- 10 Aug, 2023 29 commits
-
-
Darrick J. Wong authored
Add a new (superuser-only) flag to the online metadata repair ioctl to force it to rebuild structures, even if they're not broken. We will use this to move metadata structures out of the way during a free space defragmentation operation. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
While debugging other parts of online repair, I noticed that if someone injects FORCE_SCRUB_REPAIR, starts an IFLAG_REPAIR scrub on a piece of metadata, and the metadata repair fails, we'll log a message about uncorrected errors in the filesystem. This isn't strictly true if the scrub function didn't set OFLAG_CORRUPT and we're only doing the repair because the error injection knob is set. Repair functions are allowed to abort the entire operation at any point before committing new metadata, in which case the piece of metadata is in the same state as it was before. Therefore, the log message should be gated on the results of the scrub. Refactor the predicate and rearrange the code flow to make this happen. Note: If the repair function errors out after it commits the new metadata, the transaction cancellation will shut down the filesystem, which is an obvious sign of corrupt metadata. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
All online repair functions have the same structure: walk filesystem metadata structures gathering enough data to rebuild the structure, stage a new copy, and then commit the new copy. The gathering steps do not write anything to disk, so they are peppered with xchk_should_terminate calls to avoid softlockup warnings and to provide an opportunity to abort the repair (by killing xfs_scrub). However, it's not clear in the code base when is the last chance to abort cleanly without having to undo a bunch of structure. Therefore, add one more call to xchk_should_terminate (along with a comment) providing the sysadmin with the ability to abort before it's too late and to make it clear in the source code when it's no longer convenient or safe to abort a repair. As there are only four repair functions right now, this patch exists more to establish a precedent for subsequent additions than to deliver practical functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
After an online repair function runs for a per-AG metadata structure, sc->sick_mask is supposed to reflect the per-AG metadata that the repair function fixed. Our next move is to re-check the metadata to assess the completeness of our repair, so we don't want the rebuilt structure to be excluded from the rescan just because the health system previously logged a problem with the data structure. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Finish the realtime summary scrubber by adding the functions we need to compute a fresh copy of the rtsummary info and comparing it to the copy on disk. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Move the realtime summary file checking code to a separate file in preparation to actually implement it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Scrub tracks the resources that it's holding onto in the xfs_scrub structure. This includes the inode being checked (if applicable) and the inode lock state of that inode. Replace the open-coded structure manipulation with a trivial helper to eliminate sources of error. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
When we want to scrub a file, get our own reference to the inode unconditionally. This will make disposal rules simpler in the long run. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Track the usage, outcomes, and run times of the online fsck code, and report these values via debugfs. The columns in the file are: * scrubber name * number of scrub invocations * clean objects found * corruptions found * optimizations found * cross referencing failures * inconsistencies found during cross referencing * incomplete scrubs * warnings * number of time scrub had to retry * cumulative amount of time spent scrubbing (microseconds) * number of repair inovcations * successfully repaired objects * cumuluative amount of time spent repairing (microseconds) Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Set up debugfs directories for xfs as a whole, and a subdirectory for each mounted filesystem. This will enable the creation of debugfs files in the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Now that we have the means to do insertion sorts of small in-memory subsets of an xfarray, use it to improve the quicksort pivot algorithm by reading 7 records into memory and finding the median of that. This should prevent bad partitioning when a[lo] and a[hi] end up next to each other in the final sort, which can happen when sorting for cntbt repair when the free space is extremely fragmented (e.g. generic/176). This doesn't speed up the average quicksort run by much, but it will (hopefully) avoid the quadratic time collapse for which quicksort is famous. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
After quicksort picks a pivot item for a particular subsort, it walks the records in that subset from the outside in, rearranging them so that every record less than the pivot comes before it, and every record greater than the pivot comes after it. This scan has a lot of locality, so we can speed it up quite a bit by grabbing the xfile backing page and holding onto it as long as we possibly can. Doing so reduces the runtime by another 5% on the author's computer. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
If all the records in an xfarray subset live within the same memory page, we can short-circuit even more quicksort recursion by mapping that page into the local CPU and using the kernel's heapsort function to sort the subset. On the author's computer, this reduces the runtime by another 15% on a 500,000 element array. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Certain xfile array operations (such as sorting) can be sped up quite a bit by allowing xfile users to grab a page to bulk-read the records contained within it. Create helper methods to facilitate this. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
In the previous patch, we created a very basic quicksort implementation for xfile arrays. While the use of an alternate sorting algorithm to avoid quicksort recursion on very small subsets reduces the runtime modestly, we could do better than a load and store-heavy insertion sort, particularly since each load and store requires a page mapping lookup in the xfile. For a small increase in kernel memory requirements, we could instead bulk load the xfarray records into memory, use the kernel's existing heapsort implementation to sort the records, and bulk store the memory buffer back into the xfile. On the author's computer, this reduces the runtime by about 5% on a 500,000 element array. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
The btree bulk loading code requires that records be provided in the correct record sort order for the given btree type. In general, repair code cannot be required to collect records in order, and it is not feasible to insert new records in the middle of an array to maintain sort order. Implement a sorting algorithm so that we can sort the records just prior to bulk loading. In principle, an xfarray could consume many gigabytes of memory and its backing pages can be sent out to disk at any time. This means that we cannot map the entire array into memory at once, so we must find a way to divide the work into smaller portions (e.g. a page) that /can/ be mapped into memory. Quicksort seems like a reasonable fit for this purpose, since it uses a divide and conquer strategy to keep its average runtime logarithmic. The solution presented here is a port of the glibc implementation, which itself is derived from the median-of-three and tail call recursion strategies outlined by Sedgwick. Subsequent patches will optimize the implementation further by utilizing the kernel's heapsort on directly-mapped memory whenever possible, and improving the quicksort pivot selection algorithm to try to avoid O(n^2) collapses. Note: The sorting functionality gets its own patch because the basic big array mechanisms were plenty for a single code patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Create a simple 'big array' data structure for storage of fixed-size metadata records that will be used to reconstruct a btree index. For repair operations, the most important operations are append, iterate, and sort. Earlier implementations of the big array used linked lists and suffered from severe problems -- pinning all records in kernel memory was not a good idea and frequently lead to OOM situations; random access was very inefficient; and record overhead for the lists was unacceptably high at 40-60%. Therefore, the big memory array relies on the 'xfile' abstraction, which creates a memfd file and stores the records in page cache pages. Since the memfd is created in tmpfs, the memory pages can be pushed out to disk if necessary and we have a built-in usage limit of 50% of physical memory. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
The AGFL repair code uses a series of bitmaps to figure out where there are OWN_AG blocks that are not claimed by the free space and rmap btrees. These blocks become the new AGFL, and any overflow is reaped. The bitmaps current track xfs_fsblock_t even though we already know the AG number. In the last patch, we introduced a new bitmap "type" for tracking xfs_agblock_t extents. Port the reaping code and the AGFL repair to use this new type, which makes it very obvious what we're tracking. This also eliminates a bunch of unnecessary agblock <-> fsblock conversions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
When we're freeing extents that have been set in a bitmap, break the bitmap extent into multiple sub-extents organized by fate, and reap the extents. This enables us to dispose of old resources more efficiently than doing them block by block. While we're at it, rename the reaping functions to make it clear that they're reaping per-AG extents. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
After an online repair, we need to invalidate buffers representing the blocks from the old metadata that we're replacing. It's possible that parts of a tree that were previously cached in memory are no longer accessible due to media failure or other corruption on interior nodes, so repair figures out the old blocks from the reverse mapping data and scans the buffer cache directly. In other words, online fsck needs to find all the live (i.e. non-stale) buffers for a range of fsblocks so that it can invalidate them. Unfortunately, the current buffer cache code triggers asserts if the rhashtable lookup finds a non-stale buffer of a different length than the key we searched for. For regular operation this is desirable, but for this repair procedure, we don't care since we're going to forcibly stale the buffer anyway. Add an internal lookup flag to avoid the assert. Skip buffers that are already XBF_STALE. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Rearrange the logic inside xrep_reap_block to make it more obvious that crosslinked metadata blocks are handled differently. Add a couple of tracepoints so that we can tell what's going on at the end of a btree rebuild operation. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Use deferred frees (EFIs) to reap the blocks of a btree that we just replaced. This helps us to shrink the window in which those old blocks could be lost due to a system crash, though we try to flush the EFIs every few hundred blocks so that we don't also overflow the transaction reservations during and after we commit the new btree. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Now that we've refactored btree cursors to require the caller to pass in a perag structure, there are numerous problems in xrep_reap_extents if it's being called to reap extents for an inode metadata repair. We don't have any repair functions that can do that, so drop the support for now. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
When we're discarding old btree blocks after a repair, only invalidate the buffers for the ones that we're freeing -- if the metadata was crosslinked with another data structure, we don't want to touch it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
Reaping blocks after a repair is a complicated affair involving a lot of rmap btree lookups and figuring out if we're going to unmap or free old metadata blocks that might be crosslinked. Eventually, we will need to be able to reap per-AG metadata blocks, bmbt blocks from inode forks, garbage CoW staging extents, and (even later) blocks from btrees rooted in inodes. This results in a lot of reaping code, so we might as well split that off while it's easy. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
These two functions date from the era when I thought that we could rebuild btrees by creating an alternate root and adding records one by one. In other words, they predate the btree bulk loader. They're not necessary now, so remove them. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
-
Darrick J. Wong authored
I nominate Chandan Babu to take over release management for the upstream kernel's XFS code. He has had sufficient experience merging backports to the 5.4 LTS tree, testing them, and sending them on to the LTS leads. NOTE: I am /not/ nominating Chandan to take on any of the other roles I have just dropped. Bug triager, testing lead, and community manager are open positions that need to be filled. There's also maintainer for supported LTS releases (4.14, 4.19, 5.10...). Cc: Chandan Babu R <chandan.babu@oracle.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Acked-by: Chandan Babu R <chandan.babu@oracle.com> Reviewed-by: Carlos Maiolino <cem@kernel.org>
-
Darrick J. Wong authored
I burned out years ago trying to juggle the roles senior developer, reviewer, tester, triager (crappily), release manager, and (at times) manager liaison. There's enough work here in this one subsystem for a team of 20 FT, but instead we're squeezed to half that. I thought if I could hold on just a bit longer I could help to maintain the focus on long term development to improve the experience for users. I was wrong. Nowadays, people working on XFS seem to spend most of their time on distro kernel backports and dealing with AI-generated corner case bug reports that aren't user reports. Reviewing has become a nightmare of sifting through under-documented kernel code trying to decide if this new feature won't break all the other features. Getting reviews is an unpleasant process of negotiating with demands for further cleanups, trying to figure out if a review comment is based in experience or unfamiliarity, and wondering if the silence means anything. For now, I will continue to review patches and will try to get online fsck, parent pointers, and realtime volume modernisation merged. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-
Darrick J. Wong authored
Create a new document to list what I think are (within the scope of XFS) our shared goals and community roles. Since I will be stepping down shortly, I feel it's important to write down somewhere all the hats that I have been wearing for the past six years. Also, document important extra details about how to contribute to XFS. Cc: corbet@lwn.net Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
-
- 06 Aug, 2023 8 commits
-
-
Linus Torvalds authored
-
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfsLinus Torvalds authored
Pull vfs fixes from Christian Brauner: - Fix a wrong check for O_TMPFILE during RESOLVE_CACHED lookup - Clean up directory iterators and clarify file_needs_f_pos_lock() * tag 'v6.5-rc5.vfs.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: fs: rely on ->iterate_shared to determine f_pos locking vfs: get rid of old '->iterate' directory operation proc: fix missing conversion to 'iterate_shared' open: make RESOLVE_CACHED correctly test for O_TMPFILE
-
Christian Brauner authored
Now that we removed ->iterate we don't need to check for either ->iterate or ->iterate_shared in file_needs_f_pos_lock(). Simply check for ->iterate_shared instead. This will tell us whether we need to unconditionally take the lock. Not just does it allow us to avoid checking f_inode's mode it also actually clearly shows that we're locking because of readdir. Signed-off-by: Christian Brauner <brauner@kernel.org>
-
Linus Torvalds authored
All users now just use '->iterate_shared()', which only takes the directory inode lock for reading. Filesystems that never got convered to shared mode now instead use a wrapper that drops the lock, re-takes it in write mode, calls the old function, and then downgrades the lock back to read mode. This way the VFS layer and other callers no longer need to care about filesystems that never got converted to the modern era. The filesystems that use the new wrapper are ceph, coda, exfat, jfs, ntfs, ocfs2, overlayfs, and vboxsf. Honestly, several of them look like they really could just iterate their directories in shared mode and skip the wrapper entirely, but the point of this change is to not change semantics or fix filesystems that haven't been fixed in the last 7+ years, but to finally get rid of the dual iterators. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
-
Linus Torvalds authored
I'm looking at the directory handling due to the discussion about f_pos locking (see commit 79796425: "file: reinstate f_pos locking optimization for regular files"), and wanting to clean that up. And one source of ugliness is how we were supposed to move filesystems over to the '->iterate_shared()' function that only takes the inode lock for reading many many years ago, but several filesystems still use the bad old '->iterate()' that takes the inode lock for exclusive access. See commit 61922694 ("introduce a parallel variant of ->iterate()") that also added some documentation stating Old method is only used if the new one is absent; eventually it will be removed. Switch while you still can; the old one won't stay. and that was back in April 2016. Here we are, many years later, and the old version is still clearly sadly alive and well. Now, some of those old style iterators are probably just because the filesystem may end up having per-inode mutable data that it uses for iterating a directory, but at least one case is just a mistake. Al switched over most filesystems to use '->iterate_shared()' back when it was introduced. In particular, the /proc filesystem was converted as one of the first ones in commit f50752ea ("switch all procfs directories ->iterate_shared()"). But then later one new user of '->iterate()' was then re-introduced by commit 6d9c939d ("procfs: add smack subdir to attrs"). And that's clearly not what we wanted, since that new case just uses the same 'proc_pident_readdir()' and 'proc_pident_lookup()' helper functions that other /proc pident directories use, and they are most definitely safe to use with the inode lock held shared. So just fix it. This still leaves a fair number of oddball filesystems using the old-style directory iterator (ceph, coda, exfat, jfs, ntfs, ocfs2, overlayfs, and vboxsf), but at least we don't have any remaining in the core filesystems. I'm going to add a wrapper function that just drops the read-lock and takes it as a write lock, so that we can clean up the core vfs layer and make all the ugly 'this filesystem needs exclusive inode locking' be just filesystem-internal warts. I just didn't want to make that conversion when we still had a core user left. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
-
Aleksa Sarai authored
O_TMPFILE is actually __O_TMPFILE|O_DIRECTORY. This means that the old fast-path check for RESOLVE_CACHED would reject all users passing O_DIRECTORY with -EAGAIN, when in fact the intended test was to check for __O_TMPFILE. Cc: stable@vger.kernel.org # v5.12+ Fixes: 99668f61 ("fs: expose LOOKUP_CACHED through openat2() RESOLVE_CACHED") Signed-off-by: Aleksa Sarai <cyphar@cyphar.com> Message-Id: <20230806-resolve_cached-o_tmpfile-v1-1-7ba16308465e@cyphar.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
-
https://github.com/Rust-for-Linux/linuxLinus Torvalds authored
Pull rust fixes from Miguel Ojeda: - Allocator: prevent mis-aligned allocation - Types: delete 'ForeignOwnable::borrow_mut'. A sound replacement is planned for the merge window - Build: fix bindgen error with UBSAN_BOUNDS_STRICT * tag 'rust-fixes-6.5-rc5' of https://github.com/Rust-for-Linux/linux: rust: fix bindgen build error with UBSAN_BOUNDS_STRICT rust: delete `ForeignOwnable::borrow_mut` rust: allocator: Prevent mis-aligned allocation
-
git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal/libataLinus Torvalds authored
Pull ata fix from Damien Le Moal: - Prevent the scsi disk driver from issuing a START STOP UNIT command for ATA devices during system resume as this causes various issues reported by multiple users. * tag 'ata-6.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal/libata: ata,scsi: do not issue START STOP UNIT on resume
-
- 05 Aug, 2023 3 commits
-
-
git://git.samba.org/sfrench/cifs-2.6Linus Torvalds authored
Pull smb client fix from Steve French: - Fix DFS interlink problem (different namespace) * tag '6.5-rc4-smb3-client-fix' of git://git.samba.org/sfrench/cifs-2.6: smb: client: fix dfs link mount against w2k8
-
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linuxLinus Torvalds authored
Pull powerpc fixes from Michael Ellerman: - Fix vmemmap altmap boundary check which could cause memory hotunplug failure - Create a dummy stackframe to fix ftrace stack unwind - Fix secondary thread bringup for Book3E ELFv2 kernels - Use early_ioremap/unmap() in via_calibrate_decr() Thanks to Aneesh Kumar K.V, Benjamin Gray, Christophe Leroy, David Hildenbrand, and Naveen N Rao. * tag 'powerpc-6.5-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/powermac: Use early_* IO variants in via_calibrate_decr() powerpc/64e: Fix secondary thread bringup for ELFv2 kernels powerpc/ftrace: Create a dummy stackframe to fix stack unwind powerpc/mm/altmap: Fix altmap boundary check
-
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linuxLinus Torvalds authored
Pull parisc architecture fixes from Helge Deller: - early fixmap preallocation to fix boot failures on kernel >= 6.4 - remove DMA leftover code in parport_gsc - drop old comments and code style fixes * tag 'parisc-for-6.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc: unaligned: Add required spaces after ',' parport: gsc: remove DMA leftover code parisc: pci-dma: remove unused and dead EISA code and comment parisc/mm: preallocate fixmap page tables at init
-