- 22 Oct, 2021 25 commits
-
-
Sean Christopherson authored
Add a synchronize_rcu() after clearing the posted interrupt wakeup handler to ensure all readers, i.e. in-flight IRQ handlers, see the new handler before returning to the caller. If the caller is an exiting module and is unregistering its handler, failure to wait could result in the IRQ handler jumping into an unloaded module. The registration path doesn't require synchronization, as it's the caller's responsibility to not generate interrupts it cares about until after its handler is registered. Fixes: f6b3c72c ("x86/irq: Define a global vector for VT-d Posted-Interrupts") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211009001107.3936588-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Use a rw_semaphore instead of a mutex to coordinate APICv updates so that vCPUs responding to requests can take the lock for read and run in parallel. Using a mutex forces serialization of vCPUs even though kvm_vcpu_update_apicv() only touches data local to that vCPU or is protected by a different lock, e.g. SVM's ir_list_lock. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211022004927.1448382-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Move SVM's assertion that vCPU's APICv state is consistent with its VM's state out of svm_vcpu_run() and into x86's common inner run loop. The assertion and underlying logic is not unique to SVM, it's just that SVM has more inhibiting conditions and thus is more likely to run headfirst into any KVM bugs. Add relevant comments to document exactly why the update path has unusual ordering between the update the kick, why said ordering is safe, and also the basic rules behind the assertion in the run loop. Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211022004927.1448382-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lukas Bulwahn authored
Commit 99cdc6c1 ("RISC-V: Add initial skeletal KVM support") selects the config ANON_INODES in config KVM, but the config ANON_INODES is removed since commit 5dd50aae ("Make anon_inodes unconditional") in 2018. Hence, ./scripts/checkkconfigsymbols.py warns on non-existing symbols: ANON_INODES Referencing files: arch/riscv/kvm/Kconfig Remove selecting the non-existing config ANON_INODES. Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Message-Id: <20211022061514.25946-1-lukas.bulwahn@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Extract the zapping of rmaps, a.k.a. legacy MMU, for a gfn range to a separate helper to clean up the unholy mess that kvm_zap_gfn_range() has become. In addition to deep nesting, the rmaps zapping spreads out the declaration of several variables and is generally a mess. Clean up the mess now so that future work to improve the memslots implementation doesn't need to deal with it. Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211022010005.1454978-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Remove an unnecessary remote TLB flush in kvm_zap_gfn_range() now that said function holds mmu_lock for write for its entire duration. The flush was added by the now-reverted commit to allow TDP MMU to flush while holding mmu_lock for read, as the transition from write=>read required dropping the lock and thus a pending flush needed to be serviced. Fixes: 5a324c24 ("Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"") Cc: Maxim Levitsky <mlevitsk@redhat.com> Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Cc: Ben Gardon <bgardon@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211022010005.1454978-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
A recent commit to fix the calls to kvm_flush_remote_tlbs_with_address() in kvm_zap_gfn_range() inadvertantly added yet another flush instead of fixing the existing flush. Drop the redundant flush, and fix the params for the existing flush. Cc: stable@vger.kernel.org Fixes: 2822da44 ("KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address") Cc: Maxim Levitsky <mlevitsk@redhat.com> Cc: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211022010005.1454978-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
kvm_mmu_unload() destroys all the PGD caches. Use the lighter kvm_mmu_sync_roots() and kvm_mmu_sync_prev_roots() instead. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20211019110154.4091-5-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
The commit 578e1c4d ("kvm: x86: Avoid taking MMU lock in kvm_mmu_sync_roots if no sync is needed") added smp_wmb() in mmu_try_to_unsync_pages(), but the corresponding smp_load_acquire() isn't used on the load of SPTE.W. smp_load_acquire() orders _subsequent_ loads after sp->is_unsync; it does not order _earlier_ loads before the load of sp->is_unsync. This has no functional change; smp_rmb() is a NOP on x86, and no compiler barrier is required because there is a VMEXIT between the load of SPTE.W and kvm_mmu_snc_roots. Cc: Junaid Shahid <junaids@google.com> Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20211019110154.4091-4-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
The commit 21823fbd ("KVM: x86: Invalidate all PGDs for the current PCID on MOV CR3 w/ flush") invalidates all PGDs for the specific PCID and in the case of PCID is disabled, it includes all PGDs in the prev_roots and the commit made prev_roots totally unused in this case. Not using prev_roots fixes a problem when CR4.PCIDE is changed 0 -> 1 before the said commit: (CR4.PCIDE=0, CR4.PGE=1; CR3=cr3_a; the page for the guest RIP is global; cr3_b is cached in prev_roots) modify page tables under cr3_b the shadow root of cr3_b is unsync in kvm INVPCID single context the guest expects the TLB is clean for PCID=0 change CR4.PCIDE 0 -> 1 switch to cr3_b with PCID=0,NOFLUSH=1 No sync in kvm, cr3_b is still unsync in kvm jump to the page that was modified in step 1 shadow page tables point to the wrong page It is a very unlikely case, but it shows that stale prev_roots can be a problem after CR4.PCIDE changes from 0 to 1. However, to fix this case, the commit disabled caching CR3 in prev_roots altogether when PCID is disabled. Not all CPUs have PCID; especially the PCID support for AMD CPUs is kind of recent. To restore the prev_roots optimization for CR4.PCIDE=0, flush the whole MMU (including all prev_roots) when CR4.PCIDE changes. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20211019110154.4091-3-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
The KVM doesn't know whether any TLB for a specific pcid is cached in the CPU when tdp is enabled. So it is better to flush all the guest TLB when invalidating any single PCID context. The case is very rare or even impossible since KVM generally doesn't intercept CR3 write or INVPCID instructions when tdp is enabled, so the fix is mostly for the sake of overall robustness. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20211019110154.4091-2-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
X86_CR4_PGE doesn't participate in kvm_mmu_role, so the mmu context doesn't need to be reset. It is only required to flush all the guest tlb. It is also inconsistent that X86_CR4_PGE is in KVM_MMU_CR4_ROLE_BITS while kvm_mmu_role doesn't use X86_CR4_PGE. So X86_CR4_PGE is also removed from KVM_MMU_CR4_ROLE_BITS. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210919024246.89230-3-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Lai Jiangshan authored
X86_CR4_PCIDE doesn't participate in kvm_mmu_role, so the mmu context doesn't need to be reset. It is only required to flush all the guest tlb. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210919024246.89230-2-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Michael Roth authored
Recent kernels have checks to ensure the GPA values in special-purpose registers like CR3 are within the maximum physical address range and don't overlap with anything in the upper/reserved range. In the case of SEV kselftest guests booting directly into 64-bit mode, CR3 needs to be initialized to the GPA of the page table root, with the encryption bit set. The kernel accounts for this encryption bit by removing it from reserved bit range when the guest advertises the bit position via KVM_SET_CPUID*, but kselftests currently call KVM_SET_SREGS as part of vm_vcpu_add_default(), before KVM_SET_CPUID*. As a result, KVM_SET_SREGS will return an error in these cases. Address this by moving vcpu_set_cpuid() (which calls KVM_SET_CPUID*) ahead of vcpu_setup() (which calls KVM_SET_SREGS). While there, address a typo in the assertion that triggers when KVM_SET_SREGS fails. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Message-Id: <20211006203617.13045-1-michael.roth@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Nathan Tempelman <natet@google.com>
-
Wanpeng Li authored
SDM mentioned that, RDPMC: IF (((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0)) and (ECX indicates a supported counter)) THEN EAX := counter[31:0]; EDX := ZeroExtend(counter[MSCB:32]); ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *) #GP(0); FI; Let's add a comment why CR0.PE isn't tested since it's impossible for CPL to be >0 if CR0.PE=0. Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Message-Id: <1634724836-73721-1-git-send-email-wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Sean Christopherson authored
Paul pointed out the error messages when KVM fails to load are unhelpful in understanding exactly what went wrong if userspace probes the "wrong" module. Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel and kvm_amd, and use the name for relevant error message when KVM fails to load so that the user knows which module failed to load. Opportunistically tweak the "disabled by bios" error message to clarify that _support_ was disabled, not that the module itself was magically disabled by BIOS. Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211018183929.897461-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Junaid Shahid authored
Currently, the NX huge page recovery thread wakes up every minute and zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX huge pages at a time. This is intended to ensure that only a relatively small number of pages get zapped at a time. But for very large VMs (or more specifically, VMs with a large number of executable pages), a period of 1 minute could still result in this number being too high (unless the ratio is changed significantly, but that can result in split pages lingering on for too long). This change makes the period configurable instead of fixing it at 1 minute. Users of large VMs can then adjust the period and/or the ratio to reduce the number of pages zapped at one time while still maintaining the same overall duration for cycling through the entire list. By default, KVM derives a period from the ratio such that a page will remain on the list for 1 hour on average. Signed-off-by: Junaid Shahid <junaids@google.com> Message-Id: <20211020010627.305925-1-junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Wanpeng Li authored
SDM section 18.2.3 mentioned that: "IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-function counters via a single WRMSR." It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing, the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop global_ovf_ctrl variable. Tested-by: Like Xu <likexu@tencent.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
David Matlack authored
slot_handle_leaf is a misnomer because it only operates on 4K SPTEs whereas "leaf" is used to describe any valid terminal SPTE (4K or large page). Rename slot_handle_leaf to slot_handle_level_4k to avoid confusion. Making this change makes it more obvious there is a benign discrepency between the legacy MMU and the TDP MMU when it comes to dirty logging. The legacy MMU only iterates through 4K SPTEs when zapping for collapsing and when clearing D-bits. The TDP MMU, on the other hand, iterates through SPTEs on all levels. The TDP MMU behavior of zapping SPTEs at all levels is technically overkill for its current dirty logging implementation, which always demotes to 4k SPTES, but both the TDP MMU and legacy MMU zap if and only if the SPTE can be replaced by a larger page, i.e. will not spuriously zap 2m (or larger) SPTEs. Opportunistically add comments to explain this discrepency in the code. Signed-off-by: David Matlack <dmatlack@google.com> Message-Id: <20211019162223.3935109-1-dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiaoyao Li authored
Per Intel SDM, RTIT_CTL_BRANCH_EN bit has no dependency on any CPUID leaf 0x14. Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20210827070249.924633-5-xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiaoyao Li authored
To better self explain the meaning of this field and match the PT_CAP_num_address_ranges constatn. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiaoyao Li authored
The number of valid PT ADDR MSRs for the guest is precomputed in vmx->pt_desc.addr_range. Use it instead of calculating again. Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Xiaoyao Li authored
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary. Opportunistically refine the comment to call out that KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
"prefetch", "prefault" and "speculative" are used throughout KVM to mean the same thing. Use a single name, standardizing on "prefetch" which is already used by various functions such as direct_pte_prefetch, FNAME(prefetch_gpte), FNAME(pte_prefetch), etc. Suggested-by: David Matlack <dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
David Stevens authored
Unify the flags for rmaps and page tracking data, using a single flag in struct kvm_arch and a single loop to go over all the address spaces and memslots. This avoids code duplication between alloc_all_memslots_rmaps and kvm_page_track_enable_mmu_write_tracking. Signed-off-by: David Stevens <stevensd@chromium.org> [This patch is the delta between David's v2 and v3, with conflicts fixed and my own commit message. - Paolo] Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 18 Oct, 2021 13 commits
-
-
Oliver Upton authored
Introduce a KVM selftest to verify that userspace manipulation of the TSC (via the new vCPU attribute) results in the correct behavior within the guest. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181555.973085-6-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
vCPU file descriptors are abstracted away from test code in KVM selftests, meaning that tests cannot directly access a vCPU's device attributes. Add helpers that tests can use to get at vCPU device attributes. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181555.973085-5-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
The KVM_CREATE_DEVICE and KVM_{GET,SET}_DEVICE_ATTR ioctls are defined to return a value of zero on success. As such, tighten the assertions in the helper functions to only pass if the return code is zero. Suggested-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181555.973085-4-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
Add a selftest for the new KVM clock UAPI that was introduced. Ensure that the KVM clock is consistent between userspace and the guest, and that the difference in realtime will only ever cause the KVM clock to advance forward. Cc: Andrew Jones <drjones@redhat.com> Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181555.973085-3-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
Copy over approximately clean versions of the pvclock headers into tools. Reconcile headers/symbols missing in tools that are unneeded. Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181555.973085-2-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
To date, VMM-directed TSC synchronization and migration has been a bit messy. KVM has some baked-in heuristics around TSC writes to infer if the VMM is attempting to synchronize. This is problematic, as it depends on host userspace writing to the guest's TSC within 1 second of the last write. A much cleaner approach to configuring the guest's views of the TSC is to simply migrate the TSC offset for every vCPU. Offsets are idempotent, and thus not subject to change depending on when the VMM actually reads/writes values from/to KVM. The VMM can then read the TSC once with KVM_GET_CLOCK to capture a (realtime, host_tsc) pair at the instant when the guest is paused. Cc: David Matlack <dmatlack@google.com> Cc: Sean Christopherson <seanjc@google.com> Signed-off-by: Oliver Upton <oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210916181538.968978-8-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
Refactor kvm_synchronize_tsc to make a new function that allows callers to specify TSC parameters (offset, value, nanoseconds, etc.) explicitly for the sake of participating in TSC synchronization. Signed-off-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181538.968978-7-oupton@google.com> [Make sure kvm->arch.cur_tsc_generation and vcpu->arch.this_tsc_generation are equal at the end of __kvm_synchronize_tsc, if matched is false. Reported by Maxim Levitsky. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
Protect the reference point for kvmclock with a seqcount, so that kvmclock updates for all vCPUs can proceed in parallel. Xen runstate updates will also run in parallel and not bounce the kvmclock cacheline. Of the variables that were protected by pvclock_gtod_sync_lock, nr_vcpus_matched_tsc is different because it is updated outside pvclock_update_vm_gtod_copy and read inside it. Therefore, we need to keep it protected by a spinlock. In fact it must now be a raw spinlock, because pvclock_update_vm_gtod_copy, being the write-side of a seqcount, is non-preemptible. Since we already have tsc_write_lock which is a raw spinlock, we can just use tsc_write_lock as the lock that protects the write-side of the seqcount. Co-developed-by: Oliver Upton <oupton@google.com> Message-Id: <20210916181538.968978-6-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Oliver Upton authored
Handling the migration of TSCs correctly is difficult, in part because Linux does not provide userspace with the ability to retrieve a (TSC, realtime) clock pair for a single instant in time. In lieu of a more convenient facility, KVM can report similar information in the kvm_clock structure. Provide userspace with a host TSC & realtime pair iff the realtime clock is based on the TSC. If userspace provides KVM_SET_CLOCK with a valid realtime value, advance the KVM clock by the amount of elapsed time. Do not step the KVM clock backwards, though, as it is a monotonic oscillator. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Oliver Upton <oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210916181538.968978-5-oupton@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
This is a new warning in clang top-of-tree (will be clang 14): In file included from arch/x86/kvm/mmu/mmu.c:27: arch/x86/kvm/mmu/spte.h:318:9: error: use of bitwise '|' with boolean operands [-Werror,-Wbitwise-instead-of-logical] return __is_bad_mt_xwr(rsvd_check, spte) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ || arch/x86/kvm/mmu/spte.h:318:9: note: cast one or both operands to int to silence this warning The code is fine, but change it anyway to shut up this clever clogs of a compiler. Reported-by: torvic9@mailbox.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Paolo Bonzini authored
-
Paolo Bonzini authored
If allocation of rmaps fails, but some of the pointers have already been written, those pointers can be cleaned up when the memslot is freed, or even reused later for another attempt at allocating the rmaps. Therefore there is no need to WARN, as done for example in memslot_rmap_alloc, but the allocation *must* be skipped lest KVM will overwrite the previous pointer and will indeed leak memory. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
Andrei Vagin authored
This looks like a typo in 8f32d5e5. This change didn't intend to do any functional changes. The problem was caught by gVisor tests. Fixes: 8f32d5e5 ("KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code") Cc: Maxim Levitsky <mlevitsk@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Andrei Vagin <avagin@gmail.com> Message-Id: <20211015163221.472508-1-avagin@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-
- 15 Oct, 2021 2 commits
-
-
Paolo Bonzini authored
Merge tag 'kvmarm-fixes-5.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 5.15, take #2 - Properly refcount pages used as a concatenated stage-2 PGD - Fix missing unlock when detecting the use of MTE+VM_SHARED
-
Paolo Bonzini authored
The size of the data in the scratch buffer is not divided by the size of each port I/O operation, so vcpu->arch.pio.count ends up being larger than it should be by a factor of size. Cc: stable@vger.kernel.org Fixes: 7ed9abfe ("KVM: SVM: Support string IO operations for an SEV-ES guest") Acked-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-