- 09 Jun, 2023 40 commits
-
-
Thomas Gleixner authored
purge_fragmented_blocks() accesses vmap_block::free and vmap_block::dirty lockless for a quick check. Add the missing READ/WRITE_ONCE() annotations. Link: https://lkml.kernel.org/r/20230525124504.807356682@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Baoquan He <bhe@redhat.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Thomas Gleixner authored
vb_alloc() unconditionally locks a vmap_block on the free list to check the free space. This can be done locklessly because vmap_block::free never increases, it's only decreased on allocations. Check the free space lockless and only if that succeeds, recheck under the lock. Link: https://lkml.kernel.org/r/20230525124504.750481992@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Thomas Gleixner authored
vmap blocks which have active mappings cannot be purged. Allocations which have been freed are accounted for in vmap_block::dirty_min/max, so that they can be detected in _vm_unmap_aliases() as potentially stale TLBs. If there are several invocations of _vm_unmap_aliases() then each of them will flush the dirty range. That's pointless and just increases the probability of full TLB flushes. Avoid that by resetting the flush range after accounting for it. That's safe versus other invocations of _vm_unmap_aliases() because this is all serialized with vmap_purge_lock. Link: https://lkml.kernel.org/r/20230525124504.692056496@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Baoquan He <bhe@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Thomas Gleixner authored
_vunmap_aliases() walks the per CPU xarrays to find partially unmapped blocks and then walks the per cpu free lists to purge fragmented blocks. Arguably that's waste of CPU cycles and cache lines as the full xarray walk already touches every block. Avoid this double iteration: - Split out the code to purge one block and the code to free the local purge list into helper functions. - Try to purge the fragmented blocks in the xarray walk before looking at their dirty space. Link: https://lkml.kernel.org/r/20230525124504.633469722@linutronix.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Baoquan He <bhe@redhat.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Thomas Gleixner authored
Patch series "mm/vmalloc: Assorted fixes and improvements", v2. this series addresses the following issues: 1) Prevent the stale TLB problem related to fully utilized vmap blocks 2) Avoid the double per CPU list walk in _vm_unmap_aliases() 3) Avoid flushing dirty space over and over 4) Add a lockless quickcheck in vb_alloc() and add missing READ/WRITE_ONCE() annotations 5) Prevent overeager purging of usable vmap_blocks if not under memory/address space pressure. This patch (of 6): _vm_unmap_aliases() is used to ensure that no unflushed TLB entries for a page are left in the system. This is required due to the lazy TLB flush mechanism in vmalloc. This is tried to achieve by walking the per CPU free lists, but those do not contain fully utilized vmap blocks because they are removed from the free list once the blocks free space became zero. When the block is not fully unmapped then it is not on the purge list either. So neither the per CPU list iteration nor the purge list walk find the block and if the page was mapped via such a block and the TLB has not yet been flushed, the guarantee of _vm_unmap_aliases() that there are no stale TLBs after returning is broken: x = vb_alloc() // Removes vmap_block from free list because vb->free became 0 vb_free(x) // Unmaps page and marks in dirty_min/max range // Block has still mappings and is not put on purge list // Page is reused vm_unmap_aliases() // Can't find vmap block with the dirty space -> FAIL So instead of walking the per CPU free lists, walk the per CPU xarrays which hold pointers to _all_ active blocks in the system including those removed from the free lists. Link: https://lkml.kernel.org/r/20230525122342.109672430@linutronix.de Link: https://lkml.kernel.org/r/20230525124504.573987880@linutronix.de Fixes: db64fe02 ("mm: rewrite vmap layer") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Reviewed-by: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Jim Cromie authored
Drop the __init on kmemleak_test_init(). With it, the storage is reclaimed, but then the symbol isn't available for "%pS" rendering, and the backtrace gets a bare pointer where the actual leak happened. unreferenced object 0xffff88800a2b0800 (size 1024): comm "modprobe", pid 413, jiffies 4294953430 hex dump (first 32 bytes): 73 02 00 00 75 01 00 68 02 00 00 01 00 00 00 04 s...u..h........ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000fabad728>] kmalloc_trace+0x26/0x90 [<00000000ef738764>] 0xffffffffc02350a2 [<00000000004e5795>] do_one_initcall+0x43/0x210 [<00000000d768905e>] do_init_module+0x4a/0x210 [<0000000087135ab5>] __do_sys_finit_module+0x93/0xf0 [<000000004fcb1fa2>] do_syscall_64+0x34/0x80 [<00000000c73c8d9d>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 with __init gone, that trace entry renders like: [<00000000ef738764>] kmemleak_test_init+<offset>/<size> Link: https://lkml.kernel.org/r/20230525174356.69711-1-jim.cromie@gmail.comSigned-off-by: Jim Cromie <jim.cromie@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
T.J. Alumbaugh authored
Avoid passing memcg* and pglist_data* to lru_gen_test_recent() since we only use the lruvec anyway. Link: https://lkml.kernel.org/r/20230522112058.2965866-4-talumbau@google.comSigned-off-by: T.J. Alumbaugh <talumbau@google.com> Reviewed-by: Yuanchu Xie <yuanchu@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
T.J. Alumbaugh authored
Add helpers to page table walking code: - Clarifies intent via name "should_walk_mmu" and "should_clear_pmd_young" - Avoids repeating same logic in two places Link: https://lkml.kernel.org/r/20230522112058.2965866-3-talumbau@google.comSigned-off-by: T.J. Alumbaugh <talumbau@google.com> Reviewed-by: Yuanchu Xie <yuanchu@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
T.J. Alumbaugh authored
lru_gen_soft_reclaim() gets the lruvec from the memcg and node ID to keep a cleaner interface on the caller side. Link: https://lkml.kernel.org/r/20230522112058.2965866-2-talumbau@google.comSigned-off-by: T.J. Alumbaugh <talumbau@google.com> Reviewed-by: Yuanchu Xie <yuanchu@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
T.J. Alumbaugh authored
Use DECLARE_BITMAP macro when possible. Link: https://lkml.kernel.org/r/20230522112058.2965866-1-talumbau@google.comSigned-off-by: T.J. Alumbaugh <talumbau@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yuanchu Xie <yuanchu@google.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Haifeng Xu authored
Since commit f079a020 ("selftests: memcg: factor out common parts of memory.{low,min} tests"), the value used in second alloc_anon has changed from 148M to 170M. Because memory.low allows reclaiming page cache in child cgroups, so the memory.current is close to 30M instead of 50M. Therefore, adjust the expected value of parent cgroup. Link: https://lkml.kernel.org/r/20230522095233.4246-2-haifeng.xu@shopee.com Fixes: f079a020 ("selftests: memcg: factor out common parts of memory.{low,min} tests") Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Haifeng Xu authored
Replace 'then' with 'than'. Link: https://lkml.kernel.org/r/20230522095233.4246-1-haifeng.xu@shopee.comSigned-off-by: Haifeng Xu <haifeng.xu@shopee.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Andrew Morton authored
It is felt that the name mlock_future_check() is vague - it doesn't particularly convey the function's operation. mlock_future_ok() is a clearer name for a predicate function. Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Lorenzo Stoakes authored
In all but one instance, mlock_future_check() is treated as a boolean function despite returning an error code. In one instance, this error code is ignored and replaced with -ENOMEM. This is confusing, and the inversion of true -> failure, false -> success is not warranted. Convert the function to a bool, lightly refactor and return true if the check passes, false if not. Link: https://lkml.kernel.org/r/20230522082412.56685-1-lstoakes@gmail.comSigned-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
David Hildenbrand authored
Similar to the COW selftests, also use io_uring fixed buffers to test if long-term page pinning works as expected. Link: https://lkml.kernel.org/r/20230519102723.185721-4-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
David Hildenbrand authored
Let's add a new test for checking whether GUP long-term page pinning works as expected (R/O vs. R/W, MAP_PRIVATE vs. MAP_SHARED, GUP vs. GUP-fast). Note that COW handling with long-term R/O pinning in private mappings, and pinning of anonymous memory in general, is tested by the COW selftest. This test, therefore, focuses on page pinning in file mappings. The most interesting case is probably the "local tmpfile" case, as that will likely end up on a "real" filesystem such as ext4 or xfs, not on a virtual one like tmpfs or hugetlb where any long-term page pinning is always expected to succeed. For now, only add tests that use the "/sys/kernel/debug/gup_test" interface. We'll add tests based on liburing separately next. [akpm@linux-foundation.org: update .gitignore for gup_longterm, per Peter] Link: https://lkml.kernel.org/r/20230519102723.185721-3-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
David Hildenbrand authored
Patch series "selftests/mm: new test for FOLL_LONGTERM on file mappings". Let's add some selftests to make sure that: * R/O long-term pinning always works of file mappings * R/W long-term pinning always works in MAP_PRIVATE file mappings * R/W long-term pinning only works in MAP_SHARED mappings with special filesystems (shmem, hugetlb) and fails with other filesystems (ext4, btrfs, xfs). The tests make use of the gup_test kernel module to trigger ordinary GUP and GUP-fast, and liburing (similar to our COW selftests). Test with memfd, memfd hugetlb, tmpfile() and mkstemp(). The latter usually gives us a "real" filesystem (ext4, btrfs, xfs) where long-term pinning is expected to fail. Note that these selftests don't contain any actual reproducers for data corruptions in case R/W long-term pinning on problematic filesystems "would" work. Maybe we can later come up with a racy !FOLL_LONGTERM reproducer that can reuse an existing interface to trigger short-term pinning (I'll look into that next). On current mm/mm-unstable: # ./gup_longterm # [INFO] detected hugetlb page size: 2048 KiB # [INFO] detected hugetlb page size: 1048576 KiB TAP version 13 1..50 # [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd ok 1 Should have worked # [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with tmpfile ok 2 Should have worked # [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with local tmpfile ok 3 Should have failed # [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB) ok 4 Should have worked # [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB) ok 5 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd ok 6 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with tmpfile ok 7 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with local tmpfile ok 8 Should have failed # [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB) ok 9 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB) ok 10 Should have worked # [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd ok 11 Should have worked # [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with tmpfile ok 12 Should have worked # [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with local tmpfile ok 13 Should have worked # [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB) ok 14 Should have worked # [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB) ok 15 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd ok 16 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with tmpfile ok 17 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with local tmpfile ok 18 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB) ok 19 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB) ok 20 Should have worked # [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd ok 21 Should have worked # [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with tmpfile ok 22 Should have worked # [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with local tmpfile ok 23 Should have worked # [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB) ok 24 Should have worked # [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB) ok 25 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd ok 26 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with tmpfile ok 27 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with local tmpfile ok 28 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB) ok 29 Should have worked # [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB) ok 30 Should have worked # [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd ok 31 Should have worked # [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with tmpfile ok 32 Should have worked # [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with local tmpfile ok 33 Should have worked # [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB) ok 34 Should have worked # [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB) ok 35 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd ok 36 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with tmpfile ok 37 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with local tmpfile ok 38 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB) ok 39 Should have worked # [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB) ok 40 Should have worked # [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd ok 41 Should have worked # [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with tmpfile ok 42 Should have worked # [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with local tmpfile ok 43 Should have failed # [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd hugetlb (2048 kB) ok 44 Should have worked # [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB) ok 45 Should have worked # [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd ok 46 Should have worked # [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with tmpfile ok 47 Should have worked # [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with local tmpfile ok 48 Should have worked # [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB) ok 49 Should have worked # [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB) ok 50 Should have worked # Totals: pass:50 fail:0 xfail:0 xpass:0 skip:0 error:0 This patch (of 3): Let's factor detection out into vm_util, to be reused by a new test. Link: https://lkml.kernel.org/r/20230519102723.185721-1-david@redhat.com Link: https://lkml.kernel.org/r/20230519102723.185721-2-david@redhat.comSigned-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
During stress testing with higher-order allocations, a deadlock scenario was observed in compaction: One GFP_NOFS allocation was sleeping on mm/compaction.c::too_many_isolated(), while all CPUs in the system were busy with compactors spinning on buffer locks held by the sleeping GFP_NOFS allocation. Reclaim is susceptible to this same deadlock; we fixed it by granting GFP_NOFS allocations additional LRU isolation headroom, to ensure it makes forward progress while holding fs locks that other reclaimers might acquire. Do the same here. This code has been like this since compaction was initially merged, and I only managed to trigger this with out-of-tree patches that dramatically increase the contexts that do GFP_NOFS compaction. While the issue is real, it seems theoretical in nature given existing allocation sites. Worth fixing now, but no Fixes tag or stable CC. Link: https://lkml.kernel.org/r/20230519111359.40475-1-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
Since it only returns COMPACT_CONTINUE or COMPACT_SKIPPED now, a bool return value simplifies the callsites. Link: https://lkml.kernel.org/r/20230602151204.GD161817@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
The watermark check in compaction_zonelist_suitable(), called from should_compact_retry(), is sandwiched between two watermark checks already: before, there are freelist attempts as part of direct reclaim and direct compaction; after, there is a last-minute freelist attempt in __alloc_pages_may_oom(). The check in compaction_zonelist_suitable() isn't necessary. Kill it. Link: https://lkml.kernel.org/r/20230519123959.77335-6-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
Remove from all paths not reachable via /proc/sys/vm/compact_memory. Link: https://lkml.kernel.org/r/20230519123959.77335-5-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
__compaction_suitable() is supposed to check for available migration targets. However, it also checks whether the operation was requested via /proc/sys/vm/compact_memory, and whether the original allocation request can already succeed. These don't apply to all callsites. Move the checks out to the callers, so that later patches can deal with them one by one. No functional change intended. [hannes@cmpxchg.org: fix comment, per Vlastimil] Link: https://lkml.kernel.org/r/20230602144942.GC161817@cmpxchg.org Link: https://lkml.kernel.org/r/20230519123959.77335-4-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
The different branches for retry are unnecessarily complicated. There are really only three outcomes: progress (retry n times), skipped (retry if reclaim can help), failed (retry with higher priority). Rearrange the branches and the retry counter to make it simpler. [hannes@cmpxchg.org: restore behavior when hitting max_retries] Link: https://lkml.kernel.org/r/20230602144705.GB161817@cmpxchg.org Link: https://lkml.kernel.org/r/20230519123959.77335-3-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Johannes Weiner authored
Patch series "mm: compaction: cleanups & simplifications". These compaction cleanups are split out from the huge page allocator series[1], as requested by reviewer feedback. [1] https://lore.kernel.org/linux-mm/20230418191313.268131-1-hannes@cmpxchg.org/ This patch (of 5): The compaction result helpers encode quirks that are specific to the allocator's retry logic. E.g. COMPACT_SUCCESS and COMPACT_COMPLETE actually represent failures that should be retried upon, and so on. I frequently found myself pulling up the helper implementation in order to understand and work on the retry logic. They're not quite clean abstractions; rather they split the retry logic into two locations. Remove the helpers and inline the checks. Then comment on the result interpretations directly where the decision making happens. Link: https://lkml.kernel.org/r/20230519123959.77335-1-hannes@cmpxchg.org Link: https://lkml.kernel.org/r/20230519123959.77335-2-hannes@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Tom Rix authored
smatch reports mm/page_alloc.c:247:5: warning: symbol 'sysctl_lowmem_reserve_ratio' was not declared. Should it be static? This variable is only used in its defining file, so it should be static Link: https://lkml.kernel.org/r/20230518141119.927074-1-trix@redhat.comSigned-off-by: Tom Rix <trix@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
If the iterator has moved to the previous entry, then step forward one range, back to the gap. Link: https://lkml.kernel.org/r/20230518145544.1722059-36-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Add functionality to the VMA iterator to advance and retreat one offset within the maple tree, regardless of the value contained. This can lead to less re-walking to find an area of interest, especially when there is nothing in that offset. Link: https://lkml.kernel.org/r/20230518145544.1722059-35-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Now that the functions have changed the limits, update the testing of the maple tree to test these new settings. Link: https://lkml.kernel.org/r/20230518145544.1722059-34-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
When there is a single entry tree (range of 0-0 pointing to an entry), then ensure the limit is either 0-0 or 1-oo, depending on where the user walks. Ensure the correct node setting as well; either MAS_ROOT or MAS_NONE. Link: https://lkml.kernel.org/r/20230518145544.1722059-33-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Some users of the maple tree may want to move to the previous range regardless of the value stored there. Add this interface as well as the 'find' variant to support walking to the first value, then iterating over the previous ranges. Link: https://lkml.kernel.org/r/20230518145544.1722059-32-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Sometimes the user needs to revert to the previous slot, regardless of if it is empty or not. Add an interface to go to the previous slot. Since there can't be two consecutive NULLs in the tree, the mas_prev() function can be implemented by calling mas_prev_slot() a maximum of 2 times. Change the underlying interface to use mas_prev_slot() to align the code. Link: https://lkml.kernel.org/r/20230518145544.1722059-31-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
These functions need to move for future use. Link: https://lkml.kernel.org/r/20230518145544.1722059-30-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Some users of the maple tree may want to move to the next range in the tree, even if it stores a NULL. This family of function provides that functionality by advancing one slot at a time and returning the result, while mas_contiguous() will iterate over the range and stop on encountering the first NULL. Link: https://lkml.kernel.org/r/20230518145544.1722059-29-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Sometimes, during a tree walk, the user needs the next slot regardless of if it is empty or not. Add an interface to get the next slot. Since there are no consecutive NULLs allowed in the tree, the mas_next() function can only advance two slots at most. So use the new mas_next_slot() interface to align both implementations. Use this method for mas_find() as well. Link: https://lkml.kernel.org/r/20230518145544.1722059-28-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Empty area will return -EINVAL if the search window is smaller than the requested size. Fix the test case to check for this error code. Link: https://lkml.kernel.org/r/20230518145544.1722059-27-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Since the maple tree is inclusive in range, ensure that a range of 1 (min = max) works for searching for a gap in either direction, and make sure the size is at least 1 but not larger than the delta between min and max. This commit also updates the testing. Unfortunately there isn't a way to safely update the tests and code without a test failure. Link: https://lkml.kernel.org/r/20230518145544.1722059-26-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Suggested-by: Peng Zhang <zhangpeng.00@bytedance.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Keep a reference to the node when possible with mas_prev(). This will avoid re-walking the tree. In keeping a reference to the node, keep the last/index accurate to the range being referenced. This means the limit may be within the range, but the range may extend outside of the limit. Also fix the single entry tree to respect the range (of 0), or set the node to MAS_NONE in the case of shifting beyond 0. Link: https://lkml.kernel.org/r/20230518145544.1722059-25-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
Clean up the mas_next() call to try and keep a node reference when possible. This will avoid re-walking the tree in most cases. Also clean up the single entry tree handling to ensure index/last are consistent with what one would expect. (returning NULL with limit of 1-oo). Link: https://lkml.kernel.org/r/20230518145544.1722059-24-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
The maple tree iterator clean up is incompatible with the way do_vmi_align_munmap() expects it to behave. Update the expected behaviour to map now since the change will work currently. Link: https://lkml.kernel.org/r/20230518145544.1722059-23-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Peng Zhang <zhangpeng.00@bytedance.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-
Liam R. Howlett authored
When a dead node is detected, the depth has already been set to 1 so reset it to 0. Link: https://lkml.kernel.org/r/20230518145544.1722059-22-Liam.Howlett@oracle.comSigned-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Peng Zhang <zhangpeng.00@bytedance.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Vernon Yang <vernon2gm@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-