): 1) By returning from log_dir_items() with success (0) and a value of (u64)-1 for '*last_offset_ret', we end up not logging any other dir index keys that follow the missing, just deleted, index key. The (u64)-1 value makes log_directory_changes() not call log_dir_items() again; 2) Before returning with success (0), log_dir_items(), will log a dir index range item covering a range from the last old dentry index (stored in the variable 'last_old_dentry_offset') to the value of 'last_offset'. If 'last_offset' has a value of (u64)-1, then it means if the log is persisted and replayed after a power failure, it will cause deletion of all the directory entries that have an index number between last_old_dentry_offset + 1 and (u64)-1; 3) We can end up returning from log_dir_items() with ctx->last_dir_item_offset having a lower value than inode->last_dir_index_offset, because the former is set to the current key we are processing at process_dir_items_leaf(), and at the end of log_directory_changes() we set inode->last_dir_index_offset to the current value of ctx->last_dir_item_offset. So if for example a deletion of a lower dir index key happened, we set ctx->last_dir_item_offset to that index value, then if we return from log_dir_items() because btrfs_search_slot() returned an error, we end up returning without any error from log_dir_items() and then log_directory_changes() sets inode->last_dir_index_offset to a lower value than it had before. This can result in unpredictable and unexpected behaviour when we need to log again the directory in the same transaction, and can result in ending up with a log tree leaf that has duplicated keys, as we do batch insertions of dir index keys into a log tree. Fix this by setting 'err' to the value of 'ret' in case btrfs_search_slot() or btrfs_previous_item() returned an error. That will result in falling back to a full transaction commit. Reported-by: David Arendt <admin@prnet.org> Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/ Fixes: e02119d5 ("Btrfs: Add a write ahead tree log to optimize synchronous operations") CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 11 Jan, 2023 3 commits
-
-
Naohiro Aota authored
The commit 79417d04 ("btrfs: zoned: disable metadata overcommit for zoned") disabled the metadata over-commit to track active zones properly. However, it also introduced a heavy overhead by allocating new metadata block groups and/or flushing dirty buffers to release the space reservations. Specifically, a workload (write only without any sync operations) worsen its performance from 343.77 MB/sec (v5.19) to 182.89 MB/sec (v6.0). The performance is still bad on current misc-next which is 187.95 MB/sec. And, with this patch applied, it improves back to 326.70 MB/sec (+73.82%). This patch introduces a new fs_info->flag BTRFS_FS_NO_OVERCOMMIT to indicate it needs to disable the metadata over-commit. The flag is enabled when a device with max active zones limit is loaded into a file-system. Fixes: 79417d04 ("btrfs: zoned: disable metadata overcommit for zoned") CC: stable@vger.kernel.org # 6.0+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] There are some reports from the mailing list that since v6.1 kernel, the WARN_ON() inside btrfs_qgroup_account_extent() gets triggered during rescan: WARNING: CPU: 3 PID: 6424 at fs/btrfs/qgroup.c:2756 btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] CPU: 3 PID: 6424 Comm: snapperd Tainted: P OE 6.1.2-1-default #1 openSUSE Tumbleweed 05c7a1b1b61d5627475528f71f50444637b5aad7 RIP: 0010:btrfs_qgroup_account_extents+0x1ae/0x260 [btrfs] Call Trace: <TASK> btrfs_commit_transaction+0x30c/0xb40 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? start_transaction+0xc3/0x5b0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_qgroup_rescan+0x42/0xc0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] btrfs_ioctl+0x1ab9/0x25c0 [btrfs c39c9c546c241c593f03bd6d5f39ea1b676250f6] ? __rseq_handle_notify_resume+0xa9/0x4a0 ? mntput_no_expire+0x4a/0x240 ? __seccomp_filter+0x319/0x4d0 __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x5b/0x80 ? syscall_exit_to_user_mode+0x17/0x40 ? do_syscall_64+0x67/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd9b790d9bf </TASK> [CAUSE] Since commit e15e9f43 ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting"), if our qgroup is already in inconsistent state, we will no longer do the time-consuming backref walk. This can leave some qgroup records without a valid old_roots ulist. Normally this is fine, as btrfs_qgroup_account_extents() would also skip those records if we have NO_ACCOUNTING flag set. But there is a small window, if we have NO_ACCOUNTING flag set, and inserted some qgroup_record without a old_roots ulist, but then the user triggered a qgroup rescan. During btrfs_qgroup_rescan(), we firstly clear NO_ACCOUNTING flag, then commit current transaction. And since we have a qgroup_record with old_roots = NULL, we trigger the WARN_ON() during btrfs_qgroup_account_extents(). [FIX] Unfortunately due to the introduction of NO_ACCOUNTING flag, the assumption that every qgroup_record would have its old_roots populated is no longer correct. Fix the false alerts and drop the WARN_ON(). Reported-by: Lukas Straub <lukasstraub2@web.de> Reported-by: HanatoK <summersnow9403@gmail.com> Fixes: e15e9f43 ("btrfs: introduce BTRFS_QGROUP_RUNTIME_FLAG_NO_ACCOUNTING to skip qgroup accounting") CC: stable@vger.kernel.org # 6.1 Link: https://lore.kernel.org/linux-btrfs/2403c697-ddaf-58ad-3829-0335fc89df09@gmail.com/Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] When test case btrfs/219 (aka, mount a registered device but with a lower generation) failed, there is not any useful information for the end user to find out what's going wrong. The mount failure just looks like this: # mount -o loop /tmp/219.img2 /mnt/btrfs/ mount: /mnt/btrfs: mount(2) system call failed: File exists. dmesg(1) may have more information after failed mount system call. While the dmesg contains nothing but the loop device change: loop1: detected capacity change from 0 to 524288 [CAUSE] In device_list_add() we have a lot of extra checks to reject invalid cases. That function also contains the regular device scan result like the following prompt: BTRFS: device fsid 6222333e-f9f1-47e6-b306-55ddd4dcaef4 devid 1 transid 8 /dev/loop0 scanned by systemd-udevd (3027) But unfortunately not all errors have their own error messages, thus if we hit something wrong in device_add_list(), there may be no error messages at all. [FIX] Add errors message for all non-ENOMEM errors. For ENOMEM, I'd say we're in a much worse situation, and there should be some OOM messages way before our call sites. CC: stable@vger.kernel.org # 6.0+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 03 Jan, 2023 7 commits
-
-
Qu Wenruo authored
[BUG] Even with commit 81d5d614 ("btrfs: enhance unsupported compat RO flags handling"), btrfs can still mount a fs with unsupported compat_ro flags read-only, then remount it RW: # btrfs ins dump-super /dev/loop0 | grep compat_ro_flags -A 3 compat_ro_flags 0x403 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x400 ) # mount /dev/loop0 /mnt/btrfs mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error. dmesg(1) may have more information after failed mount system call. ^^^ RW mount failed as expected ^^^ # dmesg -t | tail -n5 loop0: detected capacity change from 0 to 1048576 BTRFS: device fsid cb5b82f5-0fdd-4d81-9b4b-78533c324afa devid 1 transid 7 /dev/loop0 scanned by mount (1146) BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm BTRFS info (device loop0): using free space tree BTRFS error (device loop0): cannot mount read-write because of unknown compat_ro features (0x403) BTRFS error (device loop0): open_ctree failed # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs ^^^ RW remount succeeded unexpectedly ^^^ [CAUSE] Currently we use btrfs_check_features() to check compat_ro flags against our current mount flags. That function get reused between open_ctree() and btrfs_remount(). But for btrfs_remount(), the super block we passed in still has the old mount flags, thus btrfs_check_features() still believes we're mounting read-only. [FIX] Replace the existing @sb argument with @is_rw_mount. As originally we only use @sb to determine if the mount is RW. Now it's callers' responsibility to determine if the mount is RW, and since there are only two callers, the check is pretty simple: - caller in open_ctree() Just pass !sb_rdonly(). - caller in btrfs_remount() Pass !(*flags & SB_RDONLY), as our check should be against the new flags. Now we can correctly reject the RW remount: # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs mount: /mnt/btrfs: mount point not mounted or bad option. dmesg(1) may have more information after failed mount system call. # dmesg -t | tail -n 1 BTRFS error (device loop0: state M): cannot mount read-write because of unknown compat_ro features (0x403) Reported-by: Chung-Chiang Cheng <shepjeng@gmail.com> Fixes: 81d5d614 ("btrfs: enhance unsupported compat RO flags handling") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but if end users hit such problem, there will be no chance that btrfs_debug() is enabled. This can lead to very little useful info for debugging. This patch will: - Add extra info for error reporting Including: * logical bytenr * num_bytes * type * action * ref_mod - Replace the btrfs_debug() with btrfs_err() - Move the error reporting into run_one_delayed_ref() This is to avoid use-after-free, the @node can be freed in the caller. This error should only be triggered at most once. As if run_one_delayed_ref() failed, we trigger the error message, then causing the call chain to error out: btrfs_run_delayed_refs() `- btrfs_run_delayed_refs() `- btrfs_run_delayed_refs_for_head() `- run_one_delayed_ref() And we will abort the current transaction in btrfs_run_delayed_refs(). If we have to run delayed refs for the abort transaction, run_one_delayed_ref() will just cleanup the refs and do nothing, thus no new error messages would be output. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] There is a bug report that a BUG_ON() in btrfs_repair_io_failure() (originally repair_io_failure() in v6.0 kernel) got triggered when replacing a unreliable disk: BTRFS warning (device sda1): csum failed root 257 ino 2397453 off 39624704 csum 0xb0d18c75 expected csum 0x4dae9c5e mirror 3 kernel BUG at fs/btrfs/extent_io.c:2380! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 9 PID: 3614331 Comm: kworker/u257:2 Tainted: G OE 6.0.0-5-amd64 #1 Debian 6.0.10-2 Hardware name: Micro-Star International Co., Ltd. MS-7C60/TRX40 PRO WIFI (MS-7C60), BIOS 2.70 07/01/2021 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] RIP: 0010:repair_io_failure+0x24a/0x260 [btrfs] Call Trace: <TASK> clean_io_failure+0x14d/0x180 [btrfs] end_bio_extent_readpage+0x412/0x6e0 [btrfs] ? __switch_to+0x106/0x420 process_one_work+0x1c7/0x380 worker_thread+0x4d/0x380 ? rescuer_thread+0x3a0/0x3a0 kthread+0xe9/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 [CAUSE] Before the BUG_ON(), we got some read errors from the replace target first, note the mirror number (3, which is beyond RAID1 duplication, thus it's read from the replace target device). Then at the BUG_ON() location, we are trying to writeback the repaired sectors back the failed device. The check looks like this: ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, &bioc, mirror_num); if (ret) goto out_counter_dec; BUG_ON(mirror_num != bioc->mirror_num); But inside btrfs_map_block(), we can modify bioc->mirror_num especially for dev-replace: if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && !need_full_stripe(op) && dev_replace->tgtdev != NULL) { ret = get_extra_mirror_from_replace(fs_info, logical, *length, dev_replace->srcdev->devid, &mirror_num, &physical_to_patch_in_first_stripe); patch_the_first_stripe_for_dev_replace = 1; } Thus if we're repairing the replace target device, we're going to trigger that BUG_ON(). But in reality, the read failure from the replace target device may be that, our replace hasn't reached the range we're reading, thus we're reading garbage, but with replace running, the range would be properly filled later. Thus in that case, we don't need to do anything but let the replace routine to handle it. [FIX] Instead of a BUG_ON(), just skip the repair if we're repairing the device replace target device. Reported-by: 小太 <nospam@kota.moe> Link: https://lore.kernel.org/linux-btrfs/CACsxjPYyJGQZ+yvjzxA1Nn2LuqkYqTCcUH43S=+wXhyf8S00Ag@mail.gmail.com/ CC: stable@vger.kernel.org # 6.0+ Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
During lseek, when searching for delalloc in a range that represents a hole and that range has a length of 1 byte, we end up not doing the actual delalloc search in the inode's io tree, resulting in not correctly reporting the offset with data or a hole. This actually only happens when the start offset is 0 because with any other start offset we round it down by sector size. Reproducer: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt/sdc $ xfs_io -f -c "pwrite -q 0 1" /mnt/sdc/foo $ xfs_io -c "seek -d 0" /mnt/sdc/foo Whence Result DATA EOF It should have reported an offset of 0 instead of EOF. Fix this by updating btrfs_find_delalloc_in_range() and count_range_bits() to deal with inclusive ranges properly. These functions are already supposed to work with inclusive end offsets, they just got it wrong in a couple places due to off-by-one mistakes. A test case for fstests will be added later. Reported-by: Joan Bruguera Micó <joanbrugueram@gmail.com> Link: https://lore.kernel.org/linux-btrfs/20221223020509.457113-1-joanbrugueram@gmail.com/ Fixes: b6e83356 ("btrfs: make hole and data seeking a lot more efficient") CC: stable@vger.kernel.org # 6.1 Tested-by: Joan Bruguera Micó <joanbrugueram@gmail.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] There is a bug report that on a RAID0 NVMe btrfs system, under heavy write load the filesystem can flip RO randomly. With extra debugging, it shows some tree blocks failed to pass their level checks, and if that happens at critical path of a transaction, we abort the transaction: BTRFS error (device nvme0n1p3): level verify failed on logical 5446121209856 mirror 1 wanted 0 found 1 BTRFS error (device nvme0n1p3: state A): Transaction aborted (error -5) BTRFS: error (device nvme0n1p3: state A) in btrfs_finish_ordered_io:3343: errno=-5 IO failure BTRFS info (device nvme0n1p3: state EA): forced readonly [CAUSE] The reporter has already bisected to commit 947a6299 ("btrfs: move tree block parentness check into validate_extent_buffer()"). And with extra debugging, it shows we can have btrfs_tree_parent_check filled with all zeros in the following call trace: submit_one_bio+0xd4/0xe0 submit_extent_page+0x142/0x550 read_extent_buffer_pages+0x584/0x9c0 ? __pfx_end_bio_extent_readpage+0x10/0x10 ? folio_unlock+0x1d/0x50 btrfs_read_extent_buffer+0x98/0x150 read_tree_block+0x43/0xa0 read_block_for_search+0x266/0x370 btrfs_search_slot+0x351/0xd30 ? lock_is_held_type+0xe8/0x140 btrfs_lookup_csum+0x63/0x150 btrfs_csum_file_blocks+0x197/0x6c0 ? sched_clock_cpu+0x9f/0xc0 ? lock_release+0x14b/0x440 ? _raw_read_unlock+0x29/0x50 btrfs_finish_ordered_io+0x441/0x860 btrfs_work_helper+0xfe/0x400 ? lock_is_held_type+0xe8/0x140 process_one_work+0x294/0x5b0 worker_thread+0x4f/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xf5/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 Currently we only copy the btrfs_tree_parent_check structure into bbio at read_extent_buffer_pages() after we have assembled the bbio. But as shown above, submit_extent_page() itself can already submit the bbio, leaving the bbio->parent_check uninitialized, and cause the false alert. [FIX] Instead of copying @check into bbio after bbio is assembled, we pass @check in btrfs_bio_ctrl::parent_check, and copy the content of parent_check in submit_one_bio() for metadata read. By this we should be able to pass the needed info for metadata endio verification, and fix the false alert. Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CABXGCsNzVxo4iq-tJSGm_kO1UggHXgq6CdcHDL=z5FL4njYXSQ@mail.gmail.com/ Fixes: 947a6299 ("btrfs: move tree block parentness check into validate_extent_buffer()") Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
From a recent regression report, we found that after commit 947a6299 ("btrfs: move tree block parentness check into validate_extent_buffer()") if we have a level mismatch (false alert though), there is no error message at all. This makes later debugging harder. This patch will add the proper error message for such case. Link: https://lore.kernel.org/linux-btrfs/CABXGCsNzVxo4iq-tJSGm_kO1UggHXgq6CdcHDL=z5FL4njYXSQ@mail.gmail.com/Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Tanmay Bhushan authored
The em->len value is supposed to be verified in the assertion condition though we expect it to be same as the sectorsize. Fixes: a196a894 ("btrfs: do not reset extent map members for inline extents read") Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Tanmay Bhushan <007047221b@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 20 Dec, 2022 3 commits
-
-
Filipe Manana authored
When logging a new name, we don't expect to fail joining a log transaction since we know at least one of the inodes was logged before in the current transaction. However if we fail for some unexpected reason, we end up not freeing the fscrypt name we previously allocated. So fix that by freeing the name in case we failed to join a log transaction. Fixes: ab3c5c18 ("btrfs: setup qstr from dentrys using fscrypt helper") Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Commit 75b47033 ("btrfs: raid56: migrate recovery and scrub recovery path to use error_bitmap") introduced an uninitialized return variable. This can be caught by gcc 12.1 by -Wmaybe-uninitialized: CC [M] fs/btrfs/raid56.o fs/btrfs/raid56.c: In function ‘scrub_rbio’: fs/btrfs/raid56.c:2801:15: warning: ‘ret’ may be used uninitialized [-Wmaybe-uninitialized] 2801 | ret = recover_scrub_rbio(rbio); | ^~~~~~~~~~~~~~~~~~~~~~~~ fs/btrfs/raid56.c:2649:13: note: ‘ret’ was declared here 2649 | int ret; The warning is disabled by default so we haven't caught that. Due to the bug the raid56 scrub fstests have been failing since the patch was merged, so initialize that. Fixes: 75b47033 ("btrfs: raid56: migrate recovery and scrub recovery path to use error_bitmap") Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Boris Burkov authored
If a file consists of an inline extent followed by a regular or prealloc extent, then a legitimate attempt to resolve a logical address in the non-inline region will result in add_all_parents reading the invalid offset field of the inline extent. If the inline extent item is placed in the leaf eb s.t. it is the first item, attempting to access the offset field will not only be meaningless, it will go past the end of the eb and cause this panic: [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8 [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199 [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110 [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202 [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000 [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001 [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918 [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd [17.663617] FS: 00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000 [17.666525] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0 [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [17.676034] PKRU: 55555554 [17.677004] Call Trace: [17.677877] add_all_parents+0x276/0x480 [17.679325] find_parent_nodes+0xfae/0x1590 [17.680771] btrfs_find_all_leafs+0x5e/0xa0 [17.682217] iterate_extent_inodes+0xce/0x260 [17.683809] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.685597] ? iterate_inodes_from_logical+0xa1/0xd0 [17.687404] iterate_inodes_from_logical+0xa1/0xd0 [17.689121] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.691010] btrfs_ioctl_logical_to_ino+0x131/0x190 [17.692946] btrfs_ioctl+0x104a/0x2f60 [17.694384] ? selinux_file_ioctl+0x182/0x220 [17.695995] ? __x64_sys_ioctl+0x84/0xc0 [17.697394] __x64_sys_ioctl+0x84/0xc0 [17.698697] do_syscall_64+0x33/0x40 [17.700017] entry_SYSCALL_64_after_hwframe+0x44/0xae [17.701753] RIP: 0033:0x7f64e72761b7 [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7 [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003 [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60 [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001 [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0 [17.724839] Modules linked in: Fix the bug by detecting the inline extent item in add_all_parents and skipping to the next extent item. CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 15 Dec, 2022 5 commits
-
-
Naohiro Aota authored
Fix a typo of printing FLUSH_DELAYED_REFS event in flush_space() as FLUSH_ELAYED_REFS. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
In the patch a2c8d27e ("btrfs: use a structure to pass arguments to backref walking functions") Filipe converted everybody to using a new context struct to use for backref lookups, but accidentally dropped the BTRFS_SEQ_LAST usage that exists for qgroups. Add this back so we have the previous behavior. Fixes: a2c8d27e ("btrfs: use a structure to pass arguments to backref walking functions") Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When removing the btrfs module we are not calling btrfs_cleanup_fs_uuids() which results in leaking btrfs_fs_devices structures and other resources. This is a regression recently introduced by a refactoring of the module initialization and exit sequence, which simply removed the call to btrfs_cleanup_fs_uuids() in the exit path, resulting in the leaks. So fix this by calling btrfs_cleanup_fs_uuids() at exit_btrfs_fs(). Fixes: 5565b8e0 ("btrfs: make module init/exit match their sequence") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christophe JAILLET authored
All error handling paths end to 'out', except this memory allocation failure. This is spurious. So branch to the error handling path also in this case. It will add a call to: memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); Fixes: 6702ed49 ("Btrfs: Add run time btree defrag, and an ioctl to force btree defrag") Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christophe JAILLET authored
If new_whiteout_inode() fails, some resources need to be freed. Add the missing goto to the error handling path. Fixes: ab3c5c18 ("btrfs: setup qstr from dentrys using fscrypt helper") Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 05 Dec, 2022 6 commits
-
-
Filipe Manana authored
Currently we print the transaction aborted message with a debug level, but a transaction abort is an exceptional event that indicates something went wrong and it's useful to have it printed with an error level as it helps analysing problems in a production environment, where debug level messages are typically not logged. For example reports from syzbot never include the transaction aborted message, since the log level on the test machines is above the debug level. So change the log level from debug to error. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
When syncing this code into btrfs-progs Dave noticed there's some things we were losing in the sync that are needed. This syncs those changes into the kernel, which include a few comments that weren't in the kernel, some whitespace changes, an attribute, and the cplusplus bit. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we get -ENOMEM while dropping file extent items in a given range, at btrfs_drop_extents(), due to failure to allocate memory when attempting to increment the reference count for an extent or drop the reference count, we handle it with a BUG_ON(). This is excessive, instead we can simply abort the transaction and return the error to the caller. In fact most callers of btrfs_drop_extents(), directly or indirectly, already abort the transaction if btrfs_drop_extents() returns any error. Also, we already have error paths at btrfs_drop_extents() that may return -ENOMEM and in those cases we abort the transaction, like for example anything that changes the b+tree may return -ENOMEM due to a failure to allocate a new extent buffer when COWing an existing extent buffer, such as a call to btrfs_duplicate_item() for example. So replace the BUG_ON() calls with proper logic to abort the transaction and return the error. Reported-by: syzbot+0b1fb6b0108c27419f9f@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000089773e05ee4b9cb4@google.com/ CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
void0red authored
Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721Reported-by: eriri <1527030098@qq.com> Fixes: adfb69af ("btrfs: add_missing_dev() should return the actual error") CC: stable@vger.kernel.org # 4.9+ Signed-off-by: void0red <void0red@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
As of commit 193df624 ("btrfs: search for last logged dir index if it's not cached in the inode"), the overwrite_item() function is always called for a root that is from a fs/subvolume tree. In other words, now it's only used during log replay to modify a fs/subvolume tree. Therefore we can remove the logic that checks if we are dealing with a log tree at overwrite_item(). So remove that logic, replacing it with an assertion and document that if we ever need to support a log root there, we will need to clone the leaf from the fs/subvolume tree and then release it before modifying the log tree, which is needed to avoid a potential deadlock, similar to the one recently fixed by a patch with the subject: "btrfs: do not modify log tree while holding a leaf from fs tree locked" Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
After commit 193df624 ("btrfs: search for last logged dir index if it's not cached in the inode"), there are no more callers of do_overwrite_item(), except overwrite_item(). Originally both used to be the same function, but were split in commit 086dcbfa ("btrfs: insert items in batches when logging a directory when possible"), as there was the need to execute all logic of overwrite_item() but skip the tree search, since in the context of directory logging we already had a path with a leaf to copy data from. So unify them again as there is no more need to have them split. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-