- 09 Jul, 2020 13 commits
-
-
Rahul Lakkireddy authored
[ Upstream commit 27f78cb2 ] TC-U32 passes all keys values and masks in __be32 format. The parser already expects this and hence pass the value and masks in __be32 natively to the parser. Fixes following sparse warnings in several places: cxgb4_tc_u32.c:57:21: warning: incorrect type in assignment (different base types) cxgb4_tc_u32.c:57:21: expected unsigned int [usertype] val cxgb4_tc_u32.c:57:21: got restricted __be32 [usertype] val cxgb4_tc_u32_parse.h:48:24: warning: cast to restricted __be32 Fixes: 2e8aad7b ("cxgb4: add parser to translate u32 filters to internal spec") Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Shile Zhang authored
[ Upstream commit 975e155e ] We added the 'sched_rr_timeslice_ms' SCHED_RR tuning knob in this commit: ce0dbbbb ("sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice") ... which name suggests to users that it's in milliseconds, while in reality it's being set in milliseconds but the result is shown in jiffies. This is obviously confusing when HZ is not 1000, it makes it appear like the value set failed, such as HZ=100: root# echo 100 > /proc/sys/kernel/sched_rr_timeslice_ms root# cat /proc/sys/kernel/sched_rr_timeslice_ms 10 Fix this to be milliseconds all around. Signed-off-by: Shile Zhang <shile.zhang@nokia.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1485612049-20923-1-git-send-email-shile.zhang@nokia.comSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Herbert Xu authored
commit 34c86f4c upstream. The locking in af_alg_release_parent is broken as the BH socket lock can only be taken if there is a code-path to handle the case where the lock is owned by process-context. Instead of adding such handling, we can fix this by changing the ref counts to atomic_t. This patch also modifies the main refcnt to include both normal and nokey sockets. This way we don't have to fudge the nokey ref count when a socket changes from nokey to normal. Credits go to Mauricio Faria de Oliveira who diagnosed this bug and sent a patch for it: https://lore.kernel.org/linux-crypto/20200605161657.535043-1-mfo@canonical.com/Reported-by: Brian Moyles <bmoyles@netflix.com> Reported-by: Mauricio Faria de Oliveira <mfo@canonical.com> Fixes: 37f96694 ("crypto: af_alg - Use bh_lock_sock in...") Cc: <stable@vger.kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Douglas Anderson authored
[ Upstream commit 440ab9e1 ] At times when I'm using kgdb I see a splat on my console about suspicious RCU usage. I managed to come up with a case that could reproduce this that looked like this: WARNING: suspicious RCU usage 5.7.0-rc4+ #609 Not tainted ----------------------------- kernel/pid.c:395 find_task_by_pid_ns() needs rcu_read_lock() protection! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by swapper/0/1: #0: ffffff81b6b8e988 (&dev->mutex){....}-{3:3}, at: __device_attach+0x40/0x13c #1: ffffffd01109e9e8 (dbg_master_lock){....}-{2:2}, at: kgdb_cpu_enter+0x20c/0x7ac #2: ffffffd01109ea90 (dbg_slave_lock){....}-{2:2}, at: kgdb_cpu_enter+0x3ec/0x7ac stack backtrace: CPU: 7 PID: 1 Comm: swapper/0 Not tainted 5.7.0-rc4+ #609 Hardware name: Google Cheza (rev3+) (DT) Call trace: dump_backtrace+0x0/0x1b8 show_stack+0x1c/0x24 dump_stack+0xd4/0x134 lockdep_rcu_suspicious+0xf0/0x100 find_task_by_pid_ns+0x5c/0x80 getthread+0x8c/0xb0 gdb_serial_stub+0x9d4/0xd04 kgdb_cpu_enter+0x284/0x7ac kgdb_handle_exception+0x174/0x20c kgdb_brk_fn+0x24/0x30 call_break_hook+0x6c/0x7c brk_handler+0x20/0x5c do_debug_exception+0x1c8/0x22c el1_sync_handler+0x3c/0xe4 el1_sync+0x7c/0x100 rpmh_rsc_probe+0x38/0x420 platform_drv_probe+0x94/0xb4 really_probe+0x134/0x300 driver_probe_device+0x68/0x100 __device_attach_driver+0x90/0xa8 bus_for_each_drv+0x84/0xcc __device_attach+0xb4/0x13c device_initial_probe+0x18/0x20 bus_probe_device+0x38/0x98 device_add+0x38c/0x420 If I understand properly we should just be able to blanket kgdb under one big RCU read lock and the problem should go away. We'll add it to the beast-of-a-function known as kgdb_cpu_enter(). With this I no longer get any splats and things seem to work fine. Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20200602154729.v2.1.I70e0d4fd46d5ed2aaf0c98a355e8e1b7a5bb7e4e@changeidSigned-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Zqiang authored
[ Upstream commit 28ebeb8d ] BUG: memory leak unreferenced object 0xffff888055046e00 (size 256): comm "kworker/2:9", pid 2570, jiffies 4294942129 (age 1095.500s) hex dump (first 32 bytes): 00 70 04 55 80 88 ff ff 18 bb 5a 81 ff ff ff ff .p.U......Z..... f5 96 78 81 ff ff ff ff 37 de 8e 81 ff ff ff ff ..x.....7....... backtrace: [<00000000d121dccf>] kmemleak_alloc_recursive include/linux/kmemleak.h:43 [inline] [<00000000d121dccf>] slab_post_alloc_hook mm/slab.h:586 [inline] [<00000000d121dccf>] slab_alloc_node mm/slub.c:2786 [inline] [<00000000d121dccf>] slab_alloc mm/slub.c:2794 [inline] [<00000000d121dccf>] kmem_cache_alloc_trace+0x15e/0x2d0 mm/slub.c:2811 [<000000005c3c3381>] kmalloc include/linux/slab.h:555 [inline] [<000000005c3c3381>] usbtest_probe+0x286/0x19d0 drivers/usb/misc/usbtest.c:2790 [<000000001cec6910>] usb_probe_interface+0x2bd/0x870 drivers/usb/core/driver.c:361 [<000000007806c118>] really_probe+0x48d/0x8f0 drivers/base/dd.c:551 [<00000000a3308c3e>] driver_probe_device+0xfc/0x2a0 drivers/base/dd.c:724 [<000000003ef66004>] __device_attach_driver+0x1b6/0x240 drivers/base/dd.c:831 [<00000000eee53e97>] bus_for_each_drv+0x14e/0x1e0 drivers/base/bus.c:431 [<00000000bb0648d0>] __device_attach+0x1f9/0x350 drivers/base/dd.c:897 [<00000000838b324a>] device_initial_probe+0x1a/0x20 drivers/base/dd.c:944 [<0000000030d501c1>] bus_probe_device+0x1e1/0x280 drivers/base/bus.c:491 [<000000005bd7adef>] device_add+0x131d/0x1c40 drivers/base/core.c:2504 [<00000000a0937814>] usb_set_configuration+0xe84/0x1ab0 drivers/usb/core/message.c:2030 [<00000000e3934741>] generic_probe+0x6a/0xe0 drivers/usb/core/generic.c:210 [<0000000098ade0f1>] usb_probe_device+0x90/0xd0 drivers/usb/core/driver.c:266 [<000000007806c118>] really_probe+0x48d/0x8f0 drivers/base/dd.c:551 [<00000000a3308c3e>] driver_probe_device+0xfc/0x2a0 drivers/base/dd.c:724 Acked-by: Alan Stern <stern@rowland.harvard.edu> Reported-by: Kyungtae Kim <kt0755@gmail.com> Signed-off-by: Zqiang <qiang.zhang@windriver.com> Link: https://lore.kernel.org/r/20200612035210.20494-1-qiang.zhang@windriver.comSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Qian Cai authored
[ Upstream commit a68ee057 ] There is no need to copy SLUB_STATS items from root memcg cache to new memcg cache copies. Doing so could result in stack overruns because the store function only accepts 0 to clear the stat and returns an error for everything else while the show method would print out the whole stat. Then, the mismatch of the lengths returns from show and store methods happens in memcg_propagate_slab_attrs(): else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) buf = mbuf; max_attr_size is only 2 from slab_attr_store(), then, it uses mbuf[64] in show_stat() later where a bounch of sprintf() would overrun the stack variable. Fix it by always allocating a page of buffer to be used in show_stat() if SLUB_STATS=y which should only be used for debug purpose. # echo 1 > /sys/kernel/slab/fs_cache/shrink BUG: KASAN: stack-out-of-bounds in number+0x421/0x6e0 Write of size 1 at addr ffffc900256cfde0 by task kworker/76:0/53251 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019 Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func Call Trace: number+0x421/0x6e0 vsnprintf+0x451/0x8e0 sprintf+0x9e/0xd0 show_stat+0x124/0x1d0 alloc_slowpath_show+0x13/0x20 __kmem_cache_create+0x47a/0x6b0 addr ffffc900256cfde0 is located in stack of task kworker/76:0/53251 at offset 0 in frame: process_one_work+0x0/0xb90 this frame has 1 object: [32, 72) 'lockdep_map' Memory state around the buggy address: ffffc900256cfc80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffc900256cfd00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffffc900256cfd80: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 ^ ffffc900256cfe00: 00 00 00 00 00 f2 f2 f2 00 00 00 00 00 00 00 00 ffffc900256cfe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: __kmem_cache_create+0x6ac/0x6b0 Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func Call Trace: __kmem_cache_create+0x6ac/0x6b0 Fixes: 107dab5c ("slub: slub-specific propagation changes") Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Glauber Costa <glauber@scylladb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200429222356.4322-1-cai@lca.pwSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Dongli Zhang authored
[ Upstream commit 52f23478 ] The slub_debug is able to fix the corrupted slab freelist/page. However, alloc_debug_processing() only checks the validity of current and next freepointer during allocation path. As a result, once some objects have their freepointers corrupted, deactivate_slab() may lead to page fault. Below is from a test kernel module when 'slub_debug=PUF,kmalloc-128 slub_nomerge'. The test kernel corrupts the freepointer of one free object on purpose. Unfortunately, deactivate_slab() does not detect it when iterating the freechain. BUG: unable to handle page fault for address: 00000000123456f8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI ... ... RIP: 0010:deactivate_slab.isra.92+0xed/0x490 ... ... Call Trace: ___slab_alloc+0x536/0x570 __slab_alloc+0x17/0x30 __kmalloc+0x1d9/0x200 ext4_htree_store_dirent+0x30/0xf0 htree_dirblock_to_tree+0xcb/0x1c0 ext4_htree_fill_tree+0x1bc/0x2d0 ext4_readdir+0x54f/0x920 iterate_dir+0x88/0x190 __x64_sys_getdents+0xa6/0x140 do_syscall_64+0x49/0x170 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Therefore, this patch adds extra consistency check in deactivate_slab(). Once an object's freepointer is corrupted, all following objects starting at this object are isolated. [akpm@linux-foundation.org: fix build with CONFIG_SLAB_DEBUG=n] Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joe Jin <joe.jin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200331031450.12182-1-dongli.zhang@oracle.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Tuomas Tynkkynen authored
[ Upstream commit b835a71e ] Syzbot reports an use-after-free in workqueue context: BUG: KASAN: use-after-free in mutex_unlock+0x19/0x40 kernel/locking/mutex.c:737 mutex_unlock+0x19/0x40 kernel/locking/mutex.c:737 __smsc95xx_mdio_read drivers/net/usb/smsc95xx.c:217 [inline] smsc95xx_mdio_read+0x583/0x870 drivers/net/usb/smsc95xx.c:278 check_carrier+0xd1/0x2e0 drivers/net/usb/smsc95xx.c:644 process_one_work+0x777/0xf90 kernel/workqueue.c:2274 worker_thread+0xa8f/0x1430 kernel/workqueue.c:2420 kthread+0x2df/0x300 kernel/kthread.c:255 It looks like that smsc95xx_unbind() is freeing the structures that are still in use by the concurrently running workqueue callback. Thus switch to using cancel_delayed_work_sync() to ensure the work callback really is no longer active. Reported-by: syzbot+29dc7d4ae19b703ff947@syzkaller.appspotmail.com Signed-off-by: Tuomas Tynkkynen <tuomas.tynkkynen@iki.fi> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Borislav Petkov authored
[ Upstream commit ee470bb2 ] Commit: da92110d ("EDAC, amd64_edac: Extend scrub rate support to F15hM60h") added support for F15h, model 0x60 CPUs but in doing so, missed to read back SCRCTRL PCI config register on F15h CPUs which are *not* model 0x60. Add that read so that doing $ cat /sys/devices/system/edac/mc/mc0/sdram_scrub_rate can show the previously set DRAM scrub rate. Fixes: da92110d ("EDAC, amd64_edac: Extend scrub rate support to F15hM60h") Reported-by: Anders Andersson <pipatron@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> #v4.4.. Link: https://lkml.kernel.org/r/CAKkunMbNWppx_i6xSdDHLseA2QQmGJqj_crY=NF-GZML5np4Vw@mail.gmail.comSigned-off-by: Sasha Levin <sashal@kernel.org>
-
Hugh Dickins authored
[ Upstream commit 243bce09 ] Chris Murphy reports that a slightly overcommitted load, testing swap and zram along with i915, splats and keeps on splatting, when it had better fail less noisily: gnome-shell: page allocation failure: order:0, mode:0x400d0(__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_RECLAIMABLE), nodemask=(null),cpuset=/,mems_allowed=0 CPU: 2 PID: 1155 Comm: gnome-shell Not tainted 5.7.0-1.fc33.x86_64 #1 Call Trace: dump_stack+0x64/0x88 warn_alloc.cold+0x75/0xd9 __alloc_pages_slowpath.constprop.0+0xcfa/0xd30 __alloc_pages_nodemask+0x2df/0x320 alloc_slab_page+0x195/0x310 allocate_slab+0x3c5/0x440 ___slab_alloc+0x40c/0x5f0 __slab_alloc+0x1c/0x30 kmem_cache_alloc+0x20e/0x220 xas_nomem+0x28/0x70 add_to_swap_cache+0x321/0x400 __read_swap_cache_async+0x105/0x240 swap_cluster_readahead+0x22c/0x2e0 shmem_swapin+0x8e/0xc0 shmem_swapin_page+0x196/0x740 shmem_getpage_gfp+0x3a2/0xa60 shmem_read_mapping_page_gfp+0x32/0x60 shmem_get_pages+0x155/0x5e0 [i915] __i915_gem_object_get_pages+0x68/0xa0 [i915] i915_vma_pin+0x3fe/0x6c0 [i915] eb_add_vma+0x10b/0x2c0 [i915] i915_gem_do_execbuffer+0x704/0x3430 [i915] i915_gem_execbuffer2_ioctl+0x1ea/0x3e0 [i915] drm_ioctl_kernel+0x86/0xd0 [drm] drm_ioctl+0x206/0x390 [drm] ksys_ioctl+0x82/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5b/0xf0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported on 5.7, but it goes back really to 3.1: when shmem_read_mapping_page_gfp() was implemented for use by i915, and allowed for __GFP_NORETRY and __GFP_NOWARN flags in most places, but missed swapin's "& GFP_KERNEL" mask for page tree node allocation in __read_swap_cache_async() - that was to mask off HIGHUSER_MOVABLE bits from what page cache uses, but GFP_RECLAIM_MASK is now what's needed. Link: https://bugzilla.kernel.org/show_bug.cgi?id=208085 Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2006151330070.11064@eggly.anvils Fixes: 68da9f05 ("tmpfs: pass gfp to shmem_getpage_gfp") Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reported-by: Chris Murphy <lists@colorremedies.com> Analyzed-by: Vlastimil Babka <vbabka@suse.cz> Analyzed-by: Matthew Wilcox <willy@infradead.org> Tested-by: Chris Murphy <lists@colorremedies.com> Cc: <stable@vger.kernel.org> [3.1+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Filipe Manana authored
[ Upstream commit 432cd2a1 ] When running relocation of a data block group while scrub is running in parallel, it is possible that the relocation will fail and abort the current transaction with an -EINVAL error: [134243.988595] BTRFS info (device sdc): found 14 extents, stage: move data extents [134243.999871] ------------[ cut here ]------------ [134244.000741] BTRFS: Transaction aborted (error -22) [134244.001692] WARNING: CPU: 0 PID: 26954 at fs/btrfs/ctree.c:1071 __btrfs_cow_block+0x6a7/0x790 [btrfs] [134244.003380] Modules linked in: btrfs blake2b_generic xor raid6_pq (...) [134244.012577] CPU: 0 PID: 26954 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #5 [134244.014162] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [134244.016184] RIP: 0010:__btrfs_cow_block+0x6a7/0x790 [btrfs] [134244.017151] Code: 48 c7 c7 (...) [134244.020549] RSP: 0018:ffffa41607863888 EFLAGS: 00010286 [134244.021515] RAX: 0000000000000000 RBX: ffff9614bdfe09c8 RCX: 0000000000000000 [134244.022822] RDX: 0000000000000001 RSI: ffffffffb3d63980 RDI: 0000000000000001 [134244.024124] RBP: ffff961589e8c000 R08: 0000000000000000 R09: 0000000000000001 [134244.025424] R10: ffffffffc0ae5955 R11: 0000000000000000 R12: ffff9614bd530d08 [134244.026725] R13: ffff9614ced41b88 R14: ffff9614bdfe2a48 R15: 0000000000000000 [134244.028024] FS: 00007f29b63c08c0(0000) GS:ffff9615ba600000(0000) knlGS:0000000000000000 [134244.029491] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [134244.030560] CR2: 00007f4eb339b000 CR3: 0000000130d6e006 CR4: 00000000003606f0 [134244.031997] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [134244.033153] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [134244.034484] Call Trace: [134244.034984] btrfs_cow_block+0x12b/0x2b0 [btrfs] [134244.035859] do_relocation+0x30b/0x790 [btrfs] [134244.036681] ? do_raw_spin_unlock+0x49/0xc0 [134244.037460] ? _raw_spin_unlock+0x29/0x40 [134244.038235] relocate_tree_blocks+0x37b/0x730 [btrfs] [134244.039245] relocate_block_group+0x388/0x770 [btrfs] [134244.040228] btrfs_relocate_block_group+0x161/0x2e0 [btrfs] [134244.041323] btrfs_relocate_chunk+0x36/0x110 [btrfs] [134244.041345] btrfs_balance+0xc06/0x1860 [btrfs] [134244.043382] ? btrfs_ioctl_balance+0x27c/0x310 [btrfs] [134244.045586] btrfs_ioctl_balance+0x1ed/0x310 [btrfs] [134244.045611] btrfs_ioctl+0x1880/0x3760 [btrfs] [134244.049043] ? do_raw_spin_unlock+0x49/0xc0 [134244.049838] ? _raw_spin_unlock+0x29/0x40 [134244.050587] ? __handle_mm_fault+0x11b3/0x14b0 [134244.051417] ? ksys_ioctl+0x92/0xb0 [134244.052070] ksys_ioctl+0x92/0xb0 [134244.052701] ? trace_hardirqs_off_thunk+0x1a/0x1c [134244.053511] __x64_sys_ioctl+0x16/0x20 [134244.054206] do_syscall_64+0x5c/0x280 [134244.054891] entry_SYSCALL_64_after_hwframe+0x49/0xbe [134244.055819] RIP: 0033:0x7f29b51c9dd7 [134244.056491] Code: 00 00 00 (...) [134244.059767] RSP: 002b:00007ffcccc1dd08 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [134244.061168] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f29b51c9dd7 [134244.062474] RDX: 00007ffcccc1dda0 RSI: 00000000c4009420 RDI: 0000000000000003 [134244.063771] RBP: 0000000000000003 R08: 00005565cea4b000 R09: 0000000000000000 [134244.065032] R10: 0000000000000541 R11: 0000000000000202 R12: 00007ffcccc2060a [134244.066327] R13: 00007ffcccc1dda0 R14: 0000000000000002 R15: 00007ffcccc1dec0 [134244.067626] irq event stamp: 0 [134244.068202] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [134244.069351] hardirqs last disabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020 [134244.070909] softirqs last enabled at (0): [<ffffffffb2abdedf>] copy_process+0x74f/0x2020 [134244.072392] softirqs last disabled at (0): [<0000000000000000>] 0x0 [134244.073432] ---[ end trace bd7c03622e0b0a99 ]--- The -EINVAL error comes from the following chain of function calls: __btrfs_cow_block() <-- aborts the transaction btrfs_reloc_cow_block() replace_file_extents() get_new_location() <-- returns -EINVAL When relocating a data block group, for each allocated extent of the block group, we preallocate another extent (at prealloc_file_extent_cluster()), associated with the data relocation inode, and then dirty all its pages. These preallocated extents have, and must have, the same size that extents from the data block group being relocated have. Later before we start the relocation stage that updates pointers (bytenr field of file extent items) to point to the the new extents, we trigger writeback for the data relocation inode. The expectation is that writeback will write the pages to the previously preallocated extents, that it follows the NOCOW path. That is generally the case, however, if a scrub is running it may have turned the block group that contains those extents into RO mode, in which case writeback falls back to the COW path. However in the COW path instead of allocating exactly one extent with the expected size, the allocator may end up allocating several smaller extents due to free space fragmentation - because we tell it at cow_file_range() that the minimum allocation size can match the filesystem's sector size. This later breaks the relocation's expectation that an extent associated to a file extent item in the data relocation inode has the same size as the respective extent pointed by a file extent item in another tree - in this case the extent to which the relocation inode poins to is smaller, causing relocation.c:get_new_location() to return -EINVAL. For example, if we are relocating a data block group X that has a logical address of X and the block group has an extent allocated at the logical address X + 128KiB with a size of 64KiB: 1) At prealloc_file_extent_cluster() we allocate an extent for the data relocation inode with a size of 64KiB and associate it to the file offset 128KiB (X + 128KiB - X) of the data relocation inode. This preallocated extent was allocated at block group Z; 2) A scrub running in parallel turns block group Z into RO mode and starts scrubing its extents; 3) Relocation triggers writeback for the data relocation inode; 4) When running delalloc (btrfs_run_delalloc_range()), we try first the NOCOW path because the data relocation inode has BTRFS_INODE_PREALLOC set in its flags. However, because block group Z is in RO mode, the NOCOW path (run_delalloc_nocow()) falls back into the COW path, by calling cow_file_range(); 5) At cow_file_range(), in the first iteration of the while loop we call btrfs_reserve_extent() to allocate a 64KiB extent and pass it a minimum allocation size of 4KiB (fs_info->sectorsize). Due to free space fragmentation, btrfs_reserve_extent() ends up allocating two extents of 32KiB each, each one on a different iteration of that while loop; 6) Writeback of the data relocation inode completes; 7) Relocation proceeds and ends up at relocation.c:replace_file_extents(), with a leaf which has a file extent item that points to the data extent from block group X, that has a logical address (bytenr) of X + 128KiB and a size of 64KiB. Then it calls get_new_location(), which does a lookup in the data relocation tree for a file extent item starting at offset 128KiB (X + 128KiB - X) and belonging to the data relocation inode. It finds a corresponding file extent item, however that item points to an extent that has a size of 32KiB, which doesn't match the expected size of 64KiB, resuling in -EINVAL being returned from this function and propagated up to __btrfs_cow_block(), which aborts the current transaction. To fix this make sure that at cow_file_range() when we call the allocator we pass it a minimum allocation size corresponding the desired extent size if the inode belongs to the data relocation tree, otherwise pass it the filesystem's sector size as the minimum allocation size. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Anand Jain authored
[ Upstream commit 3752d22f ] This patch deletes local variable disk_num_bytes as its value is same as num_bytes in the function cow_file_range(). Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Filipe Manana authored
[ Upstream commit 9fecd132 ] When removing a block group, if we fail to delete the block group's item from the extent tree, we jump to the 'out' label and end up decrementing the block group's reference count once only (by 1), resulting in a counter leak because the block group at that point was already removed from the block group cache rbtree - so we have to decrement the reference count twice, once for the rbtree and once for our lookup at the start of the function. There is a second bug where if removing the free space tree entries (the call to remove_block_group_free_space()) fails we end up jumping to the 'out_put_group' label but end up decrementing the reference count only once, when we should have done it twice, since we have already removed the block group from the block group cache rbtree. This happens because the reference count decrement for the rbtree reference happens after attempting to remove the free space tree entries, which is far away from the place where we remove the block group from the rbtree. To make things less error prone, decrement the reference count for the rbtree immediately after removing the block group from it. This also eleminates the need for two different exit labels on error, renaming 'out_put_label' to just 'out' and removing the old 'out'. Fixes: f6033c5e ("btrfs: fix block group leak when removing fails") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
- 30 Jun, 2020 27 commits
-
-
Sasha Levin authored
Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Greg Kroah-Hartman authored
commit cf9c9445 upstream. This reverts commit e2bd1dcb. In discussion on the mailing list, it has been determined that this is not the correct type of fix for this issue. Revert it so that we can do this correctly. Reported-by: Jiri Slaby <jslaby@suse.cz> Reported-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lore.kernel.org/r/20200428032601.22127-1-rananta@codeaurora.org Cc: Raghavendra Rao Ananta <rananta@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Zheng Bin authored
[ Upstream commit d0c7feaf ] We recently used fuzz(hydra) to test XFS and automatically generate tmp.img(XFS v5 format, but some metadata is wrong) xfs_repair information(just one AG): agf_freeblks 0, counted 3224 in ag 0 agf_longest 536874136, counted 3224 in ag 0 sb_fdblocks 613, counted 3228 Test as follows: mount tmp.img tmpdir cp file1M tmpdir sync In 4.19-stable, sync will stuck, the reason is: xfs_mountfs xfs_check_summary_counts if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) return 0; -->just return, incore sb_fdblocks still be 613 xfs_initialize_perag_data cp file1M tmpdir -->ok(write file to pagecache) sync -->stuck(write pagecache to disk) xfs_map_blocks xfs_iomap_write_allocate while (count_fsb != 0) { nimaps = 0; while (nimaps == 0) { --> endless loop nimaps = 1; xfs_bmapi_write(..., &nimaps) --> nimaps becomes 0 again xfs_bmapi_write xfs_bmap_alloc xfs_bmap_btalloc xfs_alloc_vextent xfs_alloc_fix_freelist xfs_alloc_space_available -->fail(agf_freeblks is 0) In linux-next, sync not stuck, cause commit c2b31643 ("xfs: use the latest extent at writeback delalloc conversion time") remove the above while, dmesg is as follows: [ 55.250114] XFS (loop0): page discard on page ffffea0008bc7380, inode 0x1b0c, offset 0. Users do not know why this page is discard, the better soultion is: 1. Like xfs_repair, make sure sb_fdblocks is equal to counted (xfs_initialize_perag_data did this, who is not called at this mount) 2. Add agf verify, if fail, will tell users to repair This patch use the second soultion. Signed-off-by: Zheng Bin <zhengbin13@huawei.com> Signed-off-by: Ren Xudong <renxudong1@huawei.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Olga Kornievskaia authored
commit d03727b2 upstream. Figuring out the root case for the REMOVE/CLOSE race and suggesting the solution was done by Neil Brown. Currently what happens is that direct IO calls hold a reference on the open context which is decremented as an asynchronous task in the nfs_direct_complete(). Before reference is decremented, control is returned to the application which is free to close the file. When close is being processed, it decrements its reference on the open_context but since directIO still holds one, it doesn't sent a close on the wire. It returns control to the application which is free to do other operations. For instance, it can delete a file. Direct IO is finally releasing its reference and triggering an asynchronous close. Which races with the REMOVE. On the server, REMOVE can be processed before the CLOSE, failing the REMOVE with EACCES as the file is still opened. Signed-off-by: Olga Kornievskaia <kolga@netapp.com> Suggested-by: Neil Brown <neilb@suse.com> CC: stable@vger.kernel.org Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Trond Myklebust authored
commit 8b040137 upstream. If the mirror count changes in the new layout we pick up inside ff_layout_pg_init_write(), then we can end up adding the request to the wrong mirror and corrupting the mirror->pg_list. Fixes: d600ad1f ("NFS41: pop some layoutget errors to application") Cc: stable@vger.kernel.org Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Chuck Lever authored
commit 89a3c9f5 upstream. @subbuf is an output parameter of xdr_buf_subsegment(). A survey of call sites shows that @subbuf is always uninitialized before xdr_buf_segment() is invoked by callers. There are some execution paths through xdr_buf_subsegment() that do not set all of the fields in @subbuf, leaving some pointer fields containing garbage addresses. Subsequent processing of that buffer then results in a page fault. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vasily Averin authored
commit b7ade381 upstream. __rpc_depopulate(gssd_dentry) was lost on error path cc: stable@vger.kernel.org Fixes: commit 4b9a445e ("sunrpc: create a new dummy pipe for gssd to hold open") Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Denis Efremov authored
commit 35f760b4 upstream. clk_s is checked twice in a row in ni_init_smc_spll_table(). fb_div should be checked instead. Fixes: 69e0b57a ("drm/radeon/kms: add dpm support for cayman (v5)") Cc: stable@vger.kernel.org Signed-off-by: Denis Efremov <efremov@linux.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Masami Hiramatsu authored
commit 6784bead upstream. Fix the event trigger to accept redundant spaces in the trigger input. For example, these return -EINVAL echo " traceon" > events/ftrace/print/trigger echo "traceon if common_pid == 0" > events/ftrace/print/trigger echo "disable_event:kmem:kmalloc " > events/ftrace/print/trigger But these are hard to find what is wrong. To fix this issue, use skip_spaces() to remove spaces in front of actual tokens, and set NULL if there is no token. Link: http://lkml.kernel.org/r/159262476352.185015.5261566783045364186.stgit@devnote2 Cc: Tom Zanussi <zanussi@kernel.org> Cc: stable@vger.kernel.org Fixes: 85f2b082 ("tracing: Add basic event trigger framework") Reviewed-by: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jiping Ma authored
commit 8dfe804a upstream. A 32-bit perf querying the registers of a compat task using REGS_ABI_32 will receive zeroes from w15, when it expects to find the PC. Return the PC value for register dwarf register 15 when returning register values for a compat task to perf. Cc: <stable@vger.kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Jiping Ma <jiping.ma2@windriver.com> Link: https://lore.kernel.org/r/1589165527-188401-1-git-send-email-jiping.ma2@windriver.com [will: Shuffled code and added a comment] Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Junxiao Bi authored
commit e5a15e17 upstream. The following kernel panic was captured when running nfs server over ocfs2, at that time ocfs2_test_inode_bit() was checking whether one inode locating at "blkno" 5 was valid, that is ocfs2 root inode, its "suballoc_slot" was OCFS2_INVALID_SLOT(65535) and it was allocted from //global_inode_alloc, but here it wrongly assumed that it was got from per slot inode alloctor which would cause array overflow and trigger kernel panic. BUG: unable to handle kernel paging request at 0000000000001088 IP: [<ffffffff816f6898>] _raw_spin_lock+0x18/0xf0 PGD 1e06ba067 PUD 1e9e7d067 PMD 0 Oops: 0002 [#1] SMP CPU: 6 PID: 24873 Comm: nfsd Not tainted 4.1.12-124.36.1.el6uek.x86_64 #2 Hardware name: Huawei CH121 V3/IT11SGCA1, BIOS 3.87 02/02/2018 RIP: _raw_spin_lock+0x18/0xf0 RSP: e02b:ffff88005ae97908 EFLAGS: 00010206 RAX: ffff88005ae98000 RBX: 0000000000001088 RCX: 0000000000000000 RDX: 0000000000020000 RSI: 0000000000000009 RDI: 0000000000001088 RBP: ffff88005ae97928 R08: 0000000000000000 R09: ffff880212878e00 R10: 0000000000007ff0 R11: 0000000000000000 R12: 0000000000001088 R13: ffff8800063c0aa8 R14: ffff8800650c27d0 R15: 000000000000ffff FS: 0000000000000000(0000) GS:ffff880218180000(0000) knlGS:ffff880218180000 CS: e033 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001088 CR3: 00000002033d0000 CR4: 0000000000042660 Call Trace: igrab+0x1e/0x60 ocfs2_get_system_file_inode+0x63/0x3a0 [ocfs2] ocfs2_test_inode_bit+0x328/0xa00 [ocfs2] ocfs2_get_parent+0xba/0x3e0 [ocfs2] reconnect_path+0xb5/0x300 exportfs_decode_fh+0xf6/0x2b0 fh_verify+0x350/0x660 [nfsd] nfsd4_putfh+0x4d/0x60 [nfsd] nfsd4_proc_compound+0x3d3/0x6f0 [nfsd] nfsd_dispatch+0xe0/0x290 [nfsd] svc_process_common+0x412/0x6a0 [sunrpc] svc_process+0x123/0x210 [sunrpc] nfsd+0xff/0x170 [nfsd] kthread+0xcb/0xf0 ret_from_fork+0x61/0x90 Code: 83 c2 02 0f b7 f2 e8 18 dc 91 ff 66 90 eb bf 0f 1f 40 00 55 48 89 e5 41 56 41 55 41 54 53 0f 1f 44 00 00 48 89 fb ba 00 00 02 00 <f0> 0f c1 17 89 d0 45 31 e4 45 31 ed c1 e8 10 66 39 d0 41 89 c6 RIP _raw_spin_lock+0x18/0xf0 CR2: 0000000000001088 ---[ end trace 7264463cd1aac8f9 ]--- Kernel panic - not syncing: Fatal exception Link: http://lkml.kernel.org/r/20200616183829.87211-4-junxiao.bi@oracle.comSigned-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jun Piao <piaojun@huawei.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Junxiao Bi authored
commit 9277f833 upstream. In the ocfs2 disk layout, slot number is 16 bits, but in ocfs2 implementation, slot number is 32 bits. Usually this will not cause any issue, because slot number is converted from u16 to u32, but OCFS2_INVALID_SLOT was defined as -1, when an invalid slot number from disk was obtained, its value was (u16)-1, and it was converted to u32. Then the following checking in get_local_system_inode will be always skipped: static struct inode **get_local_system_inode(struct ocfs2_super *osb, int type, u32 slot) { BUG_ON(slot == OCFS2_INVALID_SLOT); ... } Link: http://lkml.kernel.org/r/20200616183829.87211-5-junxiao.bi@oracle.comSigned-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Jun Piao <piaojun@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Junxiao Bi authored
commit 7569d3c7 upstream. Set global_inode_alloc as OCFS2_FIRST_ONLINE_SYSTEM_INODE, that will make it load during mount. It can be used to test whether some global/system inodes are valid. One use case is that nfsd will test whether root inode is valid. Link: http://lkml.kernel.org/r/20200616183829.87211-3-junxiao.bi@oracle.comSigned-off-by: Junxiao Bi <junxiao.bi@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Jun Piao <piaojun@huawei.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Waiman Long authored
commit 8982ae52 upstream. The kzfree() function is normally used to clear some sensitive information, like encryption keys, in the buffer before freeing it back to the pool. Memset() is currently used for buffer clearing. However unlikely, there is still a non-zero probability that the compiler may choose to optimize away the memory clearing especially if LTO is being used in the future. To make sure that this optimization will never happen, memzero_explicit(), which is introduced in v3.18, is now used in kzfree() to future-proof it. Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com Fixes: 3ef0e5ba ("slab: introduce kzfree()") Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Howells <dhowells@redhat.com> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Xiaoyao Li authored
commit bf10bd0b upstream. Only MSR address range 0x800 through 0x8ff is architecturally reserved and dedicated for accessing APIC registers in x2APIC mode. Fixes: 0105d1a5 ("KVM: x2apic interface to lapic") Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20200616073307.16440-1-xiaoyao.li@intel.com> Cc: stable@vger.kernel.org Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nathan Chancellor authored
commit e6d701dc upstream. When running a kernel with Clang's Control Flow Integrity implemented, there is a violation that happens when accessing /sys/firmware/acpi/pm_profile: $ cat /sys/firmware/acpi/pm_profile 0 $ dmesg ... [ 17.352564] ------------[ cut here ]------------ [ 17.352568] CFI failure (target: acpi_show_profile+0x0/0x8): [ 17.352572] WARNING: CPU: 3 PID: 497 at kernel/cfi.c:29 __cfi_check_fail+0x33/0x40 [ 17.352573] Modules linked in: [ 17.352575] CPU: 3 PID: 497 Comm: cat Tainted: G W 5.7.0-microsoft-standard+ #1 [ 17.352576] RIP: 0010:__cfi_check_fail+0x33/0x40 [ 17.352577] Code: 48 c7 c7 50 b3 85 84 48 c7 c6 50 0a 4e 84 e8 a4 d8 60 00 85 c0 75 02 5b c3 48 c7 c7 dc 5e 49 84 48 89 de 31 c0 e8 7d 06 eb ff <0f> 0b 5b c3 00 00 cc cc 00 00 cc cc 00 85 f6 74 25 41 b9 ea ff ff [ 17.352577] RSP: 0018:ffffaa6dc3c53d30 EFLAGS: 00010246 [ 17.352578] RAX: 331267e0c06cee00 RBX: ffffffff83d85890 RCX: ffffffff8483a6f8 [ 17.352579] RDX: ffff9cceabbb37c0 RSI: 0000000000000082 RDI: ffffffff84bb9e1c [ 17.352579] RBP: ffffffff845b2bc8 R08: 0000000000000001 R09: ffff9cceabbba200 [ 17.352579] R10: 000000000000019d R11: 0000000000000000 R12: ffff9cc947766f00 [ 17.352580] R13: ffffffff83d6bd50 R14: ffff9ccc6fa80000 R15: ffffffff845bd328 [ 17.352582] FS: 00007fdbc8d13580(0000) GS:ffff9cce91ac0000(0000) knlGS:0000000000000000 [ 17.352582] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 17.352583] CR2: 00007fdbc858e000 CR3: 00000005174d0000 CR4: 0000000000340ea0 [ 17.352584] Call Trace: [ 17.352586] ? rev_id_show+0x8/0x8 [ 17.352587] ? __cfi_check+0x45bac/0x4b640 [ 17.352589] ? kobj_attr_show+0x73/0x80 [ 17.352590] ? sysfs_kf_seq_show+0xc1/0x140 [ 17.352592] ? ext4_seq_options_show.cfi_jt+0x8/0x8 [ 17.352593] ? seq_read+0x180/0x600 [ 17.352595] ? sysfs_create_file_ns.cfi_jt+0x10/0x10 [ 17.352596] ? tlbflush_read_file+0x8/0x8 [ 17.352597] ? __vfs_read+0x6b/0x220 [ 17.352598] ? handle_mm_fault+0xa23/0x11b0 [ 17.352599] ? vfs_read+0xa2/0x130 [ 17.352599] ? ksys_read+0x6a/0xd0 [ 17.352601] ? __do_sys_getpgrp+0x8/0x8 [ 17.352602] ? do_syscall_64+0x72/0x120 [ 17.352603] ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 17.352604] ---[ end trace 7b1fa81dc897e419 ]--- When /sys/firmware/acpi/pm_profile is read, sysfs_kf_seq_show is called, which in turn calls kobj_attr_show, which gets the ->show callback member by calling container_of on attr (casting it to struct kobj_attribute) then calls it. There is a CFI violation because pm_profile_attr is of type struct device_attribute but kobj_attr_show calls ->show expecting it to be from struct kobj_attribute. CFI checking ensures that function pointer types match when doing indirect calls. Fix pm_profile_attr to be defined in terms of kobj_attribute so there is no violation or mismatch. Fixes: 362b6460 ("ACPI: Export FADT pm_profile integer value to userspace") Link: https://github.com/ClangBuiltLinux/linux/issues/1051Reported-by: yuu ichii <byahu140@heisei.be> Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Cc: 3.10+ <stable@vger.kernel.org> # 3.10+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Aaron Plattner authored
commit adb36a82 upstream. These IDs are for upcoming NVIDIA chips with audio functions that are largely similar to the existing ones. Signed-off-by: Aaron Plattner <aplattner@nvidia.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20200611180845.39942-1-aplattner@nvidia.comSigned-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Luis Chamberlain authored
[ Upstream commit 1b0b2836 ] We use one blktrace per request_queue, that means one per the entire disk. So we cannot run one blktrace on say /dev/vda and then /dev/vda1, or just two calls on /dev/vda. We check for concurrent setup only at the very end of the blktrace setup though. If we try to run two concurrent blktraces on the same block device the second one will fail, and the first one seems to go on. However when one tries to kill the first one one will see things like this: The kernel will show these: ``` debugfs: File 'dropped' in directory 'nvme1n1' already present! debugfs: File 'msg' in directory 'nvme1n1' already present! debugfs: File 'trace0' in directory 'nvme1n1' already present! `` And userspace just sees this error message for the second call: ``` blktrace /dev/nvme1n1 BLKTRACESETUP(2) /dev/nvme1n1 failed: 5/Input/output error ``` The first userspace process #1 will also claim that the files were taken underneath their nose as well. The files are taken away form the first process given that when the second blktrace fails, it will follow up with a BLKTRACESTOP and BLKTRACETEARDOWN. This means that even if go-happy process #1 is waiting for blktrace data, we *have* been asked to take teardown the blktrace. This can easily be reproduced with break-blktrace [0] run_0005.sh test. Just break out early if we know we're already going to fail, this will prevent trying to create the files all over again, which we know still exist. [0] https://github.com/mcgrof/break-blktraceSigned-off-by: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Masahiro Yamada authored
[ Upstream commit f2f02ebd ] When cc-option and friends evaluate compiler flags, the temporary file $$TMP is created as an output object, and automatically cleaned up. The actual file path of $$TMP is .<pid>.tmp, here <pid> is the process ID of $(shell ...) invoked from cc-option. (Please note $$$$ is the escape sequence of $$). Such garbage files are cleaned up in most cases, but some compiler flags create additional output files. For example, -gsplit-dwarf creates a .dwo file. When CONFIG_DEBUG_INFO_SPLIT=y, you will see a bunch of .<pid>.dwo files left in the top of build directories. You may not notice them unless you do 'ls -a', but the garbage files will increase every time you run 'make'. This commit changes the temporary object path to .tmp_<pid>/tmp, and removes .tmp_<pid> directory when exiting. Separate build artifacts such as *.dwo will be cleaned up all together because their file paths are usually determined based on the base name of the object. Another example is -ftest-coverage, which outputs the coverage data into <base-name-of-object>.gcno Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Sven Schnelle authored
[ Upstream commit 873e5a76 ] When strace wants to update the syscall number, it sets GPR2 to the desired number and updates the GPR via PTRACE_SETREGSET. It doesn't update regs->int_code which would cause the old syscall executed on syscall restart. As we cannot change the ptrace ABI and don't have a field for the interruption code, check whether the tracee is in a syscall and the last instruction was svc. In that case assume that the tracer wants to update the syscall number and copy the GPR2 value to regs->int_code. Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Zekun Shen authored
[ Upstream commit e89df5c4 ] There is a race condition exist during termination. The path is alx_stop and then alx_remove. An alx_schedule_link_check could be called before alx_stop by interrupt handler and invoke alx_link_check later. Alx_stop frees the napis, and alx_remove cancels any pending works. If any of the work is scheduled before termination and invoked before alx_remove, a null-ptr-deref occurs because both expect alx->napis[i]. This patch fix the race condition by moving cancel_work_sync functions before alx_free_napis inside alx_stop. Because interrupt handler can call alx_schedule_link_check again, alx_free_irq is moved before cancel_work_sync calls too. Signed-off-by: Zekun Shen <bruceshenzk@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Ye Bin authored
[ Upstream commit f650ef61 ] BUG: KASAN: use-after-free in ata_scsi_mode_select_xlat+0x10bd/0x10f0 drivers/ata/libata-scsi.c:4045 Read of size 1 at addr ffff88803b8cd003 by task syz-executor.6/12621 CPU: 1 PID: 12621 Comm: syz-executor.6 Not tainted 4.19.95 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0xac/0xee lib/dump_stack.c:118 print_address_description+0x60/0x223 mm/kasan/report.c:253 kasan_report_error mm/kasan/report.c:351 [inline] kasan_report mm/kasan/report.c:409 [inline] kasan_report.cold+0xae/0x2d8 mm/kasan/report.c:393 ata_scsi_mode_select_xlat+0x10bd/0x10f0 drivers/ata/libata-scsi.c:4045 ata_scsi_translate+0x2da/0x680 drivers/ata/libata-scsi.c:2035 __ata_scsi_queuecmd drivers/ata/libata-scsi.c:4360 [inline] ata_scsi_queuecmd+0x2e4/0x790 drivers/ata/libata-scsi.c:4409 scsi_dispatch_cmd+0x2ee/0x6c0 drivers/scsi/scsi_lib.c:1867 scsi_queue_rq+0xfd7/0x1990 drivers/scsi/scsi_lib.c:2170 blk_mq_dispatch_rq_list+0x1e1/0x19a0 block/blk-mq.c:1186 blk_mq_do_dispatch_sched+0x147/0x3d0 block/blk-mq-sched.c:108 blk_mq_sched_dispatch_requests+0x427/0x680 block/blk-mq-sched.c:204 __blk_mq_run_hw_queue+0xbc/0x200 block/blk-mq.c:1308 __blk_mq_delay_run_hw_queue+0x3c0/0x460 block/blk-mq.c:1376 blk_mq_run_hw_queue+0x152/0x310 block/blk-mq.c:1413 blk_mq_sched_insert_request+0x337/0x6c0 block/blk-mq-sched.c:397 blk_execute_rq_nowait+0x124/0x320 block/blk-exec.c:64 blk_execute_rq+0xc5/0x112 block/blk-exec.c:101 sg_scsi_ioctl+0x3b0/0x6a0 block/scsi_ioctl.c:507 sg_ioctl+0xd37/0x23f0 drivers/scsi/sg.c:1106 vfs_ioctl fs/ioctl.c:46 [inline] file_ioctl fs/ioctl.c:501 [inline] do_vfs_ioctl+0xae6/0x1030 fs/ioctl.c:688 ksys_ioctl+0x76/0xa0 fs/ioctl.c:705 __do_sys_ioctl fs/ioctl.c:712 [inline] __se_sys_ioctl fs/ioctl.c:710 [inline] __x64_sys_ioctl+0x6f/0xb0 fs/ioctl.c:710 do_syscall_64+0xa0/0x2e0 arch/x86/entry/common.c:293 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45c479 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fb0e9602c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fb0e96036d4 RCX: 000000000045c479 RDX: 0000000020000040 RSI: 0000000000000001 RDI: 0000000000000003 RBP: 000000000076bfc0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 000000000000046d R14: 00000000004c6e1a R15: 000000000076bfcc Allocated by task 12577: set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc mm/kasan/kasan.c:553 [inline] kasan_kmalloc+0xbf/0xe0 mm/kasan/kasan.c:531 __kmalloc+0xf3/0x1e0 mm/slub.c:3749 kmalloc include/linux/slab.h:520 [inline] load_elf_phdrs+0x118/0x1b0 fs/binfmt_elf.c:441 load_elf_binary+0x2de/0x4610 fs/binfmt_elf.c:737 search_binary_handler fs/exec.c:1654 [inline] search_binary_handler+0x15c/0x4e0 fs/exec.c:1632 exec_binprm fs/exec.c:1696 [inline] __do_execve_file.isra.0+0xf52/0x1a90 fs/exec.c:1820 do_execveat_common fs/exec.c:1866 [inline] do_execve fs/exec.c:1883 [inline] __do_sys_execve fs/exec.c:1964 [inline] __se_sys_execve fs/exec.c:1959 [inline] __x64_sys_execve+0x8a/0xb0 fs/exec.c:1959 do_syscall_64+0xa0/0x2e0 arch/x86/entry/common.c:293 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 12577: set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x129/0x170 mm/kasan/kasan.c:521 slab_free_hook mm/slub.c:1370 [inline] slab_free_freelist_hook mm/slub.c:1397 [inline] slab_free mm/slub.c:2952 [inline] kfree+0x8b/0x1a0 mm/slub.c:3904 load_elf_binary+0x1be7/0x4610 fs/binfmt_elf.c:1118 search_binary_handler fs/exec.c:1654 [inline] search_binary_handler+0x15c/0x4e0 fs/exec.c:1632 exec_binprm fs/exec.c:1696 [inline] __do_execve_file.isra.0+0xf52/0x1a90 fs/exec.c:1820 do_execveat_common fs/exec.c:1866 [inline] do_execve fs/exec.c:1883 [inline] __do_sys_execve fs/exec.c:1964 [inline] __se_sys_execve fs/exec.c:1959 [inline] __x64_sys_execve+0x8a/0xb0 fs/exec.c:1959 do_syscall_64+0xa0/0x2e0 arch/x86/entry/common.c:293 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff88803b8ccf00 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 259 bytes inside of 512-byte region [ffff88803b8ccf00, ffff88803b8cd100) The buggy address belongs to the page: page:ffffea0000ee3300 count:1 mapcount:0 mapping:ffff88806cc03080 index:0xffff88803b8cc780 compound_mapcount: 0 flags: 0x100000000008100(slab|head) raw: 0100000000008100 ffffea0001104080 0000000200000002 ffff88806cc03080 raw: ffff88803b8cc780 00000000800c000b 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88803b8ccf00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88803b8ccf80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88803b8cd000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88803b8cd080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88803b8cd100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc You can refer to "https://www.lkml.org/lkml/2019/1/17/474" reproduce this error. The exception code is "bd_len = p[3];", "p" value is ffff88803b8cd000 which belongs to the cache kmalloc-512 of size 512. The "page_address(sg_page(scsi_sglist(scmd)))" maybe from sg_scsi_ioctl function "buffer" which allocated by kzalloc, so "buffer" may not page aligned. This also looks completely buggy on highmem systems and really needs to use a kmap_atomic. --Christoph Hellwig To address above bugs, Paolo Bonzini advise to simpler to just make a char array of size CACHE_MPAGE_LEN+8+8+4-2(or just 64 to make it easy), use sg_copy_to_buffer to copy from the sglist into the buffer, and workthere. Signed-off-by: Ye Bin <yebin10@huawei.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Juri Lelli authored
[ Upstream commit 740797ce ] syzbot reported the following warning: WARNING: CPU: 1 PID: 6351 at kernel/sched/deadline.c:628 enqueue_task_dl+0x22da/0x38a0 kernel/sched/deadline.c:1504 At deadline.c:628 we have: 623 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se) 624 { 625 struct dl_rq *dl_rq = dl_rq_of_se(dl_se); 626 struct rq *rq = rq_of_dl_rq(dl_rq); 627 628 WARN_ON(dl_se->dl_boosted); 629 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline)); [...] } Which means that setup_new_dl_entity() has been called on a task currently boosted. This shouldn't happen though, as setup_new_dl_entity() is only called when the 'dynamic' deadline of the new entity is in the past w.r.t. rq_clock and boosted tasks shouldn't verify this condition. Digging through the PI code I noticed that what above might in fact happen if an RT tasks blocks on an rt_mutex hold by a DEADLINE task. In the first branch of boosting conditions we check only if a pi_task 'dynamic' deadline is earlier than mutex holder's and in this case we set mutex holder to be dl_boosted. However, since RT 'dynamic' deadlines are only initialized if such tasks get boosted at some point (or if they become DEADLINE of course), in general RT 'dynamic' deadlines are usually equal to 0 and this verifies the aforementioned condition. Fix it by checking that the potential donor task is actually (even if temporary because in turn boosted) running at DEADLINE priority before using its 'dynamic' deadline value. Fixes: 2d3d891d ("sched/deadline: Add SCHED_DEADLINE inheritance logic") Reported-by: syzbot+119ba87189432ead09b4@syzkaller.appspotmail.com Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Tested-by: Daniel Wagner <dwagner@suse.de> Link: https://lkml.kernel.org/r/20181119153201.GB2119@localhost.localdomainSigned-off-by: Sasha Levin <sashal@kernel.org>
-
Russell King authored
[ Upstream commit 71502846 ] When using ip_set with counters and comment, traffic causes the kernel to panic on 32-bit ARM: Alignment trap: not handling instruction e1b82f9f at [<bf01b0dc>] Unhandled fault: alignment exception (0x221) at 0xea08133c PC is at ip_set_match_extensions+0xe0/0x224 [ip_set] The problem occurs when we try to update the 64-bit counters - the faulting address above is not 64-bit aligned. The problem occurs due to the way elements are allocated, for example: set->dsize = ip_set_elem_len(set, tb, 0, 0); map = ip_set_alloc(sizeof(*map) + elements * set->dsize); If the element has a requirement for a member to be 64-bit aligned, and set->dsize is not a multiple of 8, but is a multiple of four, then every odd numbered elements will be misaligned - and hitting an atomic64_add() on that element will cause the kernel to panic. ip_set_elem_len() must return a size that is rounded to the maximum alignment of any extension field stored in the element. This change ensures that is the case. Fixes: 95ad1f4a ("netfilter: ipset: Fix extension alignment") Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Jozsef Kadlecsik <kadlec@netfilter.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Dan Carpenter authored
[ Upstream commit e55f3c37 ] If this is in "transceiver" mode the the ->qwork isn't required and is a NULL pointer. This can lead to a NULL dereference when we call destroy_workqueue(udc->qwork). Fixes: 3517c31a ("usb: gadget: mv_udc: use devm_xxx for probe") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Felipe Balbi <balbi@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
yu kuai authored
[ Upstream commit 586745f1 ] if of_find_device_by_node() succeed, imx_suspend_alloc_ocram() doesn't have a corresponding put_device(). Thus add a jump target to fix the exception handling for this function implementation. Fixes: 1579c7b9 ("ARM: imx53: Set DDR pins to high impedance when in suspend to RAM.") Signed-off-by: yu kuai <yukuai3@huawei.com> Signed-off-by: Shawn Guo <shawnguo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
-
Alexander Lobakin authored
[ Upstream commit d434d02f ] This is likely a copy'n'paste mistake. The amount of ILT lines to reserve for a single VF was being multiplied by the total VFs count. This led to a huge redundancy in reservation and potential lines drainouts. Fixes: 1408cc1f ("qed: Introduce VFs") Signed-off-by: Alexander Lobakin <alobakin@marvell.com> Signed-off-by: Igor Russkikh <irusskikh@marvell.com> Signed-off-by: Michal Kalderon <michal.kalderon@marvell.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
-