- 08 Feb, 2023 26 commits
-
-
David S. Miller authored
Horatiu Vultur says: ==================== net: micrel: Add support for lan8841 PHY Add support for lan8841 PHY. The first patch add the support for lan8841 PHY which can run at 10/100/1000Mbit. It also has support for other features, but they are not added in this series. The second patch updates the documentation for the dt-bindings which is similar to the ksz9131. v3->v4: - add space between defines and function names - inside lan8841_config_init use only ret variable v2->v3: - reuse ksz9131_config_init - allow only open-drain configuration - change from single patch to a patch series v1->v2: - Remove hardcoded values - Fix typo in commit message ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
-
Horatiu Vultur authored
The lan8841 has the same bindings as ksz9131, so just reuse the entire section of ksz9131. Reviewed-by: Andrew Lunn <andrew@lunn.ch> Acked-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org> Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Horatiu Vultur authored
The LAN8841 is completely integrated triple-speed (10BASE-T/ 100BASE-TX/ 1000BASE-T) Ethernet physical layer transceivers for transmission and reception of data on standard CAT-5, as well as CAT-5e and CAT-6, unshielded twisted pair (UTP) cables. The LAN8841 offers the industry-standard GMII/MII as well as the RGMII. Some of the features of the PHY are: - Wake on LAN - Auto-MDIX - IEEE 1588-2008 (V2) - LinkMD Capable diagnosis Currently the patch offers support only for link configuration. Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Horatiu Vultur authored
Add flower filter packet statistics. This will just read the TCAM counter of the rule, which mention how many packages were hit by this rule. Reviewed-by: Simon Horman <simon.horman@corigine.com> Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/next-queueJakub Kicinski authored
Tony Nguyen says: ==================== ice: various virtualization cleanups Jacob Keller says: This series contains a variety of refactors and cleanups in the VF code for the ice driver. Its primary focus is cleanup and simplification of the VF operations and addition of a few new operations that will be required by Scalable IOV, as well as some other refactors needed for the handling of VF subfunctions. * '100GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/next-queue: ice: remove unnecessary virtchnl_ether_addr struct use ice: introduce .irq_close VF operation ice: introduce clear_reset_state operation ice: convert vf_ops .vsi_rebuild to .create_vsi ice: introduce ice_vf_init_host_cfg function ice: add a function to initialize vf entry ice: Pull common tasks into ice_vf_post_vsi_rebuild ice: move ice_vf_vsi_release into ice_vf_lib.c ice: move vsi_type assignment from ice_vsi_alloc to ice_vsi_cfg ice: refactor VSI setup to use parameter structure ice: drop unnecessary VF parameter from several VSI functions ice: fix function comment referring to ice_vsi_alloc ice: Add more usage of existing function ice_get_vf_vsi(vf) ==================== Link: https://lore.kernel.org/r/20230206214813.20107-1-anthony.l.nguyen@intel.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Moshe Shemesh authored
The callback devlink_nl_cmd_health_reporter_diagnose_doit() miss devlink_fmsg_free(), which leads to memory leak. Fix it by adding devlink_fmsg_free(). Fixes: e994a75f ("devlink: remove reporter reference counting") Signed-off-by: Moshe Shemesh <moshe@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Link: https://lore.kernel.org/r/1675698976-45993-1-git-send-email-moshe@nvidia.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
James Hershaw authored
Move the nfp_net_get_port_mac_by_hwinfo() check to ahead in the get/set_eeprom() functions to in order to check for a VF netdev, which this function does not support. It is debatable if this is a fix or an enhancement, and we have chosen to go for the latter. It does address a problem introduced by commit 74b4f173 ("nfp: flower: change get/set_eeprom logic and enable for flower reps"). However, the ethtool->len == 0 check avoids the problem manifesting as a run-time bug (NULL pointer dereference of app). Signed-off-by: James Hershaw <james.hershaw@corigine.com> Reviewed-by: Louis Peens <louis.peens@corigine.com> Signed-off-by: Simon Horman <simon.horman@corigine.com> Reviewed-by: Leon Romanovsky <leonro@nvidia.com> Link: https://lore.kernel.org/r/20230206154836.2803995-1-simon.horman@corigine.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Jakub Kicinski authored
Petr Machata says: ==================== mlxsw: Misc devlink changes This patchset adjusts mlxsw to recent devlink changes in net-next. Patch #1 removes a devl_param_driverinit_value_set() call that was unnecessary, but now additionally triggers a WARN_ON. Patches #2-#4 are non-functional preparations for the following patches. Patch #5 fixes a use-after-free that is triggered while changing network namespaces. Patch #6 makes mlxsw consistent with netdevsim by having mlxsw register its devlink instance before its sub-objects. It helps us avoid a warning described in the commit message. ==================== Link: https://lore.kernel.org/r/cover.1675692666.git.petrm@nvidia.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Ido Schimmel authored
Recent changes made it possible to register the devlink instance before its sub-objects and under the instance lock. Among other things, it allows us to avoid warnings such as this one [1]. The warning is generated because a buggy firmware is generating a health event during driver initialization, before the devlink instance is registered. Move the registration of the devlink instance to the beginning of the initialization flow to avoid such problems. A similar change was implemented in netdevsim in commit 82a3aef2 ("netdevsim: move devlink registration under the instance lock"). [1] WARNING: CPU: 3 PID: 49 at net/devlink/leftover.c:7509 devlink_recover_notify.constprop.0+0xaf/0xc0 [...] Call Trace: <TASK> devlink_health_report+0x45/0x1d0 mlxsw_core_health_event_work+0x24/0x30 [mlxsw_core] process_one_work+0x1db/0x390 worker_thread+0x49/0x3b0 kthread+0xe5/0x110 ret_from_fork+0x1f/0x30 </TASK> Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Ido Schimmel authored
Cited commit added 'DEVLINK_CMD_PARAM_DEL' notifications whenever the network namespace of the devlink instance is changed. Specifically, the notifications are generated after calling reload_down(), but before calling reload_up(). At this stage, the data structures accessed while reading the value of the "acl_region_rehash_interval" devlink parameter are uninitialized, resulting in a use-after-free [1]. Fix by moving the registration and unregistration of the devlink parameter to the TCAM code where it is actually used. This means that the parameter is unregistered during reload_down() and then re-registered during reload_up(), avoiding the use-after-free between these two operations. Reproducer: # ip netns add test123 # devlink dev reload pci/0000:06:00.0 netns test123 [1] BUG: KASAN: use-after-free in mlxsw_sp_acl_tcam_vregion_rehash_intrvl_get+0xb2/0xd0 Read of size 4 at addr ffff888162fd37d8 by task devlink/1323 [...] Call Trace: <TASK> dump_stack_lvl+0x95/0xbd print_report+0x181/0x4a1 kasan_report+0xdb/0x200 mlxsw_sp_acl_tcam_vregion_rehash_intrvl_get+0xb2/0xd0 mlxsw_sp_params_acl_region_rehash_intrvl_get+0x32/0x80 devlink_nl_param_fill.constprop.0+0x29a/0x11e0 devlink_param_notify.constprop.0+0xb9/0x250 devlink_notify_unregister+0xbc/0x470 devlink_reload+0x1aa/0x440 devlink_nl_cmd_reload+0x559/0x11b0 genl_family_rcv_msg_doit.isra.0+0x1f8/0x2e0 genl_rcv_msg+0x558/0x7f0 netlink_rcv_skb+0x170/0x440 genl_rcv+0x2d/0x40 netlink_unicast+0x53f/0x810 netlink_sendmsg+0x961/0xe80 __sys_sendto+0x2a4/0x420 __x64_sys_sendto+0xe5/0x1c0 do_syscall_64+0x38/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Fixes: 7d7e9169 ("devlink: move devlink reload notifications back in between _down() and _up() calls") Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Ido Schimmel authored
Move the initialization and de-initialization code further below in order to avoid forward declarations in the next patch. No functional changes. Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Ido Schimmel authored
Move mutex_destroy() to the end to make the function symmetric with mlxsw_sp_acl_tcam_init(). No functional changes. Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Ido Schimmel authored
Pair mutex_init() with a mutex_destroy() in the error path. Found during code review. No functional changes. Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Danielle Ratson authored
The "acl_region_rehash_interval" devlink parameter is a "runtime" parameter, making the call to devl_param_driverinit_value_set() pointless. Before cited commit the function simply returned an error (that was not checked), but now it emits a WARNING [1]. Fix by removing the function call. [1] WARNING: CPU: 0 PID: 7 at net/devlink/leftover.c:10974 devl_param_driverinit_value_set+0x8c/0x90 [...] Call Trace: <TASK> mlxsw_sp2_params_register+0x83/0xb0 [mlxsw_spectrum] __mlxsw_core_bus_device_register+0x5e5/0x990 [mlxsw_core] mlxsw_core_bus_device_register+0x42/0x60 [mlxsw_core] mlxsw_pci_probe+0x1f0/0x230 [mlxsw_pci] local_pci_probe+0x1a/0x40 work_for_cpu_fn+0xf/0x20 process_one_work+0x1db/0x390 worker_thread+0x1d5/0x3b0 kthread+0xe5/0x110 ret_from_fork+0x1f/0x30 </TASK> Fixes: 85fe0b32 ("devlink: make devlink_param_driverinit_value_set() return void") Signed-off-by: Danielle Ratson <danieller@nvidia.com> Reviewed-by: Ido Schimmel <idosch@nvidia.com> Signed-off-by: Petr Machata <petrm@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Vladimir Oltean authored
Add PF driver support for the following: - Viewing the standardized MAC Merge layer counters. - Viewing the standardized Ethernet MAC and RMON counters associated with the pMAC. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230206094531.444988-2-vladimir.oltean@nxp.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Vladimir Oltean authored
Add PF driver support for viewing and changing the MAC Merge sublayer parameters, and seeing the verification state machine's current state. The verification handshake with the link partner is driven by hardware. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20230206094531.444988-1-vladimir.oltean@nxp.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Jakub Kicinski authored
Yury Norov says: ==================== sched: cpumask: improve on cpumask_local_spread() locality cpumask_local_spread() currently checks local node for presence of i'th CPU, and then if it finds nothing makes a flat search among all non-local CPUs. We can do it better by checking CPUs per NUMA hops. This has significant performance implications on NUMA machines, for example when using NUMA-aware allocated memory together with NUMA-aware IRQ affinity hints. Performance tests from patch 8 of this series for mellanox network driver show: TCP multi-stream, using 16 iperf3 instances pinned to 16 cores (with aRFS on). Active cores: 64,65,72,73,80,81,88,89,96,97,104,105,112,113,120,121 +-------------------------+-----------+------------------+------------------+ | | BW (Gbps) | TX side CPU util | RX side CPU util | +-------------------------+-----------+------------------+------------------+ | Baseline | 52.3 | 6.4 % | 17.9 % | +-------------------------+-----------+------------------+------------------+ | Applied on TX side only | 52.6 | 5.2 % | 18.5 % | +-------------------------+-----------+------------------+------------------+ | Applied on RX side only | 94.9 | 11.9 % | 27.2 % | +-------------------------+-----------+------------------+------------------+ | Applied on both sides | 95.1 | 8.4 % | 27.3 % | +-------------------------+-----------+------------------+------------------+ Bottleneck in RX side is released, reached linerate (~1.8x speedup). ~30% less cpu util on TX. ==================== Link: https://lore.kernel.org/r/20230121042436.2661843-1-yury.norov@gmail.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
Now that we have an iterator-based alternative for a very common case of using cpumask_local_spread for all cpus in a row, it's worth to mention that in comment to cpumask_local_spread(). Signed-off-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Tariq Toukan authored
In the IRQ affinity hints, replace the binary NUMA preference (local / remote) with the improved for_each_numa_hop_cpu() API that minds the actual distances, so that remote NUMAs with short distance are preferred over farther ones. This has significant performance implications when using NUMA-aware allocated memory (follow [1] and derivatives for example). [1] drivers/net/ethernet/mellanox/mlx5/core/en_main.c :: mlx5e_open_channel() int cpu = cpumask_first(mlx5_comp_irq_get_affinity_mask(priv->mdev, ix)); Performance tests: TCP multi-stream, using 16 iperf3 instances pinned to 16 cores (with aRFS on). Active cores: 64,65,72,73,80,81,88,89,96,97,104,105,112,113,120,121 +-------------------------+-----------+------------------+------------------+ | | BW (Gbps) | TX side CPU util | RX side CPU util | +-------------------------+-----------+------------------+------------------+ | Baseline | 52.3 | 6.4 % | 17.9 % | +-------------------------+-----------+------------------+------------------+ | Applied on TX side only | 52.6 | 5.2 % | 18.5 % | +-------------------------+-----------+------------------+------------------+ | Applied on RX side only | 94.9 | 11.9 % | 27.2 % | +-------------------------+-----------+------------------+------------------+ | Applied on both sides | 95.1 | 8.4 % | 27.3 % | +-------------------------+-----------+------------------+------------------+ Bottleneck in RX side is released, reached linerate (~1.8x speedup). ~30% less cpu util on TX. * CPU util on active cores only. Setups details (similar for both sides): NIC: ConnectX6-DX dual port, 100 Gbps each. Single port used in the tests. $ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 256 On-line CPU(s) list: 0-255 Thread(s) per core: 2 Core(s) per socket: 64 Socket(s): 2 NUMA node(s): 16 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7763 64-Core Processor Stepping: 1 CPU MHz: 2594.804 BogoMIPS: 4890.73 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 32768K NUMA node0 CPU(s): 0-7,128-135 NUMA node1 CPU(s): 8-15,136-143 NUMA node2 CPU(s): 16-23,144-151 NUMA node3 CPU(s): 24-31,152-159 NUMA node4 CPU(s): 32-39,160-167 NUMA node5 CPU(s): 40-47,168-175 NUMA node6 CPU(s): 48-55,176-183 NUMA node7 CPU(s): 56-63,184-191 NUMA node8 CPU(s): 64-71,192-199 NUMA node9 CPU(s): 72-79,200-207 NUMA node10 CPU(s): 80-87,208-215 NUMA node11 CPU(s): 88-95,216-223 NUMA node12 CPU(s): 96-103,224-231 NUMA node13 CPU(s): 104-111,232-239 NUMA node14 CPU(s): 112-119,240-247 NUMA node15 CPU(s): 120-127,248-255 .. $ numactl -H .. node distances: node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0: 10 11 11 11 12 12 12 12 32 32 32 32 32 32 32 32 1: 11 10 11 11 12 12 12 12 32 32 32 32 32 32 32 32 2: 11 11 10 11 12 12 12 12 32 32 32 32 32 32 32 32 3: 11 11 11 10 12 12 12 12 32 32 32 32 32 32 32 32 4: 12 12 12 12 10 11 11 11 32 32 32 32 32 32 32 32 5: 12 12 12 12 11 10 11 11 32 32 32 32 32 32 32 32 6: 12 12 12 12 11 11 10 11 32 32 32 32 32 32 32 32 7: 12 12 12 12 11 11 11 10 32 32 32 32 32 32 32 32 8: 32 32 32 32 32 32 32 32 10 11 11 11 12 12 12 12 9: 32 32 32 32 32 32 32 32 11 10 11 11 12 12 12 12 10: 32 32 32 32 32 32 32 32 11 11 10 11 12 12 12 12 11: 32 32 32 32 32 32 32 32 11 11 11 10 12 12 12 12 12: 32 32 32 32 32 32 32 32 12 12 12 12 10 11 11 11 13: 32 32 32 32 32 32 32 32 12 12 12 12 11 10 11 11 14: 32 32 32 32 32 32 32 32 12 12 12 12 11 11 10 11 15: 32 32 32 32 32 32 32 32 12 12 12 12 11 11 11 10 $ cat /sys/class/net/ens5f0/device/numa_node 14 Affinity hints (127 IRQs): Before: 331: 00000000,00000000,00000000,00000000,00010000,00000000,00000000,00000000 332: 00000000,00000000,00000000,00000000,00020000,00000000,00000000,00000000 333: 00000000,00000000,00000000,00000000,00040000,00000000,00000000,00000000 334: 00000000,00000000,00000000,00000000,00080000,00000000,00000000,00000000 335: 00000000,00000000,00000000,00000000,00100000,00000000,00000000,00000000 336: 00000000,00000000,00000000,00000000,00200000,00000000,00000000,00000000 337: 00000000,00000000,00000000,00000000,00400000,00000000,00000000,00000000 338: 00000000,00000000,00000000,00000000,00800000,00000000,00000000,00000000 339: 00010000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 340: 00020000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 341: 00040000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 342: 00080000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 343: 00100000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 344: 00200000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 345: 00400000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 346: 00800000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 347: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000001 348: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000002 349: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000004 350: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000008 351: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000010 352: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000020 353: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000040 354: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000080 355: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000100 356: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000200 357: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000400 358: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00000800 359: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00001000 360: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00002000 361: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00004000 362: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00008000 363: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00010000 364: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00020000 365: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00040000 366: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00080000 367: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00100000 368: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00200000 369: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00400000 370: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,00800000 371: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,01000000 372: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,02000000 373: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,04000000 374: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,08000000 375: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,10000000 376: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,20000000 377: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,40000000 378: 00000000,00000000,00000000,00000000,00000000,00000000,00000000,80000000 379: 00000000,00000000,00000000,00000000,00000000,00000000,00000001,00000000 380: 00000000,00000000,00000000,00000000,00000000,00000000,00000002,00000000 381: 00000000,00000000,00000000,00000000,00000000,00000000,00000004,00000000 382: 00000000,00000000,00000000,00000000,00000000,00000000,00000008,00000000 383: 00000000,00000000,00000000,00000000,00000000,00000000,00000010,00000000 384: 00000000,00000000,00000000,00000000,00000000,00000000,00000020,00000000 385: 00000000,00000000,00000000,00000000,00000000,00000000,00000040,00000000 386: 00000000,00000000,00000000,00000000,00000000,00000000,00000080,00000000 387: 00000000,00000000,00000000,00000000,00000000,00000000,00000100,00000000 388: 00000000,00000000,00000000,00000000,00000000,00000000,00000200,00000000 389: 00000000,00000000,00000000,00000000,00000000,00000000,00000400,00000000 390: 00000000,00000000,00000000,00000000,00000000,00000000,00000800,00000000 391: 00000000,00000000,00000000,00000000,00000000,00000000,00001000,00000000 392: 00000000,00000000,00000000,00000000,00000000,00000000,00002000,00000000 393: 00000000,00000000,00000000,00000000,00000000,00000000,00004000,00000000 394: 00000000,00000000,00000000,00000000,00000000,00000000,00008000,00000000 395: 00000000,00000000,00000000,00000000,00000000,00000000,00010000,00000000 396: 00000000,00000000,00000000,00000000,00000000,00000000,00020000,00000000 397: 00000000,00000000,00000000,00000000,00000000,00000000,00040000,00000000 398: 00000000,00000000,00000000,00000000,00000000,00000000,00080000,00000000 399: 00000000,00000000,00000000,00000000,00000000,00000000,00100000,00000000 400: 00000000,00000000,00000000,00000000,00000000,00000000,00200000,00000000 401: 00000000,00000000,00000000,00000000,00000000,00000000,00400000,00000000 402: 00000000,00000000,00000000,00000000,00000000,00000000,00800000,00000000 403: 00000000,00000000,00000000,00000000,00000000,00000000,01000000,00000000 404: 00000000,00000000,00000000,00000000,00000000,00000000,02000000,00000000 405: 00000000,00000000,00000000,00000000,00000000,00000000,04000000,00000000 406: 00000000,00000000,00000000,00000000,00000000,00000000,08000000,00000000 407: 00000000,00000000,00000000,00000000,00000000,00000000,10000000,00000000 408: 00000000,00000000,00000000,00000000,00000000,00000000,20000000,00000000 409: 00000000,00000000,00000000,00000000,00000000,00000000,40000000,00000000 410: 00000000,00000000,00000000,00000000,00000000,00000000,80000000,00000000 411: 00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000 412: 00000000,00000000,00000000,00000000,00000000,00000002,00000000,00000000 413: 00000000,00000000,00000000,00000000,00000000,00000004,00000000,00000000 414: 00000000,00000000,00000000,00000000,00000000,00000008,00000000,00000000 415: 00000000,00000000,00000000,00000000,00000000,00000010,00000000,00000000 416: 00000000,00000000,00000000,00000000,00000000,00000020,00000000,00000000 417: 00000000,00000000,00000000,00000000,00000000,00000040,00000000,00000000 418: 00000000,00000000,00000000,00000000,00000000,00000080,00000000,00000000 419: 00000000,00000000,00000000,00000000,00000000,00000100,00000000,00000000 420: 00000000,00000000,00000000,00000000,00000000,00000200,00000000,00000000 421: 00000000,00000000,00000000,00000000,00000000,00000400,00000000,00000000 422: 00000000,00000000,00000000,00000000,00000000,00000800,00000000,00000000 423: 00000000,00000000,00000000,00000000,00000000,00001000,00000000,00000000 424: 00000000,00000000,00000000,00000000,00000000,00002000,00000000,00000000 425: 00000000,00000000,00000000,00000000,00000000,00004000,00000000,00000000 426: 00000000,00000000,00000000,00000000,00000000,00008000,00000000,00000000 427: 00000000,00000000,00000000,00000000,00000000,00010000,00000000,00000000 428: 00000000,00000000,00000000,00000000,00000000,00020000,00000000,00000000 429: 00000000,00000000,00000000,00000000,00000000,00040000,00000000,00000000 430: 00000000,00000000,00000000,00000000,00000000,00080000,00000000,00000000 431: 00000000,00000000,00000000,00000000,00000000,00100000,00000000,00000000 432: 00000000,00000000,00000000,00000000,00000000,00200000,00000000,00000000 433: 00000000,00000000,00000000,00000000,00000000,00400000,00000000,00000000 434: 00000000,00000000,00000000,00000000,00000000,00800000,00000000,00000000 435: 00000000,00000000,00000000,00000000,00000000,01000000,00000000,00000000 436: 00000000,00000000,00000000,00000000,00000000,02000000,00000000,00000000 437: 00000000,00000000,00000000,00000000,00000000,04000000,00000000,00000000 438: 00000000,00000000,00000000,00000000,00000000,08000000,00000000,00000000 439: 00000000,00000000,00000000,00000000,00000000,10000000,00000000,00000000 440: 00000000,00000000,00000000,00000000,00000000,20000000,00000000,00000000 441: 00000000,00000000,00000000,00000000,00000000,40000000,00000000,00000000 442: 00000000,00000000,00000000,00000000,00000000,80000000,00000000,00000000 443: 00000000,00000000,00000000,00000000,00000001,00000000,00000000,00000000 444: 00000000,00000000,00000000,00000000,00000002,00000000,00000000,00000000 445: 00000000,00000000,00000000,00000000,00000004,00000000,00000000,00000000 446: 00000000,00000000,00000000,00000000,00000008,00000000,00000000,00000000 447: 00000000,00000000,00000000,00000000,00000010,00000000,00000000,00000000 448: 00000000,00000000,00000000,00000000,00000020,00000000,00000000,00000000 449: 00000000,00000000,00000000,00000000,00000040,00000000,00000000,00000000 450: 00000000,00000000,00000000,00000000,00000080,00000000,00000000,00000000 451: 00000000,00000000,00000000,00000000,00000100,00000000,00000000,00000000 452: 00000000,00000000,00000000,00000000,00000200,00000000,00000000,00000000 453: 00000000,00000000,00000000,00000000,00000400,00000000,00000000,00000000 454: 00000000,00000000,00000000,00000000,00000800,00000000,00000000,00000000 455: 00000000,00000000,00000000,00000000,00001000,00000000,00000000,00000000 456: 00000000,00000000,00000000,00000000,00002000,00000000,00000000,00000000 457: 00000000,00000000,00000000,00000000,00004000,00000000,00000000,00000000 After: 331: 00000000,00000000,00000000,00000000,00010000,00000000,00000000,00000000 332: 00000000,00000000,00000000,00000000,00020000,00000000,00000000,00000000 333: 00000000,00000000,00000000,00000000,00040000,00000000,00000000,00000000 334: 00000000,00000000,00000000,00000000,00080000,00000000,00000000,00000000 335: 00000000,00000000,00000000,00000000,00100000,00000000,00000000,00000000 336: 00000000,00000000,00000000,00000000,00200000,00000000,00000000,00000000 337: 00000000,00000000,00000000,00000000,00400000,00000000,00000000,00000000 338: 00000000,00000000,00000000,00000000,00800000,00000000,00000000,00000000 339: 00010000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 340: 00020000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 341: 00040000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 342: 00080000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 343: 00100000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 344: 00200000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 345: 00400000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 346: 00800000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 347: 00000000,00000000,00000000,00000000,00000001,00000000,00000000,00000000 348: 00000000,00000000,00000000,00000000,00000002,00000000,00000000,00000000 349: 00000000,00000000,00000000,00000000,00000004,00000000,00000000,00000000 350: 00000000,00000000,00000000,00000000,00000008,00000000,00000000,00000000 351: 00000000,00000000,00000000,00000000,00000010,00000000,00000000,00000000 352: 00000000,00000000,00000000,00000000,00000020,00000000,00000000,00000000 353: 00000000,00000000,00000000,00000000,00000040,00000000,00000000,00000000 354: 00000000,00000000,00000000,00000000,00000080,00000000,00000000,00000000 355: 00000000,00000000,00000000,00000000,00000100,00000000,00000000,00000000 356: 00000000,00000000,00000000,00000000,00000200,00000000,00000000,00000000 357: 00000000,00000000,00000000,00000000,00000400,00000000,00000000,00000000 358: 00000000,00000000,00000000,00000000,00000800,00000000,00000000,00000000 359: 00000000,00000000,00000000,00000000,00001000,00000000,00000000,00000000 360: 00000000,00000000,00000000,00000000,00002000,00000000,00000000,00000000 361: 00000000,00000000,00000000,00000000,00004000,00000000,00000000,00000000 362: 00000000,00000000,00000000,00000000,00008000,00000000,00000000,00000000 363: 00000000,00000000,00000000,00000000,01000000,00000000,00000000,00000000 364: 00000000,00000000,00000000,00000000,02000000,00000000,00000000,00000000 365: 00000000,00000000,00000000,00000000,04000000,00000000,00000000,00000000 366: 00000000,00000000,00000000,00000000,08000000,00000000,00000000,00000000 367: 00000000,00000000,00000000,00000000,10000000,00000000,00000000,00000000 368: 00000000,00000000,00000000,00000000,20000000,00000000,00000000,00000000 369: 00000000,00000000,00000000,00000000,40000000,00000000,00000000,00000000 370: 00000000,00000000,00000000,00000000,80000000,00000000,00000000,00000000 371: 00000001,00000000,00000000,00000000,00000000,00000000,00000000,00000000 372: 00000002,00000000,00000000,00000000,00000000,00000000,00000000,00000000 373: 00000004,00000000,00000000,00000000,00000000,00000000,00000000,00000000 374: 00000008,00000000,00000000,00000000,00000000,00000000,00000000,00000000 375: 00000010,00000000,00000000,00000000,00000000,00000000,00000000,00000000 376: 00000020,00000000,00000000,00000000,00000000,00000000,00000000,00000000 377: 00000040,00000000,00000000,00000000,00000000,00000000,00000000,00000000 378: 00000080,00000000,00000000,00000000,00000000,00000000,00000000,00000000 379: 00000100,00000000,00000000,00000000,00000000,00000000,00000000,00000000 380: 00000200,00000000,00000000,00000000,00000000,00000000,00000000,00000000 381: 00000400,00000000,00000000,00000000,00000000,00000000,00000000,00000000 382: 00000800,00000000,00000000,00000000,00000000,00000000,00000000,00000000 383: 00001000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 384: 00002000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 385: 00004000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 386: 00008000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 387: 01000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 388: 02000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 389: 04000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 390: 08000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 391: 10000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 392: 20000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 393: 40000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 394: 80000000,00000000,00000000,00000000,00000000,00000000,00000000,00000000 395: 00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000 396: 00000000,00000000,00000000,00000000,00000000,00000002,00000000,00000000 397: 00000000,00000000,00000000,00000000,00000000,00000004,00000000,00000000 398: 00000000,00000000,00000000,00000000,00000000,00000008,00000000,00000000 399: 00000000,00000000,00000000,00000000,00000000,00000010,00000000,00000000 400: 00000000,00000000,00000000,00000000,00000000,00000020,00000000,00000000 401: 00000000,00000000,00000000,00000000,00000000,00000040,00000000,00000000 402: 00000000,00000000,00000000,00000000,00000000,00000080,00000000,00000000 403: 00000000,00000000,00000000,00000000,00000000,00000100,00000000,00000000 404: 00000000,00000000,00000000,00000000,00000000,00000200,00000000,00000000 405: 00000000,00000000,00000000,00000000,00000000,00000400,00000000,00000000 406: 00000000,00000000,00000000,00000000,00000000,00000800,00000000,00000000 407: 00000000,00000000,00000000,00000000,00000000,00001000,00000000,00000000 408: 00000000,00000000,00000000,00000000,00000000,00002000,00000000,00000000 409: 00000000,00000000,00000000,00000000,00000000,00004000,00000000,00000000 410: 00000000,00000000,00000000,00000000,00000000,00008000,00000000,00000000 411: 00000000,00000000,00000000,00000000,00000000,00010000,00000000,00000000 412: 00000000,00000000,00000000,00000000,00000000,00020000,00000000,00000000 413: 00000000,00000000,00000000,00000000,00000000,00040000,00000000,00000000 414: 00000000,00000000,00000000,00000000,00000000,00080000,00000000,00000000 415: 00000000,00000000,00000000,00000000,00000000,00100000,00000000,00000000 416: 00000000,00000000,00000000,00000000,00000000,00200000,00000000,00000000 417: 00000000,00000000,00000000,00000000,00000000,00400000,00000000,00000000 418: 00000000,00000000,00000000,00000000,00000000,00800000,00000000,00000000 419: 00000000,00000000,00000000,00000000,00000000,01000000,00000000,00000000 420: 00000000,00000000,00000000,00000000,00000000,02000000,00000000,00000000 421: 00000000,00000000,00000000,00000000,00000000,04000000,00000000,00000000 422: 00000000,00000000,00000000,00000000,00000000,08000000,00000000,00000000 423: 00000000,00000000,00000000,00000000,00000000,10000000,00000000,00000000 424: 00000000,00000000,00000000,00000000,00000000,20000000,00000000,00000000 425: 00000000,00000000,00000000,00000000,00000000,40000000,00000000,00000000 426: 00000000,00000000,00000000,00000000,00000000,80000000,00000000,00000000 427: 00000000,00000001,00000000,00000000,00000000,00000000,00000000,00000000 428: 00000000,00000002,00000000,00000000,00000000,00000000,00000000,00000000 429: 00000000,00000004,00000000,00000000,00000000,00000000,00000000,00000000 430: 00000000,00000008,00000000,00000000,00000000,00000000,00000000,00000000 431: 00000000,00000010,00000000,00000000,00000000,00000000,00000000,00000000 432: 00000000,00000020,00000000,00000000,00000000,00000000,00000000,00000000 433: 00000000,00000040,00000000,00000000,00000000,00000000,00000000,00000000 434: 00000000,00000080,00000000,00000000,00000000,00000000,00000000,00000000 435: 00000000,00000100,00000000,00000000,00000000,00000000,00000000,00000000 436: 00000000,00000200,00000000,00000000,00000000,00000000,00000000,00000000 437: 00000000,00000400,00000000,00000000,00000000,00000000,00000000,00000000 438: 00000000,00000800,00000000,00000000,00000000,00000000,00000000,00000000 439: 00000000,00001000,00000000,00000000,00000000,00000000,00000000,00000000 440: 00000000,00002000,00000000,00000000,00000000,00000000,00000000,00000000 441: 00000000,00004000,00000000,00000000,00000000,00000000,00000000,00000000 442: 00000000,00008000,00000000,00000000,00000000,00000000,00000000,00000000 443: 00000000,00010000,00000000,00000000,00000000,00000000,00000000,00000000 444: 00000000,00020000,00000000,00000000,00000000,00000000,00000000,00000000 445: 00000000,00040000,00000000,00000000,00000000,00000000,00000000,00000000 446: 00000000,00080000,00000000,00000000,00000000,00000000,00000000,00000000 447: 00000000,00100000,00000000,00000000,00000000,00000000,00000000,00000000 448: 00000000,00200000,00000000,00000000,00000000,00000000,00000000,00000000 449: 00000000,00400000,00000000,00000000,00000000,00000000,00000000,00000000 450: 00000000,00800000,00000000,00000000,00000000,00000000,00000000,00000000 451: 00000000,01000000,00000000,00000000,00000000,00000000,00000000,00000000 452: 00000000,02000000,00000000,00000000,00000000,00000000,00000000,00000000 453: 00000000,04000000,00000000,00000000,00000000,00000000,00000000,00000000 454: 00000000,08000000,00000000,00000000,00000000,00000000,00000000,00000000 455: 00000000,10000000,00000000,00000000,00000000,00000000,00000000,00000000 456: 00000000,20000000,00000000,00000000,00000000,00000000,00000000,00000000 457: 00000000,40000000,00000000,00000000,00000000,00000000,00000000,00000000 Signed-off-by: Tariq Toukan <tariqt@nvidia.com> [Tweaked API use] Suggested-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Valentin Schneider authored
The recently introduced sched_numa_hop_mask() exposes cpumasks of CPUs reachable within a given distance budget, wrap the logic for iterating over all (distance, mask) values inside an iterator macro. Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Valentin Schneider authored
Tariq has pointed out that drivers allocating IRQ vectors would benefit from having smarter NUMA-awareness - cpumask_local_spread() only knows about the local node and everything outside is in the same bucket. sched_domains_numa_masks is pretty much what we want to hand out (a cpumask of CPUs reachable within a given distance budget), introduce sched_numa_hop_mask() to export those cpumasks. Link: http://lore.kernel.org/r/20220728191203.4055-1-tariqt@nvidia.comSigned-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Yury Norov <yury.norov@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
Now after moving all NUMA logic into sched_numa_find_nth_cpu(), else-branch of cpumask_local_spread() is just a function call, and we can simplify logic by using ternary operator. While here, replace BUG() with WARN_ON(). Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Tariq Toukan <tariqt@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Peter Lafreniere <peter@n8pjl.ca> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
Switch cpumask_local_spread() to use newly added sched_numa_find_nth_cpu(), which takes into account distances to each node in the system. For the following NUMA configuration: root@debian:~# numactl -H available: 4 nodes (0-3) node 0 cpus: 0 1 2 3 node 0 size: 3869 MB node 0 free: 3740 MB node 1 cpus: 4 5 node 1 size: 1969 MB node 1 free: 1937 MB node 2 cpus: 6 7 node 2 size: 1967 MB node 2 free: 1873 MB node 3 cpus: 8 9 10 11 12 13 14 15 node 3 size: 7842 MB node 3 free: 7723 MB node distances: node 0 1 2 3 0: 10 50 30 70 1: 50 10 70 30 2: 30 70 10 50 3: 70 30 50 10 The new cpumask_local_spread() traverses cpus for each node like this: node 0: 0 1 2 3 6 7 4 5 8 9 10 11 12 13 14 15 node 1: 4 5 8 9 10 11 12 13 14 15 0 1 2 3 6 7 node 2: 6 7 0 1 2 3 8 9 10 11 12 13 14 15 4 5 node 3: 8 9 10 11 12 13 14 15 4 5 6 7 0 1 2 3 Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Tariq Toukan <tariqt@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Peter Lafreniere <peter@n8pjl.ca> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
The function finds Nth set CPU in a given cpumask starting from a given node. Leveraging the fact that each hop in sched_domains_numa_masks includes the same or greater number of CPUs than the previous one, we can use binary search on hops instead of linear walk, which makes the overall complexity of O(log n) in terms of number of cpumask_weight() calls. Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Tariq Toukan <tariqt@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Peter Lafreniere <peter@n8pjl.ca> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
Introduce cpumask_nth_and_andnot() based on find_nth_and_andnot_bit(). It's used in the following patch to traverse cpumasks without storing intermediate result in temporary cpumask. Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Tariq Toukan <tariqt@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Peter Lafreniere <peter@n8pjl.ca> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Yury Norov authored
In the following patches the function is used to implement in-place bitmaps traversing without storing intermediate result in temporary bitmaps. Signed-off-by: Yury Norov <yury.norov@gmail.com> Acked-by: Tariq Toukan <tariqt@nvidia.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Peter Lafreniere <peter@n8pjl.ca> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
- 07 Feb, 2023 11 commits
-
-
Jakub Kicinski authored
Eric Dumazet says: ==================== net: core: use a dedicated kmem_cache for skb head allocs Our profile data show that using kmalloc(non_const_size)/kfree(ptr) has a certain cost, because kfree(ptr) has to pull a 'struct page' in cpu caches. Using a dedicated kmem_cache for TCP skb->head allocations makes a difference, both in cpu cycles and memory savings. This kmem_cache could also be used for GRO skb allocations, this is left as a future exercise. ==================== Link: https://lore.kernel.org/r/20230206173103.2617121-1-edumazet@google.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Eric Dumazet authored
Recent removal of ksize() in alloc_skb() increased performance because we no longer read the associated struct page. We have an equivalent cost at kfree_skb() time. kfree(skb->head) has to access a struct page, often cold in cpu caches to get the owning struct kmem_cache. Considering that many allocations are small (at least for TCP ones) we can have our own kmem_cache to avoid the cache line miss. This also saves memory because these small heads are no longer padded to 1024 bytes. CONFIG_SLUB=y $ grep skbuff_small_head /proc/slabinfo skbuff_small_head 2907 2907 640 51 8 : tunables 0 0 0 : slabdata 57 57 0 CONFIG_SLAB=y $ grep skbuff_small_head /proc/slabinfo skbuff_small_head 607 624 640 6 1 : tunables 54 27 8 : slabdata 104 104 5 Notes: - After Kees Cook patches and this one, we might be able to revert commit dbae2b06 ("net: skb: introduce and use a single page frag cache") because GRO_MAX_HEAD is also small. - This patch is a NOP for CONFIG_SLOB=y builds. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Eric Dumazet authored
All kmalloc_reserve() callers have to make the same computation, we can factorize them, to prepare following patch in the series. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Eric Dumazet authored
This is a cleanup patch, to prepare following change. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Eric Dumazet authored
We have many places using this expression: SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) Use of SKB_HEAD_ALIGN() will allow to clean them. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-
Paolo Abeni authored
Merge tag 'linux-can-next-for-6.3-20230206' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next Marc Kleine-Budde says: ==================== pull-request: can-next 2023-02-06 this is a pull request of 47 patches for net-next/master. The first two patch is by Oliver Hartkopp. One adds missing error checking to the CAN_GW protocol, the other adds a missing CAN address family check to the CAN ISO TP protocol. Thomas Kopp contributes a performance optimization to the mcp251xfd driver. The next 11 patches are by Geert Uytterhoeven and add support for R-Car V4H systems to the rcar_canfd driver. Stephane Grosjean and Lukas Magel contribute 8 patches to the peak_usb driver, which add support for configurable CAN channel ID. The last 17 patches are by me and target the CAN bit timing configuration. The bit timing is cleaned up, error messages are improved and forwarded to user space via NL_SET_ERR_MSG_FMT() instead of netdev_err(), and the SJW handling is updated, including the definition of a new default value that will benefit CAN-FD controllers, by increasing their oscillator tolerance. * tag 'linux-can-next-for-6.3-20230206' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next: (47 commits) can: bittiming: can_validate_bitrate(): report error via netlink can: bittiming: can_calc_bittiming(): convert from netdev_err() to NL_SET_ERR_MSG_FMT() can: bittiming: can_calc_bittiming(): clean up SJW handling can: bittiming: can_sjw_set_default(): use Phase Seg2 / 2 as default for SJW can: bittiming: can_sjw_check(): check that SJW is not longer than either Phase Buffer Segment can: bittiming: can_sjw_check(): report error via netlink and harmonize error value can: bittiming: can_fixup_bittiming(): report error via netlink and harmonize error value can: bittiming: factor out can_sjw_set_default() and can_sjw_check() can: bittiming: can_changelink() pass extack down callstack can: netlink: can_changelink(): convert from netdev_err() to NL_SET_ERR_MSG_FMT() can: netlink: can_validate(): validate sample point for CAN and CAN-FD can: dev: register_candev(): bail out if both fixed bit rates and bit timing constants are provided can: dev: register_candev(): ensure that bittiming const are valid can: bittiming: can_get_bittiming(): use direct return and remove unneeded else can: bittiming: can_fixup_bittiming(): set effective tq can: bittiming: can_fixup_bittiming(): use CAN_SYNC_SEG instead of 1 can: bittiming(): replace open coded variants of can_bit_time() can: peak_usb: Reorder include directives alphabetically can: peak_usb: align CAN channel ID format in log with sysfs attribute can: peak_usb: export PCAN CAN channel ID as sysfs device attribute ... ==================== Link: https://lore.kernel.org/r/20230206131620.2758724-1-mkl@pengutronix.deSigned-off-by: Paolo Abeni <pabeni@redhat.com>
-
Vladimir Oltean authored
If ops->get_mm() returns a non-zero error code, we goto out_complete, but there, we return 0. Fix that to propagate the "ret" variable to the caller. If ops->get_mm() succeeds, it will always return 0. Fixes: 2b30f829 ("net: ethtool: add support for MAC Merge layer") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Simon Horman <simon.horman@corigine.com> Link: https://lore.kernel.org/r/20230206094932.446379-1-vladimir.oltean@nxp.comSigned-off-by: Paolo Abeni <pabeni@redhat.com>
-
Eddy Tao authored
Use actual CPU number instead of hardcoded value to decide the size of 'cpu_used_mask' in 'struct sw_flow'. Below is the reason. 'struct cpumask cpu_used_mask' is embedded in struct sw_flow. Its size is hardcoded to CONFIG_NR_CPUS bits, which can be 8192 by default, it costs memory and slows down ovs_flow_alloc. To address this: Redefine cpu_used_mask to pointer. Append cpumask_size() bytes after 'stat' to hold cpumask. Initialization cpu_used_mask right after stats_last_writer. APIs like cpumask_next and cpumask_set_cpu never access bits beyond cpu count, cpumask_size() bytes of memory is enough. Signed-off-by: Eddy Tao <taoyuan_eddy@hotmail.com> Acked-by: Eelco Chaudron <echaudro@redhat.com> Link: https://lore.kernel.org/r/OS3P286MB229570CCED618B20355D227AF5D59@OS3P286MB2295.JPNP286.PROD.OUTLOOK.COMSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Arnd Bergmann authored
The forward declaration was introduced with a prototype that does not match the function definition: drivers/net/ethernet/amd/xgbe/xgbe-phy-v2.c:2166:13: error: conflicting types for 'xgbe_phy_perform_ratechange' due to enum/integer mismatch; have 'void(struct xgbe_prv_data *, enum xgbe_mb_cmd, enum xgbe_mb_subcmd)' [-Werror=enum-int-mismatch] 2166 | static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/net/ethernet/amd/xgbe/xgbe-phy-v2.c:391:13: note: previous declaration of 'xgbe_phy_perform_ratechange' with type 'void(struct xgbe_prv_data *, unsigned int, unsigned int)' 391 | static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ Ideally there should not be any forward declarations here, which would make it easier to show that there is no unbounded recursion. I tried fixing this but could not figure out how to avoid the recursive call. As a hotfix, address only the broken prototype to fix the build problem instead. Fixes: 4f3b20bf ("amd-xgbe: add support for rx-adaptation") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Simon Horman <simon.horman@corigine.com> Acked-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com> Link: https://lore.kernel.org/r/20230203121553.2871598-1-arnd@kernel.orgSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
Colin Foster authored
There are no external users of the vsc7514_*_regmap[] symbols or vsc7514_vcap_* functions. They were exported in commit 32ecd22b ("net: mscc: ocelot: split register definitions to a separate file") with the intention of being used, but the actual structure used in commit 2efaca41 ("net: mscc: ocelot: expose vsc7514_regmap definition") ended up being all that was needed. Bury these unnecessary symbols. Signed-off-by: Colin Foster <colin.foster@in-advantage.com> Suggested-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20230204182056.25502-1-colin.foster@in-advantage.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
https://github.com/ajitkhaparde1/linuxJakub Kicinski authored
Ajit Khaparde says: ==================== bnxt: Add Auxiliary driver support Add auxiliary device driver for Broadcom devices. The bnxt_en driver will register and initialize an aux device if RDMA is enabled in the underlying device. The bnxt_re driver will then probe and initialize the RoCE interfaces with the infiniband stack. We got rid of the bnxt_en_ops which the bnxt_re driver used to communicate with bnxt_en. Similarly We have tried to clean up most of the bnxt_ulp_ops. In most of the cases we used the functions and entry points provided by the auxiliary bus driver framework. And now these are the minimal functions needed to support the functionality. We will try to work on getting rid of the remaining if we find any other viable option in future. * 'aux-bus-v11' of https://github.com/ajitkhaparde1/linux: bnxt_en: Remove runtime interrupt vector allocation RDMA/bnxt_re: Remove the sriov config callback bnxt_en: Remove struct bnxt access from RoCE driver bnxt_en: Use auxiliary bus calls over proprietary calls bnxt_en: Use direct API instead of indirection bnxt_en: Remove usage of ulp_id RDMA/bnxt_re: Use auxiliary driver interface bnxt_en: Add auxiliary driver support ==================== Link: https://lore.kernel.org/r/20230202033809.3989-1-ajit.khaparde@broadcom.comSigned-off-by: Jakub Kicinski <kuba@kernel.org>
-
- 06 Feb, 2023 3 commits
-
-
Jacob Keller authored
The dev_lan_addr and hw_lan_addr members of ice_vf are used only to store the MAC address for the VF. They are defined using virtchnl_ether_addr, but only the .addr sub-member is actually used. Drop the use of virtchnl_ether_addr and just use a u8 array of length [ETH_ALEN]. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Marek Szlosek <marek.szlosek@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
-
Jacob Keller authored
The Scalable IOV implementation will require notifying the VDCM driver when an IRQ must be closed. This allows the VDCM to handle releasing stale IRQ context values and properly reconfigure. To handle this, introduce a new optional .irq_close callback to the VF operations structure. This will be implemented by Scalable IOV to handle the shutdown of the IRQ context. Since the SR-IOV implementation does not need this, we must check that its non-NULL before calling it. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Marek Szlosek <marek.szlosek@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
-
Jacob Keller authored
When hardware is reset, the VF relies on the VFGEN_RSTAT register to detect when the VF is finished resetting. This is a tri-state register where 0 indicates a reset is in progress, 1 indicates the hardware is done resetting, and 2 indicates that the software is done resetting. Currently the PF driver relies on the device hardware resetting VFGEN_RSTAT when a global reset occurs. This works ok, but it does mean that the VF might not immediately notice a reset when the driver first detects that the global reset is occurring. This is also problematic for Scalable IOV, because there is no read/write equivalent VFGEN_RSTAT register for the Scalable VSI type. Instead, the Scalable IOV VFs will need to emulate this register. To support this, introduce a new VF operation, clear_reset_state, which is called when the PF driver first detects a global reset. The Single Root IOV implementation can just write to VFGEN_RSTAT to ensure it's cleared immediately, without waiting for the actual hardware reset to begin. The Scalable IOV implementation will use this as part of its tracking of the reset status to allow properly reporting the emulated VFGEN_RSTAT to the VF driver. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de> Tested-by: Marek Szlosek <marek.szlosek@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
-