- 13 Jul, 2016 40 commits
-
-
Libin Yang authored
BugLink: http://bugs.launchpad.net/bugs/1596871 Defer to register acomp eld notifier until hdmi audio driver is fully ready. After registering eld notifier, gfx driver can use this callback function to notify audio driver the monitor connection event. However this action may happen when audio driver is adding the pins or doing other initialization. This is not always safe, however. For example, using per_pin->lock before the lock is initialized. Let's register the eld notifier after the initialization is done. Signed-off-by: Libin Yang <libin.yang@linux.intel.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> (backport from commit 790b415c) Signed-off-by: Hui Wang <hui.wang@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Libin Yang authored
BugLink: http://bugs.launchpad.net/bugs/1596871 To make sure audio_ptr is set before intel_audio_codec_enable() or intel_audio_codec_disable() calling pin_eld_notify(), this patch adds wmb barrier to prevent optimizing. Signed-off-by: Libin Yang <libin.yang@linux.intel.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> (cherry picked from commit ec75a940) Signed-off-by: Hui Wang <hui.wang@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Takashi Iwai authored
BugLink: http://bugs.launchpad.net/bugs/1596871 The ELD notification can be received asynchronously from the graphics side, and this may happen just at the moment the sound driver is processing the suspend or the resume, and it would confuse the whole procedure. Since the ELD and connection states are updated in anyway at the end of the resume, we can skip it when received during PM process. Signed-off-by: Takashi Iwai <tiwai@suse.de> (cherry picked from commit eb399d3c) Signed-off-by: Hui Wang <hui.wang@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Colin Ian King authored
BugLink: https://bugs.launchpad.net/bugs/1599257 Sync kernel with changes in spl 0.6.5.6-0ubuntu4 This delta just updates the spl splat test module (which is just used for regression testing), no core spl functionality is changed. The sync also pulls in some redhat spec files that landed in spl since the last sync, this are not used either but are included by the automated sync scripts. Signed-off-by: Colin Ian King <colin.king@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Ricardo Salveti authored
BugLink: http://bugs.launchpad.net/bugs/1597574Signed-off-by: Ricardo Salveti <rsalveti@rsalveti.net> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Acked-by: Christopher Arges <chris.j.arges@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Ricardo Salveti authored
BugLink: http://bugs.launchpad.net/bugs/1597573Signed-off-by: Ricardo Salveti <rsalveti@rsalveti.net> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Acked-by: Christopher Arges <chris.j.arges@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Colin Ian King authored
BugLink: http://bugs.launchpad.net/bugs/1586418 An ENOMEM when creating a pair tty in tty_ldisc_setup causes a null pointer dereference in devpts_kill_index because tty->link->driver_data is NULL. The oops was triggered with the pty stressor in stress-ng when in a low memory condition. tty_init_dev tries to clean up a tty_ldisc_setup ENOMEM error by calling release_tty, however, this ultimately tries to clean up the NULL pair'd tty in pty_unix98_remove, triggering the Oops. Add check to pty_unix98_remove to only clean up fsi if it is not NULL. Ooops: ops: 0000 [#1] SMP [ 23.020976] Modules linked in: ppdev snd_hda_codec_generic snd_hda_intel snd_hda_codec parport_pc snd_hda_core snd_hwdep parport snd_pcm input_leds joydev snd_timer serio_raw snd soundcore i2c_piix4 mac_hid ib_iser rdma_cm iw_cm ib_cm ib_core configfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi autofs4 btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c raid1 raid0 multipath linear crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel qxl aes_x86_64 ttm lrw gf128mul glue_helper ablk_helper drm_kms_helper cryptd syscopyarea sysfillrect psmouse sysimgblt floppy fb_sys_fops drm pata_acpi jitterentropy_rng drbg ansi_cprng [ 23.020978] CPU: 0 PID: 1452 Comm: stress-ng-pty Not tainted 4.7.0-rc4+ #2 [ 23.020978] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 [ 23.020979] task: ffff88007ba30000 ti: ffff880078ea8000 task.ti: ffff880078ea8000 [ 23.020981] RIP: 0010:[<ffffffff813f11ff>] [<ffffffff813f11ff>] ida_remove+0x1f/0x120 [ 23.020981] RSP: 0018:ffff880078eabb60 EFLAGS: 00010a03 [ 23.020982] RAX: 4444444444444567 RBX: 0000000000000000 RCX: 000000000000001f [ 23.020982] RDX: 000000000000014c RSI: 000000000000026f RDI: 0000000000000000 [ 23.020982] RBP: ffff880078eabb70 R08: 0000000000000004 R09: 0000000000000036 [ 23.020983] R10: 000000000000026f R11: 0000000000000000 R12: 000000000000026f [ 23.020983] R13: 000000000000026f R14: ffff88007c944b40 R15: 000000000000026f [ 23.020984] FS: 00007f9a2f3cc700(0000) GS:ffff88007fc00000(0000) knlGS:0000000000000000 [ 23.020984] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 23.020985] CR2: 0000000000000010 CR3: 000000006c81b000 CR4: 00000000001406f0 [ 23.020988] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 23.020988] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 23.020988] Stack: [ 23.020989] 0000000000000000 000000000000026f ffff880078eabb90 ffffffff812a5a99 [ 23.020990] 0000000000000000 00000000fffffff4 ffff880078eabba8 ffffffff814f9cbe [ 23.020991] ffff88007965c800 ffff880078eabbc8 ffffffff814eef43 fffffffffffffff4 [ 23.020991] Call Trace: [ 23.021000] [<ffffffff812a5a99>] devpts_kill_index+0x29/0x50 [ 23.021002] [<ffffffff814f9cbe>] pty_unix98_remove+0x2e/0x50 [ 23.021006] [<ffffffff814eef43>] release_tty+0xb3/0x1b0 [ 23.021007] [<ffffffff814f18d4>] tty_init_dev+0xd4/0x1c0 [ 23.021011] [<ffffffff814f9fae>] ptmx_open+0xae/0x190 [ 23.021013] [<ffffffff812254ef>] chrdev_open+0xbf/0x1b0 [ 23.021015] [<ffffffff8121d973>] do_dentry_open+0x203/0x310 [ 23.021016] [<ffffffff81225430>] ? cdev_put+0x30/0x30 [ 23.021017] [<ffffffff8121ee44>] vfs_open+0x54/0x80 [ 23.021018] [<ffffffff8122b8fc>] ? may_open+0x8c/0x100 [ 23.021019] [<ffffffff8122f26b>] path_openat+0x2eb/0x1440 [ 23.021020] [<ffffffff81230534>] ? putname+0x54/0x60 [ 23.021022] [<ffffffff814f6f97>] ? n_tty_ioctl_helper+0x27/0x100 [ 23.021023] [<ffffffff81231651>] do_filp_open+0x91/0x100 [ 23.021024] [<ffffffff81230596>] ? getname_flags+0x56/0x1f0 [ 23.021026] [<ffffffff8123fc66>] ? __alloc_fd+0x46/0x190 [ 23.021027] [<ffffffff8121f1e4>] do_sys_open+0x124/0x210 [ 23.021028] [<ffffffff8121f2ee>] SyS_open+0x1e/0x20 [ 23.021035] [<ffffffff81845576>] entry_SYSCALL_64_fastpath+0x1e/0xa8 [ 23.021044] Code: 63 28 45 31 e4 eb dd 0f 1f 44 00 00 55 4c 63 d6 48 ba 89 88 88 88 88 88 88 88 4c 89 d0 b9 1f 00 00 00 48 f7 e2 48 89 e5 41 54 53 <8b> 47 10 48 89 fb 8d 3c c5 00 00 00 00 48 c1 ea 09 b8 01 00 00 [ 23.021045] RIP [<ffffffff813f11ff>] ida_remove+0x1f/0x120 [ 23.021045] RSP <ffff880078eabb60> [ 23.021046] CR2: 0000000000000010 Signed-off-by: Colin Ian King <colin.king@canonical.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> (backport of upstream commit 5353ed8d) Signed-off-by: Colin Ian King <colin.king@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Pavel Rojtberg authored
BugLink: http://bugs.launchpad.net/bugs/1574102 otherwise we lose ff commands: https://github.com/paroj/xpad/issues/27Signed-off-by: Pavel Rojtberg <rojtberg@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> (cherry picked from commit 4efc6939) Signed-off-by: Joseph Salisbury <joseph.salisbury@canonical.com> Acked-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Sunil Goutham authored
BugLink: http://bugs.launchpad.net/bugs/1597867 Check for SMU RX local/remote faults along with SPU LINK status. Otherwise at times link is UP at our end but DOWN at link partner's side. Also due to an issue in BGX it's rarely seen that initialization doesn't happen properly and SMU RX reports faults with everything fine at SPU. This patch tries to reinitialize LMAC to fix it. Also fixed LMAC disable sequence to properly bring down link. Signed-off-by: Sunil Goutham <sgoutham@cavium.com> Signed-off-by: Tao Wang <tao.wang@cavium.com> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 3f4c68cf) Signed-off-by: dann frazier <dann.frazier@canonical.com> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Greg Kroah-Hartman authored
BugLink: http://bugs.launchpad.net/bugs/1596575Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Maarten Lankhorst authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit f2d580b9 upstream. It turns out that preserving framebuffers after the rmfb call breaks vmwgfx userspace. This was originally introduced because it was thought nobody relied on the behavior, but unfortunately it seems there are exceptions. drm_framebuffer_remove may fail with -EINTR now, so a straight revert is impossible. There is no way to remove the framebuffer from the lists and active planes without introducing a race because of the different locking requirements. Instead call drm_framebuffer_remove from a workqueue, which is unaffected by signals. Changes since v1: - Add comment. Changes since v2: - Add fastpath for refcount = 1. (danvet) Changes since v3: - Rebased. - Restore lastclose framebuffer removal too. Fixes: 13803132 ("drm/core: Preserve the framebuffer after removing it.") Testcase: kms_rmfb_basic References: https://lists.freedesktop.org/archives/dri-devel/2016-March/102876.html Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: David Herrmann <dh.herrmann@gmail.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Tested-by: Thomas Hellstrom <thellstrom@vmware.com> #v3 Tested-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/6c63ca37-0e7e-ac7f-a6d2-c7822e3d611f@linux.intel.comSigned-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Tadeusz Struk authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 6dc5df71 upstream. Fix undefined reference issue reported by kbuild test robot. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Ralf Baechle authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit d7de4134 upstream. TASK_SIZE was defined as 0x7fff8000UL which for 64k pages is not a multiple of the page size. Somewhere further down the math fails such that executing an ELF binary fails. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Tested-by: Joshua Henderson <joshua.henderson@microchip.com> Cc: James Hogan <james.hogan@imgtec.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
David S. Miller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 7cafc0b8 ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
David S. Miller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit d11c2a0d ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
David S. Miller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 9ea46abe ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Nitin Gupta authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 24e49ee3 ] During hugepage map/unmap, TSB and TLB flushes are currently issued at every PAGE_SIZE'd boundary which is unnecessary. We now issue the flush at REAL_HPAGE_SIZE boundaries only. Without this patch workloads which unmap a large hugepage backed VMA region get CPU lockups due to excessive TLB flush calls. Orabug: 22365539, 22643230, 22995196 Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Babu Moger authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit d0c31e02 ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
David S. Miller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 397d1533 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Nitin Gupta authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 36beca65 ] Orabug: 22495713 Currently, NUMA node distance matrix is initialized only when a machine descriptor (MD) exists. However, sun4u machines (e.g. Sun Blade 2500) do not have an MD and thus distance values were left uninitialized. The initialization is now moved such that it happens on both sun4u and sun4v. Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
David S. Miller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 49fa5230 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b953 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Mike Frysinger authored
BugLink: http://bugs.launchpad.net/bugs/1596575 [ Upstream commit 1a40b953 ] A system call trace trigger on entry allows the tracing process to inspect and potentially change the traced process's registers. Account for that by reloading the %g1 (syscall number) and %i0-%i5 (syscall argument) values. We need to be careful to revalidate the range of %g1, and reload the system call table entry it corresponds to into %l7. Reported-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net> Tested-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Al Viro authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 3d56c25e upstream. Ascend-to-parent logics in d_walk() depends on all encountered child dentries not getting freed without an RCU delay. Unfortunately, in quite a few cases it is not true, with hard-to-hit oopsable race as the result. Fortunately, the fix is simiple; right now the rule is "if it ever been hashed, freeing must be delayed" and changing it to "if it ever had a parent, freeing must be delayed" closes that hole and covers all cases the old rule used to cover. Moreover, pipes and sockets remain _not_ covered, so we do not introduce RCU delay in the cases which are the reason for having that delay conditional in the first place. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Andy Lutomirski authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit aaee8c3c upstream. Forcing in_interrupt() to return true if we're not in a bona fide interrupt confuses the softirq code. This fixes warnings like: NOHZ: local_softirq_pending 282 ... which can happen when running things like selftests/x86. This will change perf's static percpu buffer usage in IST context. I think this is okay, and it's changing the behavior to match historical (pre-4.0) behavior. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 95927475 ("x86, traps: Track entry into and exit from IST context") Link: http://lkml.kernel.org/r/cdc215f94d118d691d73df35275022331156fb45.1464130360.git.luto@kernel.orgSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Prasun Maiti authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 3d5fdff4 upstream. iwpriv app uses iw_point structure to send data to Kernel. The iw_point structure holds a pointer. For compatibility Kernel converts the pointer as required for WEXT IOCTLs (SIOCIWFIRST to SIOCIWLAST). Some drivers may use iw_handler_def.private_args to populate iwpriv commands instead of iw_handler_def.private. For those case, the IOCTLs from SIOCIWFIRSTPRIV to SIOCIWLASTPRIV will follow the path ndo_do_ioctl(). Accordingly when the filled up iw_point structure comes from 32 bit iwpriv to 64 bit Kernel, Kernel will not convert the pointer and sends it to driver. So, the driver may get the invalid data. The pointer conversion for the IOCTLs (SIOCIWFIRSTPRIV to SIOCIWLASTPRIV), which follow the path ndo_do_ioctl(), is mandatory. This patch adds pointer conversion from 32 bit to 64 bit and vice versa, if the ioctl comes from 32 bit iwpriv to 64 bit Kernel. Signed-off-by: Prasun Maiti <prasunmaiti87@gmail.com> Signed-off-by: Ujjal Roy <royujjal@gmail.com> Tested-by: Dibyajyoti Ghosh <dibyajyotig@gmail.com> Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Tejun Heo authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 3a06bb78 upstream. memcg_offline_kmem() may be called from memcg_free_kmem() after a css init failure. memcg_free_kmem() is a ->css_free callback which is called without cgroup_mutex and memcg_offline_kmem() ends up using css_for_each_descendant_pre() without any locking. Fix it by adding rcu read locking around it. mkdir: cannot create directory `65530': No space left on device =============================== [ INFO: suspicious RCU usage. ] 4.6.0-work+ #321 Not tainted ------------------------------- kernel/cgroup.c:4008 cgroup_mutex or RCU read lock required! [ 527.243970] other info that might help us debug this: [ 527.244715] rcu_scheduler_active = 1, debug_locks = 0 2 locks held by kworker/0:5/1664: #0: ("cgroup_destroy"){.+.+..}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0 #1: ((&css->destroy_work)#3){+.+...}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0 [ 527.248098] stack backtrace: CPU: 0 PID: 1664 Comm: kworker/0:5 Not tainted 4.6.0-work+ #321 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014 Workqueue: cgroup_destroy css_free_work_fn Call Trace: dump_stack+0x68/0xa1 lockdep_rcu_suspicious+0xd7/0x110 css_next_descendant_pre+0x7d/0xb0 memcg_offline_kmem.part.44+0x4a/0xc0 mem_cgroup_css_free+0x1ec/0x200 css_free_work_fn+0x49/0x5e0 process_one_work+0x1c5/0x4a0 worker_thread+0x49/0x490 kthread+0xea/0x100 ret_from_fork+0x1f/0x40 Link: http://lkml.kernel.org/r/20160526203018.GG23194@mtj.duckdns.orgSigned-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Helge Deller authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 8b78f260 upstream. One of the debian buildd servers had this crash in the syslog without any other information: Unaligned handler failed, ret = -2 clock_adjtime (pid 22578): Unaligned data reference (code 28) CPU: 1 PID: 22578 Comm: clock_adjtime Tainted: G E 4.5.0-2-parisc64-smp #1 Debian 4.5.4-1 task: 000000007d9960f8 ti: 00000001bde7c000 task.ti: 00000001bde7c000 YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI PSW: 00001000000001001111100000001111 Tainted: G E r00-03 000000ff0804f80f 00000001bde7c2b0 00000000402d2be8 00000001bde7c2b0 r04-07 00000000409e1fd0 00000000fa6f7fff 00000001bde7c148 00000000fa6f7fff r08-11 0000000000000000 00000000ffffffff 00000000fac9bb7b 000000000002b4d4 r12-15 000000000015241c 000000000015242c 000000000000002d 00000000fac9bb7b r16-19 0000000000028800 0000000000000001 0000000000000070 00000001bde7c218 r20-23 0000000000000000 00000001bde7c210 0000000000000002 0000000000000000 r24-27 0000000000000000 0000000000000000 00000001bde7c148 00000000409e1fd0 r28-31 0000000000000001 00000001bde7c320 00000001bde7c350 00000001bde7c218 sr00-03 0000000001200000 0000000001200000 0000000000000000 0000000001200000 sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000 IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000402d2e84 00000000402d2e88 IIR: 0ca0d089 ISR: 0000000001200000 IOR: 00000000fa6f7fff CPU: 1 CR30: 00000001bde7c000 CR31: ffffffffffffffff ORIG_R28: 00000002369fe628 IAOQ[0]: compat_get_timex+0x2dc/0x3c0 IAOQ[1]: compat_get_timex+0x2e0/0x3c0 RP(r2): compat_get_timex+0x40/0x3c0 Backtrace: [<00000000402d4608>] compat_SyS_clock_adjtime+0x40/0xc0 [<0000000040205024>] syscall_exit+0x0/0x14 This means the userspace program clock_adjtime called the clock_adjtime() syscall and then crashed inside the compat_get_timex() function. Syscalls should never crash programs, but instead return EFAULT. The IIR register contains the executed instruction, which disassebles into "ldw 0(sr3,r5),r9". This load-word instruction is part of __get_user() which tried to read the word at %r5/IOR (0xfa6f7fff). This means the unaligned handler jumped in. The unaligned handler is able to emulate all ldw instructions, but it fails if it fails to read the source e.g. because of page fault. The following program reproduces the problem: #define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include <sys/mman.h> int main(void) { /* allocate 8k */ char *ptr = mmap(NULL, 2*4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); /* free second half (upper 4k) and make it invalid. */ munmap(ptr+4096, 4096); /* syscall where first int is unaligned and clobbers into invalid memory region */ /* syscall should return EFAULT */ return syscall(__NR_clock_adjtime, 0, ptr+4095); } To fix this issue we simply need to check if the faulting instruction address is in the exception fixup table when the unaligned handler failed. If it is, call the fixup routine instead of crashing. While looking at the unaligned handler I found another issue as well: The target register should not be modified if the handler was unsuccessful. Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
hongkun.cao authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 5edf673d upstream. When a dual-edge irq is triggered, an incorrect irq will be reported on condition that the external signal is not stable and this incorrect irq has been registered. Correct the register offset. Signed-off-by: Hongkun Cao <hongkun.cao@mediatek.com> Reviewed-by: Matthias Brugger <matthias.bgg@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Thomas Huth authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 7cc85103 upstream. If we do not provide the PVR for POWER8NVL, a guest on this system currently ends up in PowerISA 2.06 compatibility mode on KVM, since QEMU does not provide a generic PowerISA 2.07 mode yet. So some new instructions from POWER8 (like "mtvsrd") get disabled for the guest, resulting in crashes when using code compiled explicitly for POWER8 (e.g. with the "-mcpu=power8" option of GCC). Fixes: ddee09c0 ("powerpc: Add PVR for POWER8NVL processor") Signed-off-by: Thomas Huth <thuth@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Thomas Huth authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 8dd75ccb upstream. We are already using the privileged versions of MMCR0, MMCR1 and MMCRA in the kernel, so for MMCR2, we should better use the privileged versions, too, to be consistent. Fixes: 240686c1 ("powerpc: Initialise PMU related regs on Power8") Suggested-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Thomas Huth <thuth@redhat.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Thomas Huth authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit d23fac2b upstream. The SIAR and SDAR registers are available twice, one time as SPRs 780 / 781 (unprivileged, but read-only), and one time as the SPRs 796 / 797 (privileged, but read and write). The Linux kernel code currently uses the unprivileged SPRs - while this is OK for reading, writing to that register of course does not work. Since the KVM code tries to write to this register, too (see the mtspr in book3s_hv_rmhandlers.S), the contents of this register sometimes get lost for the guests, e.g. during migration of a VM. To fix this issue, simply switch to the privileged SPR numbers instead. Signed-off-by: Thomas Huth <thuth@redhat.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Russell Currey authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 871e178e upstream. In the "ibm,configure-pe" and "ibm,configure-bridge" RTAS calls, the spec states that values of 9900-9905 can be returned, indicating that software should delay for 10^x (where x is the last digit, i.e. 990x) milliseconds and attempt the call again. Currently, the kernel doesn't know about this, and respecting it fixes some PCI failures when the hypervisor is busy. The delay is capped at 0.2 seconds. Signed-off-by: Russell Currey <ruscur@russell.cc> Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Will Deacon authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 0106d456 upstream. Commit 66dbd6e6 ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM") ensured that pte flags are updated atomically in the face of potential concurrent, hardware-assisted updates. However, Alex reports that: | This patch breaks swapping for me. | In the broken case, you'll see either systemd cpu time spike (because | it's stuck in a page fault loop) or the system hang (because the | application owning the screen is stuck in a page fault loop). It turns out that this is because the 'dirty' argument to ptep_set_access_flags is always 0 for read faults, and so we can't use it to set PTE_RDONLY. The failing sequence is: 1. We put down a PTE_WRITE | PTE_DIRTY | PTE_AF pte 2. Memory pressure -> pte_mkold(pte) -> clear PTE_AF 3. A read faults due to the missing access flag 4. ptep_set_access_flags is called with dirty = 0, due to the read fault 5. pte is then made PTE_WRITE | PTE_DIRTY | PTE_AF | PTE_RDONLY (!) 6. A write faults, but pte_write is true so we get stuck The solution is to check the new page table entry (as would be done by the generic, non-atomic definition of ptep_set_access_flags that just calls set_pte_at) to establish the dirty state. Fixes: 66dbd6e6 ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM") Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Alexander Graf <agraf@suse.de> Tested-by: Alexander Graf <agraf@suse.de> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Catalin Marinas authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit e47b020a upstream. This patch brings the PER_LINUX32 /proc/cpuinfo format more in line with the 32-bit ARM one by providing an additional line: model name : ARMv8 Processor rev X (v8l) Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Tom Lendacky authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit ab6a11a7 upstream. The ccp-crypto module for AES XTS support has a bug that can allow requests greater than 4096 bytes in size to be passed to the CCP hardware. The CCP hardware does not support request sizes larger than 4096, resulting in incorrect output. The request should actually be handled by the fallback mechanism instantiated by the ccp-crypto module. Add a check to insure the request size is less than or equal to the maximum supported size and use the fallback mechanism if it is not. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Arnd Bergmann authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit bad6a185 upstream. In some rare randconfig builds, we can end up with ASYMMETRIC_PUBLIC_KEY_SUBTYPE enabled but CRYPTO_AKCIPHER disabled, which fails to link because of the reference to crypto_alloc_akcipher: crypto/built-in.o: In function `public_key_verify_signature': :(.text+0x110e4): undefined reference to `crypto_alloc_akcipher' This adds a Kconfig 'select' statement to ensure the dependency is always there. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Marc Zyngier authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit dd5f1b04 upstream. The INTID mask is wrong, and is made a signed value, which has nteresting effects in the KVM emulation. Let's sanitize it. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Michael Holzheu authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 0fa96355 upstream. The s390 BFP compiler currently uses relative branch instructions that only support jumps up to 64 KB. Examples are "j", "jnz", "cgrj", etc. Currently the maximum size of s390 BPF programs is set to 0x7ffff. If branches over 64 KB are generated the, kernel can crash due to incorrect code. So fix this an reduce the maximum size to 64 KB. Programs larger than that will be interpreted. Fixes: ce2b6ad9 ("s390/bpf: increase BPF_SIZE_MAX") Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Michael Holzheu authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit 6edf0aa4 upstream. In case of usage of skb_vlan_push/pop, in the prologue we store the SKB pointer on the stack and restore it after BPF_JMP_CALL to skb_vlan_push/pop. Unfortunately currently there are two bugs in the code: 1) The wrong stack slot (offset 170 instead of 176) is used 2) The wrong register (W1 instead of B1) is saved So fix this and use correct stack slot and register. Fixes: 9db7f2b8 ("s390/bpf: recache skb->data/hlen for skb_vlan_push/pop") Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-
Ben Dooks authored
BugLink: http://bugs.launchpad.net/bugs/1596575 commit b66b2a0a upstream. The bcm_kona_gpio_reset() calls bcm_kona_gpio_write_lock_regs() with what looks like the wrong parameter. The write_lock_regs function takes a pointer to the registers, not the bcm_kona_gpio structure. Fix the warning, and probably bug by changing the function to pass reg_base instead of kona_gpio, fixing the following warning: drivers/gpio/gpio-bcm-kona.c:550:47: warning: incorrect type in argument 1 (different address spaces) expected void [noderef] <asn:2>*reg_base got struct bcm_kona_gpio *kona_gpio warning: incorrect type in argument 1 (different address spaces) expected void [noderef] <asn:2>*reg_base got struct bcm_kona_gpio *kona_gpio Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk> Acked-by: Ray Jui <ray.jui@broadcom.com> Reviewed-by: Markus Mayer <mmayer@broadcom.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Kamal Mostafa <kamal@canonical.com>
-