- 27 Aug, 2014 39 commits
-
-
Christoph Lameter authored
SLUB can alias multiple slab kmem_create_requests to one slab cache to save memory and increase the cache hotness. As a result the name of the slab can be stale. Only check the name for duplicates if we are in debug mode where we do not merge multiple caches. This fixes the following problem reported by Jonathan Brassow: The problem with kmem_cache* is this: *) Assume CONFIG_SLUB is set 1) kmem_cache_create(name="foo-a") - creates new kmem_cache structure 2) kmem_cache_create(name="foo-b") - If identical cache characteristics, it will be merged with the previously created cache associated with "foo-a". The cache's refcount will be incremented and an alias will be created via sysfs_slab_alias(). 3) kmem_cache_destroy(<ptr>) - Attempting to destroy cache associated with "foo-a", but instead the refcount is simply decremented. I don't even think the sysfs aliases are ever removed... 4) kmem_cache_create(name="foo-a") - This FAILS because kmem_cache_sanity_check colides with the existing name ("foo-a") associated with the non-removed cache. This is a problem for RAID (specifically dm-raid) because the name used for the kmem_cache_create is ("raid%d-%p", level, mddev). If the cache persists for long enough, the memory address of an old mddev will be reused for a new mddev - causing an identical formulation of the cache name. Even though kmem_cache_destory had long ago been used to delete the old cache, the merging of caches has cause the name and cache of that old instance to be preserved and causes a colision (and thus failure) in kmem_cache_create(). I see this regularly in my testing. Reported-by:
Jonathan Brassow <jbrassow@redhat.com> Signed-off-by:
Christoph Lameter <cl@linux.com> Signed-off-by:
Pekka Enberg <penberg@kernel.org> (cherry picked from commit 3e374919) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Tejun Heo authored
While a queue is being destroyed, all the blkgs are destroyed and its ->root_blkg pointer is set to NULL. If someone else starts to drain while the queue is in this state, the following oops happens. NULL pointer dereference at 0000000000000028 IP: [<ffffffff8144e944>] blk_throtl_drain+0x84/0x230 PGD e4a1067 PUD b773067 PMD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: cfq_iosched(-) [last unloaded: cfq_iosched] CPU: 1 PID: 537 Comm: bash Not tainted 3.16.0-rc3-work+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff88000e222250 ti: ffff88000efd4000 task.ti: ffff88000efd4000 RIP: 0010:[<ffffffff8144e944>] [<ffffffff8144e944>] blk_throtl_drain+0x84/0x230 RSP: 0018:ffff88000efd7bf0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: ffff880015091450 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88000efd7c10 R08: 0000000000000000 R09: 0000000000000001 R10: ffff88000e222250 R11: 0000000000000000 R12: ffff880015091450 R13: ffff880015092e00 R14: ffff880015091d70 R15: ffff88001508fc28 FS: 00007f1332650740(0000) GS:ffff88001fa80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000028 CR3: 0000000009446000 CR4: 00000000000006e0 Stack: ffffffff8144e8f6 ffff880015091450 0000000000000000 ffff880015091d80 ffff88000efd7c28 ffffffff8144ae2f ffff880015091450 ffff88000efd7c58 ffffffff81427641 ffff880015091450 ffffffff82401f00 ffff880015091450 Call Trace: [<ffffffff8144ae2f>] blkcg_drain_queue+0x1f/0x60 [<ffffffff81427641>] __blk_drain_queue+0x71/0x180 [<ffffffff81429b3e>] blk_queue_bypass_start+0x6e/0xb0 [<ffffffff814498b8>] blkcg_deactivate_policy+0x38/0x120 [<ffffffff8144ec44>] blk_throtl_exit+0x34/0x50 [<ffffffff8144aea5>] blkcg_exit_queue+0x35/0x40 [<ffffffff8142d476>] blk_release_queue+0x26/0xd0 [<ffffffff81454968>] kobject_cleanup+0x38/0x70 [<ffffffff81454848>] kobject_put+0x28/0x60 [<ffffffff81427505>] blk_put_queue+0x15/0x20 [<ffffffff817d07bb>] scsi_device_dev_release_usercontext+0x16b/0x1c0 [<ffffffff810bc339>] execute_in_process_context+0x89/0xa0 [<ffffffff817d064c>] scsi_device_dev_release+0x1c/0x20 [<ffffffff817930e2>] device_release+0x32/0xa0 [<ffffffff81454968>] kobject_cleanup+0x38/0x70 [<ffffffff81454848>] kobject_put+0x28/0x60 [<ffffffff817934d7>] put_device+0x17/0x20 [<ffffffff817d11b9>] __scsi_remove_device+0xa9/0xe0 [<ffffffff817d121b>] scsi_remove_device+0x2b/0x40 [<ffffffff817d1257>] sdev_store_delete+0x27/0x30 [<ffffffff81792ca8>] dev_attr_store+0x18/0x30 [<ffffffff8126f75e>] sysfs_kf_write+0x3e/0x50 [<ffffffff8126ea87>] kernfs_fop_write+0xe7/0x170 [<ffffffff811f5e9f>] vfs_write+0xaf/0x1d0 [<ffffffff811f69bd>] SyS_write+0x4d/0xc0 [<ffffffff81d24692>] system_call_fastpath+0x16/0x1b 776687bc ("block, blk-mq: draining can't be skipped even if bypass_depth was non-zero") made it easier to trigger this bug by making blk_queue_bypass_start() drain even when it loses the first bypass test to blk_cleanup_queue(); however, the bug has always been there even before the commit as blk_queue_bypass_start() could race against queue destruction, win the initial bypass test but perform the actual draining after blk_cleanup_queue() already destroyed all blkgs. Fix it by skippping calling into policy draining if all the blkgs are already gone. Signed-off-by:
Tejun Heo <tj@kernel.org> Reported-by:
Shirish Pargaonkar <spargaonkar@suse.com> Reported-by:
Sasha Levin <sasha.levin@oracle.com> Reported-by:
Jet Chen <jet.chen@intel.com> Cc: stable@vger.kernel.org Tested-by:
Shirish Pargaonkar <spargaonkar@suse.com> Signed-off-by:
Jens Axboe <axboe@fb.com> Revert "bio: modify __bio_add_page() to accept pages that don't start a new segment" This reverts commit 254c4407. It causes crashes with cryptsetup, even after a few iterations and updates. Drop it for now. blkcg: don't call into policy draining if root_blkg is already gone While a queue is being destroyed, all the blkgs are destroyed and its ->root_blkg pointer is set to NULL. If someone else starts to drain while the queue is in this state, the following oops happens. NULL pointer dereference at 0000000000000028 IP: [<ffffffff8144e944>] blk_throtl_drain+0x84/0x230 PGD e4a1067 PUD b773067 PMD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: cfq_iosched(-) [last unloaded: cfq_iosched] CPU: 1 PID: 537 Comm: bash Not tainted 3.16.0-rc3-work+ #2 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff88000e222250 ti: ffff88000efd4000 task.ti: ffff88000efd4000 RIP: 0010:[<ffffffff8144e944>] [<ffffffff8144e944>] blk_throtl_drain+0x84/0x230 RSP: 0018:ffff88000efd7bf0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: ffff880015091450 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88000efd7c10 R08: 0000000000000000 R09: 0000000000000001 R10: ffff88000e222250 R11: 0000000000000000 R12: ffff880015091450 R13: ffff880015092e00 R14: ffff880015091d70 R15: ffff88001508fc28 FS: 00007f1332650740(0000) GS:ffff88001fa80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000028 CR3: 0000000009446000 CR4: 00000000000006e0 Stack: ffffffff8144e8f6 ffff880015091450 0000000000000000 ffff880015091d80 ffff88000efd7c28 ffffffff8144ae2f ffff880015091450 ffff88000efd7c58 ffffffff81427641 ffff880015091450 ffffffff82401f00 ffff880015091450 Call Trace: [<ffffffff8144ae2f>] blkcg_drain_queue+0x1f/0x60 [<ffffffff81427641>] __blk_drain_queue+0x71/0x180 [<ffffffff81429b3e>] blk_queue_bypass_start+0x6e/0xb0 [<ffffffff814498b8>] blkcg_deactivate_policy+0x38/0x120 [<ffffffff8144ec44>] blk_throtl_exit+0x34/0x50 [<ffffffff8144aea5>] blkcg_exit_queue+0x35/0x40 [<ffffffff8142d476>] blk_release_queue+0x26/0xd0 [<ffffffff81454968>] kobject_cleanup+0x38/0x70 [<ffffffff81454848>] kobject_put+0x28/0x60 [<ffffffff81427505>] blk_put_queue+0x15/0x20 [<ffffffff817d07bb>] scsi_device_dev_release_usercontext+0x16b/0x1c0 [<ffffffff810bc339>] execute_in_process_context+0x89/0xa0 [<ffffffff817d064c>] scsi_device_dev_release+0x1c/0x20 [<ffffffff817930e2>] device_release+0x32/0xa0 [<ffffffff81454968>] kobject_cleanup+0x38/0x70 [<ffffffff81454848>] kobject_put+0x28/0x60 [<ffffffff817934d7>] put_device+0x17/0x20 [<ffffffff817d11b9>] __scsi_remove_device+0xa9/0xe0 [<ffffffff817d121b>] scsi_remove_device+0x2b/0x40 [<ffffffff817d1257>] sdev_store_delete+0x27/0x30 [<ffffffff81792ca8>] dev_attr_store+0x18/0x30 [<ffffffff8126f75e>] sysfs_kf_write+0x3e/0x50 [<ffffffff8126ea87>] kernfs_fop_write+0xe7/0x170 [<ffffffff811f5e9f>] vfs_write+0xaf/0x1d0 [<ffffffff811f69bd>] SyS_write+0x4d/0xc0 [<ffffffff81d24692>] system_call_fastpath+0x16/0x1b 776687bc ("block, blk-mq: draining can't be skipped even if bypass_depth was non-zero") made it easier to trigger this bug by making blk_queue_bypass_start() drain even when it loses the first bypass test to blk_cleanup_queue(); however, the bug has always been there even before the commit as blk_queue_bypass_start() could race against queue destruction, win the initial bypass test but perform the actual draining after blk_cleanup_queue() already destroyed all blkgs. Fix it by skippping calling into policy draining if all the blkgs are already gone. Signed-off-by:
Tejun Heo <tj@kernel.org> Reported-by:
Shirish Pargaonkar <spargaonkar@suse.com> Reported-by:
Sasha Levin <sasha.levin@oracle.com> Reported-by:
Jet Chen <jet.chen@intel.com> Cc: stable@vger.kernel.org Tested-by:
Shirish Pargaonkar <spargaonkar@suse.com> Signed-off-by:
Jens Axboe <axboe@fb.com> bio: modify __bio_add_page() to accept pages that don't start a new segment The original behaviour is to refuse to add a new page if the maximum number of segments has been reached, regardless of the fact the page we are going to add can be merged into the last segment or not. Unfortunately, when the system runs under heavy memory fragmentation conditions, a driver may try to add multiple pages to the last segment. The original code won't accept them and EBUSY will be reported to userspace. This patch modifies the function so it refuses to add a page only in case the latter starts a new segment and the maximum number of segments has already been reached. The bug can be easily reproduced with the st driver: 1) set CONFIG_SCSI_MPT2SAS_MAX_SGE or CONFIG_SCSI_MPT3SAS_MAX_SGE to 16 2) modprobe st buffer_kbs=1024 3) #dd if=/dev/zero of=/dev/st0 bs=1M count=10 dd: error writing `/dev/st0': Device or resource busy [ming.lei@canonical.com: update bi_iter.bi_size before recounting segments] Signed-off-by:
Maurizio Lombardi <mlombard@redhat.com> Signed-off-by:
Ming Lei <ming.lei@canonical.com> Tested-by:
Dongsu Park <dongsu.park@profitbricks.com> Tested-by:
Jet Chen <jet.chen@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Jens Axboe <axboe@fb.com> block: fix SG_[GS]ET_RESERVED_SIZE ioctl when max_sectors is huge SG_GET_RESERVED_SIZE and SG_SET_RESERVED_SIZE ioctls access a reserved buffer in bytes as int type. The value needs to be capped at the request queue's max_sectors. But integer overflow is not correctly handled in the calculation when converting max_sectors from sectors to bytes. Signed-off-by:
Akinobu Mita <akinobu.mita@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: linux-scsi@vger.kernel.org Reviewed-by:
Christoph Hellwig <hch@lst.de> Signed-off-by:
Jens Axboe <axboe@fb.com> block: fix BLKSECTGET ioctl when max_sectors is greater than USHRT_MAX BLKSECTGET ioctl loads the request queue's max_sectors as unsigned short value to the argument pointer. So if the max_sector is greater than USHRT_MAX, the upper 16 bits of that is just discarded. In such case, USHRT_MAX is more preferable than the lower 16 bits of max_sectors. Signed-off-by:
Akinobu Mita <akinobu.mita@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Douglas Gilbert <dgilbert@interlog.com> Cc: linux-scsi@vger.kernel.org Reviewed-by:
Christoph Hellwig <hch@lst.de> Signed-off-by:
Jens Axboe <axboe@fb.com> block/partitions/efi.c: kerneldoc fixing Adding function documentation and fixing kerneldoc warnings ('field: description' uniformization). Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by:
Fabian Frederick <fabf@skynet.be> Signed-off-by:
Jens Axboe <axboe@fb.com> block/partitions/msdos.c: code clean-up checkpatch fixing: WARNING: Missing a blank line after declarations WARNING: space prohibited between function name and open parenthesis '(' ERROR: spaces required around that '<' (ctx:VxV) Cc: Jens Axboe <axboe@kernel.dk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Fabian Frederick <fabf@skynet.be> Signed-off-by:
Jens Axboe <axboe@fb.com> block/partitions/amiga.c: replace nolevel printk by pr_err Also add no prefix pr_fmt to avoid any future default format update Cc: Jens Axboe <axboe@kernel.dk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Fabian Frederick <fabf@skynet.be> Signed-off-by:
Jens Axboe <axboe@fb.com> block/partitions/aix.c: replace count*size kzalloc by kcalloc kcalloc manages count*sizeof overflow. Cc: Jens Axboe <axboe@kernel.dk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Fabian Frederick <fabf@skynet.be> Signed-off-by:
Jens Axboe <axboe@fb.com> bio-integrity: add "bip_max_vcnt" into struct bio_integrity_payload Commit 08778795 ("block: Fix nr_vecs for inline integrity vectors") from Martin introduces the function bip_integrity_vecs(get the useful vectors) to fix the issue about nr_vecs for inline integrity vectors that reported by David Milburn. But it seems that bip_integrity_vecs() will return the wrong number if the bio is not based on any bio_set for some reason(bio->bi_pool == NULL), because in that case, the bip_inline_vecs[0] is malloced directly. So here we add the bip_max_vcnt to record the count of vector slots, and cleanup the function bip_integrity_vecs(). Signed-off-by:
Gu Zheng <guz.fnst@cn.fujitsu.com> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Kent Overstreet <kmo@daterainc.com> Signed-off-by:
Jens Axboe <axboe@fb.com> blk-mq: use percpu_ref for mq usage count Currently, blk-mq uses a percpu_counter to keep track of how many usages are in flight. The percpu_counter is drained while freezing to ensure that no usage is left in-flight after freezing is complete. blk_mq_queue_enter/exit() and blk_mq_[un]freeze_queue() implement this per-cpu gating mechanism. This type of code has relatively high chance of subtle bugs which are extremely difficult to trigger and it's way too hairy to be open coded in blk-mq. percpu_ref can serve the same purpose after the recent changes. This patch replaces the open-coded per-cpu usage counting and draining mechanism with percpu_ref. blk_mq_queue_enter() performs tryget_live on the ref and exit() performs put. blk_mq_freeze_queue() kills the ref and waits until the reference count reaches zero. blk_mq_unfreeze_queue() revives the ref and wakes up the waiters. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Cc: Kent Overstreet <kmo@daterainc.com> Signed-off-by:
Jens Axboe <axboe@fb.com> blk-mq: collapse __blk_mq_drain_queue() into blk_mq_freeze_queue() Keeping __blk_mq_drain_queue() as a separate function doesn't buy us anything and it's gonna be further simplified. Let's flatten it into its caller. This patch doesn't make any functional change. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by:
Jens Axboe <axboe@fb.com> blk-mq: decouble blk-mq freezing from generic bypassing blk_mq freezing is entangled with generic bypassing which bypasses blkcg and io scheduler and lets IO requests fall through the block layer to the drivers in FIFO order. This allows forward progress on IOs with the advanced features disabled so that those features can be configured or altered without worrying about stalling IO which may lead to deadlock through memory allocation. However, generic bypassing doesn't quite fit blk-mq. blk-mq currently doesn't make use of blkcg or ioscheds and it maps bypssing to freezing, which blocks request processing and drains all the in-flight ones. This causes problems as bypassing assumes that request processing is online. blk-mq works around this by conditionally allowing request processing for the problem case - during queue initialization. Another weirdity is that except for during queue cleanup, bypassing started on the generic side prevents blk-mq from processing new requests but doesn't drain the in-flight ones. This shouldn't break anything but again highlights that something isn't quite right here. The root cause is conflating blk-mq freezing and generic bypassing which are two different mechanisms. The only intersecting purpose that they serve is during queue cleanup. Let's properly separate blk-mq freezing from generic bypassing and simply use it where necessary. * request_queue->mq_freeze_depth is added and blk_mq_[un]freeze_queue() now operate on this counter instead of ->bypass_depth. The replacement for QUEUE_FLAG_BYPASS isn't added but the counter is tested directly. This will be further updated by later changes. * blk_mq_drain_queue() is dropped and "__" prefix is dropped from blk_mq_freeze_queue(). Queue cleanup path now calls blk_mq_freeze_queue() directly. * blk_queue_enter()'s fast path condition is simplified to simply check @q->mq_freeze_depth. Previously, the condition was !blk_queue_dying(q) && (!blk_queue_bypass(q) || !blk_queue_init_done(q)) mq_freeze_depth is incremented right after dying is set and blk_queue_init_done() exception isn't necessary as blk-mq doesn't start frozen, which only leaves the blk_queue_bypass() test which can be replaced by @q->mq_freeze_depth test. This change simplifies the code and reduces confusion in the area. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by:
Jens Axboe <axboe@fb.com> block, blk-mq: draining can't be skipped even if bypass_depth was non-zero Currently, both blk_queue_bypass_start() and blk_mq_freeze_queue() skip queue draining if bypass_depth was already above zero. The assumption is that the one which bumped the bypass_depth should have performed draining already; however, there's nothing which prevents a new instance of bypassing/freezing from starting before the previous one finishes draining. The current code may allow the later bypassing/freezing instances to complete while there still are in-flight requests which haven't finished draining. Fix it by draining regardless of bypass_depth. We still skip draining from blk_queue_bypass_start() while the queue is initializing to avoid introducing excessive delays during boot. INIT_DONE setting is moved above the initial blk_queue_bypass_end() so that bypassing attempts can't slip inbetween. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by:
Jens Axboe <axboe@fb.com> blk-mq: fix a memory ordering bug in blk_mq_queue_enter() blk-mq uses a percpu_counter to keep track of how many usages are in flight. The percpu_counter is drained while freezing to ensure that no usage is left in-flight after freezing is complete. blk_mq_queue_enter/exit() and blk_mq_[un]freeze_queue() implement this per-cpu gating mechanism; unfortunately, it contains a subtle bug - smp_wmb() in blk_mq_queue_enter() doesn't prevent prevent the cpu from fetching @q->bypass_depth before incrementing @q->mq_usage_counter and if freezing happens inbetween the caller can slip through and freezing can be complete while there are active users. Use smp_mb() instead so that bypass_depth and mq_usage_counter modifications and tests are properly interlocked. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Signed-off-by:
Jens Axboe <axboe@fb.com> Merge branch 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu into for-3.17/core Merge the percpu_ref changes from Tejun, he says they are stable now. percpu-refcount: implement percpu_ref_reinit() and percpu_ref_is_zero() Now that explicit invocation of percpu_ref_exit() is necessary to free the percpu counter, we can implement percpu_ref_reinit() which reinitializes a released percpu_ref. This can be used implement scalable gating switch which can be drained and then re-opened without worrying about memory allocation failures. percpu_ref_is_zero() is added to be used in a sanity check in percpu_ref_exit(). As this function will be useful for other purposes too, make it a public interface. v2: Use smp_read_barrier_depends() instead of smp_load_acquire(). We only need data dep barrier and smp_load_acquire() is stronger and heavier on some archs. Spotted by Lai Jiangshan. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> percpu-refcount: require percpu_ref to be exited explicitly Currently, a percpu_ref undoes percpu_ref_init() automatically by freeing the allocated percpu area when the percpu_ref is killed. While seemingly convenient, this has the following niggles. * It's impossible to re-init a released reference counter without going through re-allocation. * In the similar vein, it's impossible to initialize a percpu_ref count with static percpu variables. * We need and have an explicit destructor anyway for failure paths - percpu_ref_cancel_init(). This patch removes the automatic percpu counter freeing in percpu_ref_kill_rcu() and repurposes percpu_ref_cancel_init() into a generic destructor now named percpu_ref_exit(). percpu_ref_destroy() is considered but it gets confusing with percpu_ref_kill() while "exit" clearly indicates that it's the counterpart of percpu_ref_init(). All percpu_ref_cancel_init() users are updated to invoke percpu_ref_exit() instead and explicit percpu_ref_exit() calls are added to the destruction path of all percpu_ref users. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Benjamin LaHaise <bcrl@kvack.org> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Nicholas A. Bellinger <nab@linux-iscsi.org> Cc: Li Zefan <lizefan@huawei.com> percpu-refcount: use unsigned long for pcpu_count pointer percpu_ref->pcpu_count is a percpu pointer with a status flag in its lowest bit. As such, it always goes through arithmetic operations which is very cumbersome to do on a pointer. It has to be first casted to unsigned long and then back. Let's just make the field unsigned long so that we can skip the first casts. While at it, rename it to pcpu_counter_ptr to clarify that it's a pointer value. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Christoph Lameter <cl@linux-foundation.org> percpu-refcount: add helpers for ->percpu_count accesses * All four percpu_ref_*() operations implemented in the header file perform the same operation to determine whether the percpu_ref is alive and extract the percpu pointer. Factor out the common logic into __pcpu_ref_alive(). This doesn't change the generated code. * There are a couple places in percpu-refcount.c which masks out PCPU_REF_DEAD to obtain the percpu pointer. Factor it out into pcpu_count_ptr(). * The above changes make the WARN_ON_ONCE() conditional at the top of percpu_ref_kill_and_confirm() the only user of REF_STATUS(). Test PCPU_REF_DEAD directly and remove REF_STATUS(). This patch doesn't introduce any functional change. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Christoph Lameter <cl@linux-foundation.org> percpu-refcount: one bit is enough for REF_STATUS percpu-refcount currently reserves two lowest bits of its percpu pointer to indicate its state; however, only one bit is used for PCPU_REF_DEAD. Simplify it by removing PCPU_STATUS_BITS/MASK and testing PCPU_REF_DEAD directly. This also allows the compiler to choose a more efficient instruction depending on the architecture. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Kent Overstreet <kmo@daterainc.com> Cc: Christoph Lameter <cl@linux-foundation.org> percpu-refcount, aio: use percpu_ref_cancel_init() in ioctx_alloc() ioctx_alloc() reaches inside percpu_ref and directly frees ->pcpu_count in its failure path, which is quite gross. percpu_ref has been providing a proper interface to do this, percpu_ref_cancel_init(), for quite some time now. Let's use that instead. This patch doesn't introduce any behavior changes. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Benjamin LaHaise <bcrl@kvack.org> Cc: Kent Overstreet <kmo@daterainc.com> workqueue: stronger test in process_one_work() After the recent changes, when POOL_DISASSOCIATED is cleared, the running worker's local CPU should be the same as pool->cpu without any exception even during cpu-hotplug. Update the sanity check in process_one_work() accordingly. This patch changes "(proposition_A && proposition_B && proposition_C)" to "(proposition_B && proposition_C)", so if the old compound proposition is true, the new one must be true too. so this will not hide any possible bug which can be caught by the old test. tj: Minor updates to the description. CC: Jason J. Herne <jjherne@linux.vnet.ibm.com> CC: Sasha Levin <sasha.levin@oracle.com> Signed-off-by:
Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by:
Tejun Heo <tj@kernel.org> workqueue: clear POOL_DISASSOCIATED in rebind_workers() The commit a9ab775b ("workqueue: directly restore CPU affinity of workers from CPU_ONLINE") moved the pool->lock into rebind_workers() without also moving "pool->flags &= ~POOL_DISASSOCIATED". There is nothing wrong with "pool->flags &= ~POOL_DISASSOCIATED" not being moved together, but there isn't any benefit either. We move it into rebind_workers() and achieve these benefits: 1) Better readability. POOL_DISASSOCIATED is cleared in rebind_workers() as expected. 2) When POOL_DISASSOCIATED is cleared, we can ensure that all the running workers of the pool are on the local CPU (pool->cpu). tj: Cosmetic updates to the code and description. Signed-off-by:
Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by:
Tejun Heo <tj@kernel.org> percpu: Use ALIGN macro instead of hand coding alignment calculation Signed-off-by:
Christoph Lameter <cl@linux.com> Signed-off-by:
Tejun Heo <tj@kernel.org> percpu: invoke __verify_pcpu_ptr() from the generic part of accessors and operations __verify_pcpu_ptr() is used to verify that a specified parameter is actually an percpu pointer by percpu accessor and operation implementations. Currently, where it's called isn't clearly defined and we just ensure that it's invoked at least once for all accessors and operations. The lack of clarity on when it should be called isn't nice and given that this is a completely generic issue, there's no reason to make archs worry about it. This patch updates __verify_pcpu_ptr() invocations such that it's always invoked from the final generic wrapper once per access or operation. As this is already the case for {raw|this}_cpu_*() definitions through __pcpu_size_*(), only the {raw|per|this}_cpu_ptr() accessors need to be updated. This change makes it unnecessary for archs to worry about __verify_pcpu_ptr(). x86's arch_raw_cpu_ptr() is updated accordingly. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> percpu: preffity percpu header files percpu macros are difficult to read. It's partly because they're fairly complex but also because they simply lack visual and conventional consistency to an unusual degree. The preceding patches tried to organize macro definitions consistently by their roles. This patch makes the following cosmetic changes to improve overall readability. * Use consistent convention for multi-line macro definitions - "do {" or "({" are now put on their own lines and the line continuing '\' are all put on the same column. * Temp variables used inside macro are consistently given "__" prefix. * When a macro argument is passed to another macro or a function, putting extra parenthses around it doesn't help anything. Don't put them. * _this_cpu_generic_*() are renamed to this_cpu_generic_*() so that they're consistent with raw_cpu_generic_*(). * Reorganize raw_cpu_*() and this_cpu_*() definitions so that trivial wrappers are collected in one place after actual operation definitions. * Other misc cleanups including reorganizing comments. All changes in this patch are cosmetic and cause no functional difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: use raw_cpu_*() to define __this_cpu_*() __this_cpu_*() operations are the same as raw_cpu_*() operations except for the added __this_cpu_preempt_check(). Curiously, these were defined using __pcu_size_call_*() instead of being layered on top of raw_cpu_*(). Let's layer them so that __this_cpu_*() are defined in terms of raw_cpu_*(). It's simpler and less error-prone this way. This patch doesn't introduce any functional difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: reorder macros in percpu header files * In include/asm-generic/percpu.h, collect {raw|_this}_cpu_generic*() macros into one place. They were dispersed through {raw|this}_cpu_*_N() definitions and the visiual inconsistency was making following the code unnecessarily difficult. * In include/linux/percpu-defs.h, move __verify_pcpu_ptr() later in the file so that it's right above accessor definitions where it's actually used. This is pure reorganization. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: move {raw|this}_cpu_*() definitions to include/linux/percpu-defs.h We're in the process of moving all percpu accessors and operations to include/linux/percpu-defs.h so that they're available to arch headers without having to include full include/linux/percpu.h which may cause cyclic inclusion dependency. This patch moves {raw|this}_cpu_*() definitions from include/linux/percpu.h to include/linux/percpu-defs.h. The code is moved mostly verbatim; however, raw_cpu_*() are placed above this_cpu_*() which is more conventional as the raw operations may be used to defined other variants. This is pure reorganization. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: move generic {raw|this}_cpu_*_N() definitions to include/asm-generic/percpu.h {raw|this}_cpu_*_N() operations are expected to be provided by archs and the generic definitions are provided as fallbacks. As such, these firmly belong to include/asm-generic/percpu.h. Move the generic definitions to include/asm-generic/percpu.h. The code is moved mostly verbatim; however, raw_cpu_*_N() are placed above this_cpu_*_N() which is more conventional as the raw operations may be used to defined other variants. This is pure reorganization. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: only allow sized arch overrides for {raw|this}_cpu_*() ops Currently, percpu allows two separate methods for overriding {raw|this}_cpu_*() ops - for a given operation, an arch can provide whole replacement or sized sub operations to override specific parts of it. e.g. arch either can provide this_cpu_add() or this_cpu_add_4() to override only the 4 byte operation. While quite flexible on a glance, the dual-overriding scheme complicates the code path for no actual gain. It compilcates the already complex operation definitions and if an arch wants to override all sizes, it can easily provide all variants anyway. In fact, no arch is actually making use of whole operation override. Another oddity is that __this_cpu_*() operations are defined in the same way as raw_cpu_*() but ignores full overrides of the raw_cpu_*() and doesn't allow full operation override, so if an arch provides whole overrides for raw_cpu_*() operations __this_cpu_*() ends up using the generic implementations. More importantly, it takes away the layering between arch-specific and generic parts making it impossible for the generic part to implement arch-independent features on top of arch-specific overrides. This patch removes the support for whole operation overrides. As no arch is using it, this doesn't cause any actual difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: reorganize include/linux/percpu-defs.h Reorganize for better readability. * Accessor definitions are collected into one place and SMP and UP now define them in the same order. * Definitions are layered when possible - e.g. per_cpu() is now defined in terms of this_cpu_ptr(). * Rather pointless comment dropped. * per_cpu(), __raw_get_cpu_var() and __get_cpu_var() are defined in a way which can be shared between SMP and UP and moved out of CONFIG_SMP blocks. This patch doesn't introduce any functional difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> percpu: move accessors from include/linux/percpu.h to percpu-defs.h include/linux/percpu-defs.h is gonna host all accessors and operations so that arch headers can make use of them too without worrying about circular dependency through include/linux/percpu.h. This patch moves the following accessors from include/linux/percpu.h to include/linux/percpu-defs.h. * get/put_cpu_var() * get/put_cpu_ptr() * per_cpu_ptr() This is pure reorgniazation. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: include/asm-generic/percpu.h should contain only arch-overridable parts The roles of the various percpu header files has become unclear. There are four header files involved. include/linux/percpu-defs.h include/linux/percpu.h include/asm-generic/percpu.h arch/*/include/asm/percpu.h The original intention for include/asm-generic/percpu.h is providing generic definitions for arch-overridable parts; however, it now hosts various stuff which can't be overridden by archs. Also, include/linux/percpu-defs.h was initially added to contain section and percpu variable definition macros so that arch header files can make use of them without worrying about introducing cyclic inclusion dependency by including include/linux/percpu.h; however, arch headers sometimes need to access percpu variables too and this is one of the reasons why some accessors were implemented in include/linux/asm-generic/percpu.h. Let's clear up the situation by making include/asm-generic/percpu.h contain only arch-overridable parts and moving accessors and operations into include/linux/percpu-defs. Note that this patch only moves things from include/asm-generic/percpu.h. include/linux/percpu.h will be taken care of by later patches. This patch moves the followings. * SHIFT_PERCPU_PTR() / VERIFY_PERCPU_PTR() * per_cpu() * raw_cpu_ptr() * this_cpu_ptr() * __get_cpu_var() * __raw_get_cpu_var() * __this_cpu_ptr() * PER_CPU_[SHARED_]ALIGNED_SECTION * PER_CPU_[SHARED_]ALIGNED_SECTION * PER_CPU_FIRST_SECTION This patch is pure reorganization. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> percpu: introduce arch_raw_cpu_ptr() Currently, archs can override raw_cpu_ptr() directly; however, we wanna build a layer of indirection in the generic part of percpu so that we can implement generic features there without affecting archs. Introduce arch_raw_cpu_ptr() which is used to define raw_cpu_ptr() by generic percpu code. The two are identical for now. x86 is currently the only arch which overrides raw_cpu_ptr() and is converted to define arch_raw_cpu_ptr() instead. This doesn't introduce any functional difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> percpu: disallow archs from overriding SHIFT_PERCPU_PTR() It has been about half a decade since all archs started using the dynamic percpu allocator and thus the same SHIFT_PERCPU_PTR() implementation. There's no benefit in overriding SHIFT_PERCPU_PTR() anymore. Remove #ifndef around it to clarify that this is identical regardless of the arch. This patch doesn't cause any functional difference. Signed-off-by:
Tejun Heo <tj@kernel.org> Acked-by:
Christoph Lameter <cl@linux.com> (cherry picked from commit 2a1b4cf2 0b462c89) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Mikulas Patocka authored
This patch provides the compat BLKZEROOUT ioctl. The argument is a pointer to two uint64_t values, so there is no need to translate it. Signed-off-by:
Mikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org # 3.7+ Acked-by:
Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by:
Jens Axboe <axboe@fb.com> (cherry picked from commit 3b3a1814) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Antti Palosaari authored
Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Andrey Utkin authored
This commit is a guesswork, but it seems to make sense to drop this break, as otherwise the following line is never executed and becomes dead code. And that following line actually saves the result of local calculation by the pointer given in function argument. So the proposed change makes sense if this code in the whole makes sense (but I am unable to analyze it in the whole). Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=81641Reported-by:
David Binderman <dcb314@hotmail.com> Signed-off-by:
Andrey Utkin <andrey.krieger.utkin@gmail.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 093758e3) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Sowmini Varadhan authored
The LDC handshake could have been asynchronously triggered after ldc_bind() enables the ldc_rx() receive interrupt-handler (and thus intercepts incoming control packets) and before vio_port_up() calls ldc_connect(). If that is the case, ldc_connect() should return 0 and let the state-machine progress. Signed-off-by:
Sowmini Varadhan <sowmini.varadhan@oracle.com> Acked-by:
Karl Volz <karl.volz@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 4ec1b010) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Christopher Alexander Tobias Schulze authored
Fix detection of BREAK on sunsab serial console: BREAK detection was only performed when there were also serial characters received simultaneously. To handle all BREAKs correctly, the check for BREAK and the corresponding call to uart_handle_break() must also be done if count == 0, therefore duplicate this code fragment and pull it out of the loop over the received characters. Patch applies to 3.16-rc6. Signed-off-by:
Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit fe418231) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Christopher Alexander Tobias Schulze authored
Fix regression in bbc i2c temperature and fan control on some Sun systems that causes the driver to refuse to load due to the bbc_i2c_bussel resource not being present on the (second) i2c bus where the temperature sensors and fan control are located. (The check for the number of resources was removed when the driver was ported to a pure OF driver in mid 2008.) Signed-off-by:
Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 5cdceab3) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
This is the prevent previous stores from overlapping the block stores done by the memcpy loop. Based upon a glibc patch by Jose E. Marchesi Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 5aa4ecfd) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
Access to the TSB hash tables during TLB misses requires that there be an atomic 128-bit quad load available so that we fetch a matching TAG and DATA field at the same time. On cpus prior to UltraSPARC-III only virtual address based quad loads are available. UltraSPARC-III and later provide physical address based variants which are easier to use. When we only have virtual address based quad loads available this means that we have to lock the TSB into the TLB at a fixed virtual address on each cpu when it runs that process. We can't just access the PAGE_OFFSET based aliased mapping of these TSBs because we cannot take a recursive TLB miss inside of the TLB miss handler without risking running out of hardware trap levels (some trap combinations can be deep, such as those generated by register window spill and fill traps). Without huge pages it's working perfectly fine, but when the huge TSB got added another chunk of fixed virtual address space was not allocated for this second TSB mapping. So we were mapping both the 8K and 4MB TSBs to the same exact virtual address, causing multiple TLB matches which gives undefined behavior. Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit b18eb2d7) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
This was found using Dave Jone's trinity tool. When a user process which is 32-bit performs a load or a store, the cpu chops off the top 32-bits of the effective address before translating it. This is because we run 32-bit tasks with the PSTATE_AM (address masking) bit set. We can't run the kernel with that bit set, so when the kernel accesses userspace no address masking occurs. Since a 32-bit process will have no mappings in that region we will properly fault, so we don't try to handle this using access_ok(), which can safely just be a NOP on sparc64. Real faults from 32-bit processes should never generate such addresses so a bug check was added long ago, and it barks in the logs if this happens. But it also barks when a kernel user access causes this condition, and that _can_ happen. For example, if a pointer passed into a system call is "0xfffffffc" and the kernel access 4 bytes offset from that pointer. Just handle such faults normally via the exception entries. Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit e5c460f4) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
Make get_user_insn() able to cope with huge PMDs. Next, make do_fault_siginfo() more robust when get_user_insn() can't actually fetch the instruction. In particular, use the MMU announced fault address when that happens, instead of calling compute_effective_address() and computing garbage. Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 70ffc6eb) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
If we have a 32-bit task we must chop off the top 32-bits of the 64-bit value just as the cpu would. Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit d037d163) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Kirill Tkhai authored
One more place where we must not be able to be preempted or to be interrupted in RT. Always actually disable interrupts during synchronization cycle. Signed-off-by:
Kirill Tkhai <tkhai@yandex.ru> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 49b6c01f) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David S. Miller authored
Only the second argument, 'op', is signed. Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit aa3449ee) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Sasha Levin authored
Check for cases when the caller requests 0 bytes instead of running off and dereferencing potentially invalid iovecs. Signed-off-by:
Sasha Levin <sasha.levin@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 06ebb06d) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Vlad Yasevich authored
When performing segmentation, the mac_len value is copied right out of the original skb. However, this value is not always set correctly (like when the packet is VLAN-tagged) and we'll end up copying a bad value. One way to demonstrate this is to configure a VM which tags packets internally and turn off VLAN acceleration on the forwarding bridge port. The packets show up corrupt like this: 16:18:24.985548 52:54:00:ab:be:25 > 52:54:00:26:ce:a3, ethertype 802.1Q (0x8100), length 1518: vlan 100, p 0, ethertype 0x05e0, 0x0000: 8cdb 1c7c 8cdb 0064 4006 b59d 0a00 6402 ...|...d@.....d. 0x0010: 0a00 6401 9e0d b441 0a5e 64ec 0330 14fa ..d....A.^d..0.. 0x0020: 29e3 01c9 f871 0000 0101 080a 000a e833)....q.........3 0x0030: 000f 8c75 6e65 7470 6572 6600 6e65 7470 ...unetperf.netp 0x0040: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp 0x0050: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp 0x0060: 6572 6600 6e65 7470 6572 6600 6e65 7470 erf.netperf.netp ... This also leads to awful throughput as GSO packets are dropped and cause retransmissions. The solution is to set the mac_len using the values already available in then new skb. We've already adjusted all of the header offset, so we might as well correctly figure out the mac_len using skb_reset_mac_len(). After this change, packets are segmented correctly and performance is restored. CC: Eric Dumazet <edumazet@google.com> Signed-off-by:
Vlad Yasevich <vyasevic@redhat.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit fcdfe3a7) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Vlad Yasevich authored
Macvlan devices do not initialize vlan_features. As a result, any vlan devices configured on top of macvlans perform very poorly. Initialize vlan_features based on the vlan features of the lower-level device. Signed-off-by:
Vlad Yasevich <vyasevic@redhat.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 081e83a7) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Daniel Borkmann authored
Jason reported an oops caused by SCTP on his ARM machine with SCTP authentication enabled: Internal error: Oops: 17 [#1] ARM CPU: 0 PID: 104 Comm: sctp-test Not tainted 3.13.0-68744-g3632f30c9b20-dirty #1 task: c6eefa40 ti: c6f52000 task.ti: c6f52000 PC is at sctp_auth_calculate_hmac+0xc4/0x10c LR is at sg_init_table+0x20/0x38 pc : [<c024bb80>] lr : [<c00f32dc>] psr: 40000013 sp : c6f538e8 ip : 00000000 fp : c6f53924 r10: c6f50d80 r9 : 00000000 r8 : 00010000 r7 : 00000000 r6 : c7be4000 r5 : 00000000 r4 : c6f56254 r3 : c00c8170 r2 : 00000001 r1 : 00000008 r0 : c6f1e660 Flags: nZcv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user Control: 0005397f Table: 06f28000 DAC: 00000015 Process sctp-test (pid: 104, stack limit = 0xc6f521c0) Stack: (0xc6f538e8 to 0xc6f54000) [...] Backtrace: [<c024babc>] (sctp_auth_calculate_hmac+0x0/0x10c) from [<c0249af8>] (sctp_packet_transmit+0x33c/0x5c8) [<c02497bc>] (sctp_packet_transmit+0x0/0x5c8) from [<c023e96c>] (sctp_outq_flush+0x7fc/0x844) [<c023e170>] (sctp_outq_flush+0x0/0x844) from [<c023ef78>] (sctp_outq_uncork+0x24/0x28) [<c023ef54>] (sctp_outq_uncork+0x0/0x28) from [<c0234364>] (sctp_side_effects+0x1134/0x1220) [<c0233230>] (sctp_side_effects+0x0/0x1220) from [<c02330b0>] (sctp_do_sm+0xac/0xd4) [<c0233004>] (sctp_do_sm+0x0/0xd4) from [<c023675c>] (sctp_assoc_bh_rcv+0x118/0x160) [<c0236644>] (sctp_assoc_bh_rcv+0x0/0x160) from [<c023d5bc>] (sctp_inq_push+0x6c/0x74) [<c023d550>] (sctp_inq_push+0x0/0x74) from [<c024a6b0>] (sctp_rcv+0x7d8/0x888) While we already had various kind of bugs in that area ec0223ec ("net: sctp: fix sctp_sf_do_5_1D_ce to verify if we/peer is AUTH capable") and b14878cc ("net: sctp: cache auth_enable per endpoint"), this one is a bit of a different kind. Giving a bit more background on why SCTP authentication is needed can be found in RFC4895: SCTP uses 32-bit verification tags to protect itself against blind attackers. These values are not changed during the lifetime of an SCTP association. Looking at new SCTP extensions, there is the need to have a method of proving that an SCTP chunk(s) was really sent by the original peer that started the association and not by a malicious attacker. To cause this bug, we're triggering an INIT collision between peers; normal SCTP handshake where both sides intent to authenticate packets contains RANDOM; CHUNKS; HMAC-ALGO parameters that are being negotiated among peers: ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------> <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------- -------------------- COOKIE-ECHO --------------------> <-------------------- COOKIE-ACK --------------------- RFC4895 says that each endpoint therefore knows its own random number and the peer's random number *after* the association has been established. The local and peer's random number along with the shared key are then part of the secret used for calculating the HMAC in the AUTH chunk. Now, in our scenario, we have 2 threads with 1 non-blocking SEQ_PACKET socket each, setting up common shared SCTP_AUTH_KEY and SCTP_AUTH_ACTIVE_KEY properly, and each of them calling sctp_bindx(3), listen(2) and connect(2) against each other, thus the handshake looks similar to this, e.g.: ---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------> <------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------- <--------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ----------- -------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] --------> ... Since such collisions can also happen with verification tags, the RFC4895 for AUTH rather vaguely says under section 6.1: In case of INIT collision, the rules governing the handling of this Random Number follow the same pattern as those for the Verification Tag, as explained in Section 5.2.4 of RFC 2960 [5]. Therefore, each endpoint knows its own Random Number and the peer's Random Number after the association has been established. In RFC2960, section 5.2.4, we're eventually hitting Action B: B) In this case, both sides may be attempting to start an association at about the same time but the peer endpoint started its INIT after responding to the local endpoint's INIT. Thus it may have picked a new Verification Tag not being aware of the previous Tag it had sent this endpoint. The endpoint should stay in or enter the ESTABLISHED state but it MUST update its peer's Verification Tag from the State Cookie, stop any init or cookie timers that may running and send a COOKIE ACK. In other words, the handling of the Random parameter is the same as behavior for the Verification Tag as described in Action B of section 5.2.4. Looking at the code, we exactly hit the sctp_sf_do_dupcook_b() case which triggers an SCTP_CMD_UPDATE_ASSOC command to the side effect interpreter, and in fact it properly copies over peer_{random, hmacs, chunks} parameters from the newly created association to update the existing one. Also, the old asoc_shared_key is being released and based on the new params, sctp_auth_asoc_init_active_key() updated. However, the issue observed in this case is that the previous asoc->peer.auth_capable was 0, and has *not* been updated, so that instead of creating a new secret, we're doing an early return from the function sctp_auth_asoc_init_active_key() leaving asoc->asoc_shared_key as NULL. However, we now have to authenticate chunks from the updated chunk list (e.g. COOKIE-ACK). That in fact causes the server side when responding with ... <------------------ AUTH; COOKIE-ACK ----------------- ... to trigger a NULL pointer dereference, since in sctp_packet_transmit(), it discovers that an AUTH chunk is being queued for xmit, and thus it calls sctp_auth_calculate_hmac(). Since the asoc->active_key_id is still inherited from the endpoint, and the same as encoded into the chunk, it uses asoc->asoc_shared_key, which is still NULL, as an asoc_key and dereferences it in ... crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len) ... causing an oops. All this happens because sctp_make_cookie_ack() called with the *new* association has the peer.auth_capable=1 and therefore marks the chunk with auth=1 after checking sctp_auth_send_cid(), but it is *actually* sent later on over the then *updated* association's transport that didn't initialize its shared key due to peer.auth_capable=0. Since control chunks in that case are not sent by the temporary association which are scheduled for deletion, they are issued for xmit via SCTP_CMD_REPLY in the interpreter with the context of the *updated* association. peer.auth_capable was 0 in the updated association (which went from COOKIE_WAIT into ESTABLISHED state), since all previous processing that performed sctp_process_init() was being done on temporary associations, that we eventually throw away each time. The correct fix is to update to the new peer.auth_capable value as well in the collision case via sctp_assoc_update(), so that in case the collision migrated from 0 -> 1, sctp_auth_asoc_init_active_key() can properly recalculate the secret. This therefore fixes the observed server panic. Fixes: 730fc3d0 ("[SCTP]: Implete SCTP-AUTH parameter processing") Reported-by:
Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by:
Daniel Borkmann <dborkman@redhat.com> Tested-by:
Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Vlad Yasevich <vyasevich@gmail.com> Acked-by:
Vlad Yasevich <vyasevich@gmail.com> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 1be9a950) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Christoph Paasch authored
In vegas we do a multiplication of the cwnd and the rtt. This may overflow and thus their result is stored in a u64. However, we first need to cast the cwnd so that actually 64-bit arithmetic is done. Then, we need to do do_div to allow this to be used on 32-bit arches. Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Neal Cardwell <ncardwell@google.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: Doug Leith <doug.leith@nuim.ie> Fixes: 8d3a564d (tcp: tcp_vegas cong avoid fix) Signed-off-by:
Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 1f74e613) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Christoph Paasch authored
In veno we do a multiplication of the cwnd and the rtt. This may overflow and thus their result is stored in a u64. However, we first need to cast the cwnd so that actually 64-bit arithmetic is done. A first attempt at fixing 76f10177 ([TCP]: TCP Veno congestion control) was made by 15913114 (tcp: Overflow bug in Vegas), but it failed to add the required cast in tcp_veno_cong_avoid(). Fixes: 76f10177 ([TCP]: TCP Veno congestion control) Signed-off-by:
Christoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 45a07695) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Andrey Ryabinin authored
Sasha's report: > While fuzzing with trinity inside a KVM tools guest running the latest -next > kernel with the KASAN patchset, I've stumbled on the following spew: > > [ 4448.949424] ================================================================== > [ 4448.951737] AddressSanitizer: user-memory-access on address 0 > [ 4448.952988] Read of size 2 by thread T19638: > [ 4448.954510] CPU: 28 PID: 19638 Comm: trinity-c76 Not tainted 3.16.0-rc4-next-20140711-sasha-00046-g07d3099-dirty #813 > [ 4448.956823] ffff88046d86ca40 0000000000000000 ffff880082f37e78 ffff880082f37a40 > [ 4448.958233] ffffffffb6e47068 ffff880082f37a68 ffff880082f37a58 ffffffffb242708d > [ 4448.959552] 0000000000000000 ffff880082f37a88 ffffffffb24255b1 0000000000000000 > [ 4448.961266] Call Trace: > [ 4448.963158] dump_stack (lib/dump_stack.c:52) > [ 4448.964244] kasan_report_user_access (mm/kasan/report.c:184) > [ 4448.965507] __asan_load2 (mm/kasan/kasan.c:352) > [ 4448.966482] ? netlink_sendmsg (net/netlink/af_netlink.c:2339) > [ 4448.967541] netlink_sendmsg (net/netlink/af_netlink.c:2339) > [ 4448.968537] ? get_parent_ip (kernel/sched/core.c:2555) > [ 4448.970103] sock_sendmsg (net/socket.c:654) > [ 4448.971584] ? might_fault (mm/memory.c:3741) > [ 4448.972526] ? might_fault (./arch/x86/include/asm/current.h:14 mm/memory.c:3740) > [ 4448.973596] ? verify_iovec (net/core/iovec.c:64) > [ 4448.974522] ___sys_sendmsg (net/socket.c:2096) > [ 4448.975797] ? put_lock_stats.isra.13 (./arch/x86/include/asm/preempt.h:98 kernel/locking/lockdep.c:254) > [ 4448.977030] ? lock_release_holdtime (kernel/locking/lockdep.c:273) > [ 4448.978197] ? lock_release_non_nested (kernel/locking/lockdep.c:3434 (discriminator 1)) > [ 4448.979346] ? check_chain_key (kernel/locking/lockdep.c:2188) > [ 4448.980535] __sys_sendmmsg (net/socket.c:2181) > [ 4448.981592] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2600) > [ 4448.982773] ? trace_hardirqs_on (kernel/locking/lockdep.c:2607) > [ 4448.984458] ? syscall_trace_enter (arch/x86/kernel/ptrace.c:1500 (discriminator 2)) > [ 4448.985621] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2600) > [ 4448.986754] SyS_sendmmsg (net/socket.c:2201) > [ 4448.987708] tracesys (arch/x86/kernel/entry_64.S:542) > [ 4448.988929] ================================================================== This reports means that we've come to netlink_sendmsg() with msg->msg_name == NULL and msg->msg_namelen > 0. After this report there was no usual "Unable to handle kernel NULL pointer dereference" and this gave me a clue that address 0 is mapped and contains valid socket address structure in it. This bug was introduced in f3d33426 (net: rework recvmsg handler msg_name and msg_namelen logic). Commit message states that: "Set msg->msg_name = NULL if user specified a NULL in msg_name but had a non-null msg_namelen in verify_iovec/verify_compat_iovec. This doesn't affect sendto as it would bail out earlier while trying to copy-in the address." But in fact this affects sendto when address 0 is mapped and contains socket address structure in it. In such case copy-in address will succeed, verify_iovec() function will successfully exit with msg->msg_namelen > 0 and msg->msg_name == NULL. This patch fixes it by setting msg_namelen to 0 if msg_name == NULL. Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Eric Dumazet <edumazet@google.com> Cc: <stable@vger.kernel.org> Reported-by:
Sasha Levin <sasha.levin@oracle.com> Signed-off-by:
Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by:
Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 40eea803) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Gao feng authored
commit 25fb6ca4 "net IPv6 : Fix broken IPv6 routing table after loopback down-up" allocates addrconf router for ipv6 address when lo device up. but commit a881ae1f "ipv6:don't call addrconf_dst_alloc again when enable lo" breaks this behavior. Since the addrconf router is moved to the garbage list when lo device down, we should release this router and rellocate a new one for ipv6 address when lo device up. This patch solves bug 67951 on bugzilla https://bugzilla.kernel.org/show_bug.cgi?id=67951 change from v1: use ip6_rt_put to repleace ip6_del_rt, thanks Hannes! change code style, suggested by Sergei. CC: Sabrina Dubroca <sd@queasysnail.net> CC: Hannes Frederic Sowa <hannes@stressinduktion.org> Reported-by:
Weilong Chen <chenweilong@huawei.com> Signed-off-by:
Weilong Chen <chenweilong@huawei.com> Signed-off-by:
Gao feng <gaofeng@cn.fujitsu.com> Acked-by:
Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by:
David S. Miller <davem@davemloft.net> (cherry picked from commit 33d99113) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Minfei Huang authored
I use btree from 3.14-rc2 in my own module. When the btree module is removed, a warning arises: kmem_cache_destroy btree_node: Slab cache still has objects CPU: 13 PID: 9150 Comm: rmmod Tainted: GF O 3.14.0-rc2 #1 Hardware name: Inspur NF5270M3/NF5270M3, BIOS CHEETAH_2.1.3 09/10/2013 Call Trace: dump_stack+0x49/0x5d kmem_cache_destroy+0xcf/0xe0 btree_module_exit+0x10/0x12 [btree] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b The cause is that it doesn't release the last btree node, when height = 1 and fill = 1. [akpm@linux-foundation.org: remove unneeded test of NULL] Signed-off-by:
Minfei Huang <huangminfei@ucloud.cn> Cc: Joern Engel <joern@logfs.org> Cc: Johannes Berg <johannes@sipsolutions.net> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit c75b53af) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Sasha Levin authored
The l2tp [get|set]sockopt() code has fallen back to the UDP functions for socket option levels != SOL_PPPOL2TP since day one, but that has never actually worked, since the l2tp socket isn't an inet socket. As David Miller points out: "If we wanted this to work, it'd have to look up the tunnel and then use tunnel->sk, but I wonder how useful that would be" Since this can never have worked so nobody could possibly have depended on that functionality, just remove the broken code and return -EINVAL. Reported-by:
Sasha Levin <sasha.levin@oracle.com> Acked-by:
James Chapman <jchapman@katalix.com> Acked-by:
David Miller <davem@davemloft.net> Cc: Phil Turnbull <phil.turnbull@oracle.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Willy Tarreau <w@1wt.eu> Cc: stable@vger.kernel.org Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 3cf521f7) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
H. Peter Anvin authored
This reverts commit fa81511b in preparation of merging in the proper fix (espfix64). Signed-off-by:
H. Peter Anvin <hpa@zytor.com> (cherry picked from commit 7ed6fb9b) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Jan Kara authored
clockevents_increase_min_delta() calls printk() from under hrtimer_bases.lock. That causes lock inversion on scheduler locks because printk() can call into the scheduler. Lockdep puts it as: ====================================================== [ INFO: possible circular locking dependency detected ] 3.15.0-rc8-06195-g939f04be #2 Not tainted ------------------------------------------------------- trinity-main/74 is trying to acquire lock: (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c but task is already holding lock: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #5 (hrtimer_bases.lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197 [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85 [<81080792>] task_clock_event_start+0x3a/0x3f [<810807a4>] task_clock_event_add+0xd/0x14 [<8108259a>] event_sched_in+0xb6/0x17a [<810826a2>] group_sched_in+0x44/0x122 [<81082885>] ctx_sched_in.isra.67+0x105/0x11f [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b [<81082bf6>] __perf_install_in_context+0x8b/0xa3 [<8107eb8e>] remote_function+0x12/0x2a [<8105f5af>] smp_call_function_single+0x2d/0x53 [<8107e17d>] task_function_call+0x30/0x36 [<8107fb82>] perf_install_in_context+0x87/0xbb [<810852c9>] SYSC_perf_event_open+0x5c6/0x701 [<810856f9>] SyS_perf_event_open+0x17/0x19 [<8142f8ee>] syscall_call+0x7/0xb -> #4 (&ctx->lock){......}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 -> #3 (&rq->lock){-.-.-.}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f04c>] _raw_spin_lock+0x21/0x30 [<81040873>] __task_rq_lock+0x33/0x3a [<8104184c>] wake_up_new_task+0x25/0xc2 [<8102474b>] do_fork+0x15c/0x2a0 [<810248a9>] kernel_thread+0x1a/0x1f [<814232a2>] rest_init+0x1a/0x10e [<817af949>] start_kernel+0x303/0x308 [<817af2ab>] i386_start_kernel+0x79/0x7d -> #2 (&p->pi_lock){-.-...}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<810413dd>] try_to_wake_up+0x1d/0xd6 [<810414cd>] default_wake_function+0xb/0xd [<810461f3>] __wake_up_common+0x39/0x59 [<81046346>] __wake_up+0x29/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #1 (&tty->write_wait){-.....}: [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<81046332>] __wake_up+0x15/0x3b [<811b8733>] tty_wakeup+0x49/0x51 [<811c3568>] uart_write_wakeup+0x17/0x19 [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb [<811c5f28>] serial8250_handle_irq+0x54/0x6a [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c [<811c56d8>] serial8250_interrupt+0x38/0x9e [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2 [<81051296>] handle_irq_event+0x2c/0x43 [<81052cee>] handle_level_irq+0x57/0x80 [<81002a72>] handle_irq+0x46/0x5c [<810027df>] do_IRQ+0x32/0x89 [<8143036e>] common_interrupt+0x2e/0x33 [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49 [<811c25a4>] uart_start+0x2d/0x32 [<811c2c04>] uart_write+0xc7/0xd6 [<811bc6f6>] n_tty_write+0xb8/0x35e [<811b9beb>] tty_write+0x163/0x1e4 [<811b9cd9>] redirected_tty_write+0x6d/0x75 [<810b6ed6>] vfs_write+0x75/0xb0 [<810b7265>] SyS_write+0x44/0x77 [<8142f8ee>] syscall_call+0x7/0xb -> #0 (&port_lock_key){-.....}: [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105c548>] clockevents_program_event+0xe7/0xf3 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8142cacc>] __schedule+0x4c6/0x4cb [<8142cae0>] schedule+0xf/0x11 [<8142f9a6>] work_resched+0x5/0x30 other info that might help us debug this: Chain exists of: &port_lock_key --> &ctx->lock --> hrtimer_bases.lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(hrtimer_bases.lock); lock(&ctx->lock); lock(hrtimer_bases.lock); lock(&port_lock_key); *** DEADLOCK *** 4 locks held by trinity-main/74: #0: (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb #1: (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f #2: (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66 #3: (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4 stack backtrace: CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04be #2 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003 Call Trace: [<81426f69>] dump_stack+0x16/0x18 [<81425a99>] print_circular_bug+0x18f/0x19c [<8104a62d>] __lock_acquire+0x9ea/0xc6d [<8104a942>] lock_acquire+0x92/0x101 [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e [<811c60be>] ? serial8250_console_write+0x8c/0x10c [<811c60be>] serial8250_console_write+0x8c/0x10c [<8104af87>] ? lock_release+0x191/0x223 [<811c6032>] ? wait_for_xmitr+0x76/0x76 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118 [<8104f5d5>] console_unlock+0x1d7/0x398 [<8104fb70>] vprintk_emit+0x3da/0x3e4 [<81425f76>] printk+0x17/0x19 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116 [<8105cc1c>] tick_program_event+0x1e/0x23 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f [<8103c49e>] __remove_hrtimer+0x5b/0x79 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66 [<8103cb4b>] hrtimer_cancel+0xd/0x18 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30 [<81080705>] task_clock_event_stop+0x20/0x64 [<81080756>] task_clock_event_del+0xd/0xf [<81081350>] event_sched_out+0xab/0x11e [<810813e0>] group_sched_out+0x1d/0x66 [<81081682>] ctx_sched_out+0xaf/0xbf [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f [<8104416d>] ? __dequeue_entity+0x23/0x27 [<81044505>] ? pick_next_task_fair+0xb1/0x120 [<8142cacc>] __schedule+0x4c6/0x4cb [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108 [<810475b0>] ? trace_hardirqs_off+0xb/0xd [<81056346>] ? rcu_irq_exit+0x64/0x77 Fix the problem by using printk_deferred() which does not call into the scheduler. Reported-by:
Fengguang Wu <fengguang.wu@intel.com> Signed-off-by:
Jan Kara <jack@suse.cz> Cc: stable@vger.kernel.org Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> (cherry picked from commit 504d5874) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
John Stultz authored
After learning we'll need some sort of deferred printk functionality in the timekeeping core, Peter suggested we rename the printk_sched function so it can be reused by needed subsystems. This only changes the function name. No logic changes. Signed-off-by:
John Stultz <john.stultz@linaro.org> Reviewed-by:
Steven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit aac74dc4) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
David Rientjes authored
The page allocator relies on __GFP_WAIT to determine if ALLOC_CPUSET should be set in allocflags. ALLOC_CPUSET controls if a page allocation should be restricted only to the set of allowed cpuset mems. Transparent hugepages clears __GFP_WAIT when defrag is disabled to prevent the fault path from using memory compaction or direct reclaim. Thus, it is unfairly able to allocate outside of its cpuset mems restriction as a side-effect. This patch ensures that ALLOC_CPUSET is only cleared when the gfp mask is truly GFP_ATOMIC by verifying it is also not a thp allocation. Signed-off-by:
David Rientjes <rientjes@google.com> Reported-by:
Alex Thorlton <athorlton@sgi.com> Tested-by:
Alex Thorlton <athorlton@sgi.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hedi Berriche <hedi@sgi.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit b104a35d) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
James Bottomley authored
Flush commands don't transfer data and thus need to be special cased in the I/O completion handler so that we can propagate errors to the block layer and filesystem. Signed-off-by:
James Bottomley <JBottomley@Parallels.com> Reported-by:
Steven Haber <steven@qumulo.com> Tested-by:
Steven Haber <steven@qumulo.com> Reviewed-by:
Martin K. Petersen <martin.petersen@oracle.com> Cc: stable@vger.kernel.org Signed-off-by:
Christoph Hellwig <hch@lst.de> (cherry picked from commit 89fb4cd1) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Konstantin Khlebnikov authored
On LPAE, each level 1 (pgd) page table entry maps 1GiB, and the level 2 (pmd) entries map 2MiB. When the identity mapping is created on LPAE, the pgd pointers are copied from the swapper_pg_dir. If we find that we need to modify the contents of a pmd, we allocate a new empty pmd table and insert it into the appropriate 1GB slot, before then filling it with the identity mapping. However, if the 1GB slot covers the kernel lowmem mappings, we obliterate those mappings. When replacing a PMD, first copy the old PMD contents to the new PMD, so that we preserve the existing mappings, particularly the mappings of the kernel itself. [rewrote commit message and added code comment -- rmk] Fixes: ae2de101 ("ARM: LPAE: Add identity mapping support for the 3-level page table format") Signed-off-by:
Konstantin Khlebnikov <k.khlebnikov@samsung.com> Signed-off-by:
Russell King <rmk+kernel@arm.linux.org.uk> (cherry picked from commit 811a2407) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Milan Broz authored
Th AF_ALG socket was missing a security label (e.g. SELinux) which means that socket was in "unlabeled" state. This was recently demonstrated in the cryptsetup package (cryptsetup v1.6.5 and later.) See https://bugzilla.redhat.com/show_bug.cgi?id=1115120 This patch clones the sock's label from the parent sock and resolves the issue (similar to AF_BLUETOOTH protocol family). Cc: stable@vger.kernel.org Signed-off-by:
Milan Broz <gmazyland@gmail.com> Acked-by:
Paul Moore <paul@paul-moore.com> Signed-off-by:
Herbert Xu <herbert@gondor.apana.org.au> (cherry picked from commit 4c63f83c) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Catalin Marinas authored
Commit 248ac0e1 ("mm/vmalloc: remove guard page from between vmap blocks") had the side effect of making vmap_area.va_end member point to the next vmap_area.va_start. This was creating an artificial reference to vmalloc'ed objects and kmemleak was rarely reporting vmalloc() leaks. This patch marks the vmap_area containing pointers explicitly and reduces the min ref_count to 2 as vm_struct still contains a reference to the vmalloc'ed object. The kmemleak add_scan_area() function has been improved to allow a SIZE_MAX argument covering the rest of the object (for simpler calling sites). Signed-off-by:
Catalin Marinas <catalin.marinas@arm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 7f88f88f) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Martin Schwidefsky authored
The PSW mask check of the PTRACE_POKEUSR_AREA command is incorrect. The PSW_MASK_USER define contains the PSW_MASK_ASC bits, the ptrace interface accepts all combinations for the address-space-control bits. To protect the kernel space the PSW mask check in ptrace needs to reject the address-space-control bit combination for home space. Fixes CVE-2014-3534 Cc: stable@vger.kernel.org Signed-off-by:
Martin Schwidefsky <schwidefsky@de.ibm.com> (cherry picked from commit dab6cf55) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Linus Torvalds authored
Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Romain Degez authored
Add support of the Promise FastTrak TX8660 SATA HBA in ahci mode by registering the board in the ahci_pci_tbl[]. Note: this HBA also provide a hardware RAID mode when activated in BIOS but specific drivers from the manufacturer are required in this case. Signed-off-by:
Romain Degez <romain.degez@gmail.com> Tested-by:
Romain Degez <romain.degez@gmail.com> Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org (cherry picked from commit b32bfc06) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Tejun Heo authored
1871ee13 ("libata: support the ata host which implements a queue depth less than 32") directly used ata_port->scsi_host->can_queue from ata_qc_new() to determine the number of tags supported by the host; unfortunately, SAS controllers doing SATA don't initialize ->scsi_host leading to the following oops. BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffff814e0618>] ata_qc_new_init+0x188/0x1b0 PGD 0 Oops: 0002 [#1] SMP Modules linked in: isci libsas scsi_transport_sas mgag200 drm_kms_helper ttm CPU: 1 PID: 518 Comm: udevd Not tainted 3.16.0-rc6+ #62 Hardware name: Intel Corporation S2600CO/S2600CO, BIOS SE5C600.86B.02.02.0002.122320131210 12/23/2013 task: ffff880c1a00b280 ti: ffff88061a000000 task.ti: ffff88061a000000 RIP: 0010:[<ffffffff814e0618>] [<ffffffff814e0618>] ata_qc_new_init+0x188/0x1b0 RSP: 0018:ffff88061a003ae8 EFLAGS: 00010012 RAX: 0000000000000001 RBX: ffff88000241ca80 RCX: 00000000000000fa RDX: 0000000000000020 RSI: 0000000000000020 RDI: ffff8806194aa298 RBP: ffff88061a003ae8 R08: ffff8806194a8000 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88000241ca80 R12: ffff88061ad58200 R13: ffff8806194aa298 R14: ffffffff814e67a0 R15: ffff8806194a8000 FS: 00007f3ad7fe3840(0000) GS:ffff880627620000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000058 CR3: 000000061a118000 CR4: 00000000001407e0 Stack: ffff88061a003b20 ffffffff814e96e1 ffff88000241ca80 ffff88061ad58200 ffff8800b6bf6000 ffff880c1c988000 ffff880619903850 ffff88061a003b68 ffffffffa0056ce1 ffff88061a003b48 0000000013d6e6f8 ffff88000241ca80 Call Trace: [<ffffffff814e96e1>] ata_sas_queuecmd+0xa1/0x430 [<ffffffffa0056ce1>] sas_queuecommand+0x191/0x220 [libsas] [<ffffffff8149afee>] scsi_dispatch_cmd+0x10e/0x300 [<ffffffff814a3bc5>] scsi_request_fn+0x2f5/0x550 [<ffffffff81317613>] __blk_run_queue+0x33/0x40 [<ffffffff8131781a>] queue_unplugged+0x2a/0x90 [<ffffffff8131ceb4>] blk_flush_plug_list+0x1b4/0x210 [<ffffffff8131d274>] blk_finish_plug+0x14/0x50 [<ffffffff8117eaa8>] __do_page_cache_readahead+0x198/0x1f0 [<ffffffff8117ee21>] force_page_cache_readahead+0x31/0x50 [<ffffffff8117ee7e>] page_cache_sync_readahead+0x3e/0x50 [<ffffffff81172ac6>] generic_file_read_iter+0x496/0x5a0 [<ffffffff81219897>] blkdev_read_iter+0x37/0x40 [<ffffffff811e307e>] new_sync_read+0x7e/0xb0 [<ffffffff811e3734>] vfs_read+0x94/0x170 [<ffffffff811e43c6>] SyS_read+0x46/0xb0 [<ffffffff811e33d1>] ? SyS_lseek+0x91/0xb0 [<ffffffff8171ee29>] system_call_fastpath+0x16/0x1b Code: 00 00 00 88 50 29 83 7f 08 01 19 d2 83 e2 f0 83 ea 50 88 50 34 c6 81 1d 02 00 00 40 c6 81 17 02 00 00 00 5d c3 66 0f 1f 44 00 00 <89> 14 25 58 00 00 00 Fix it by introducing ata_host->n_tags which is initialized to ATA_MAX_QUEUE - 1 in ata_host_init() for SAS controllers and set to scsi_host_template->can_queue in ata_host_register() for !SAS ones. As SAS hosts are never registered, this will give them the same ATA_MAX_QUEUE - 1 as before. Note that we can't use scsi_host->can_queue directly for SAS hosts anyway as they can go higher than the libata maximum. Signed-off-by:
Tejun Heo <tj@kernel.org> Reported-by:
Mike Qiu <qiudayu@linux.vnet.ibm.com> Reported-by:
Jesse Brandeburg <jesse.brandeburg@gmail.com> Reported-by:
Peter Hurley <peter@hurleysoftware.com> Reported-by:
Peter Zijlstra <peterz@infradead.org> Tested-by:
Alexey Kardashevskiy <aik@ozlabs.ru> Fixes: 1871ee13 ("libata: support the ata host which implements a queue depth less than 32") Cc: Kevin Hao <haokexin@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: stable@vger.kernel.org (cherry picked from commit 1a112d10) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Kevin Hao authored
1871ee13 ("libata: support the ata host which implements a queue depth less than 32") directly used ata_port->scsi_host->can_queue from ata_qc_new() to determine the number of tags supported by the host; unfortunately, SAS controllers doing SATA don't initialize ->scsi_host leading to the following oops. BUG: unable to handle kernel NULL pointer dereference at 0000000000000058 IP: [<ffffffff814e0618>] ata_qc_new_init+0x188/0x1b0 PGD 0 Oops: 0002 [#1] SMP Modules linked in: isci libsas scsi_transport_sas mgag200 drm_kms_helper ttm CPU: 1 PID: 518 Comm: udevd Not tainted 3.16.0-rc6+ #62 Hardware name: Intel Corporation S2600CO/S2600CO, BIOS SE5C600.86B.02.02.0002.122320131210 12/23/2013 task: ffff880c1a00b280 ti: ffff88061a000000 task.ti: ffff88061a000000 RIP: 0010:[<ffffffff814e0618>] [<ffffffff814e0618>] ata_qc_new_init+0x188/0x1b0 RSP: 0018:ffff88061a003ae8 EFLAGS: 00010012 RAX: 0000000000000001 RBX: ffff88000241ca80 RCX: 00000000000000fa RDX: 0000000000000020 RSI: 0000000000000020 RDI: ffff8806194aa298 RBP: ffff88061a003ae8 R08: ffff8806194a8000 R09: 0000000000000000 R10: 0000000000000000 R11: ffff88000241ca80 R12: ffff88061ad58200 R13: ffff8806194aa298 R14: ffffffff814e67a0 R15: ffff8806194a8000 FS: 00007f3ad7fe3840(0000) GS:ffff880627620000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000058 CR3: 000000061a118000 CR4: 00000000001407e0 Stack: ffff88061a003b20 ffffffff814e96e1 ffff88000241ca80 ffff88061ad58200 ffff8800b6bf6000 ffff880c1c988000 ffff880619903850 ffff88061a003b68 ffffffffa0056ce1 ffff88061a003b48 0000000013d6e6f8 ffff88000241ca80 Call Trace: [<ffffffff814e96e1>] ata_sas_queuecmd+0xa1/0x430 [<ffffffffa0056ce1>] sas_queuecommand+0x191/0x220 [libsas] [<ffffffff8149afee>] scsi_dispatch_cmd+0x10e/0x300 [<ffffffff814a3bc5>] scsi_request_fn+0x2f5/0x550 [<ffffffff81317613>] __blk_run_queue+0x33/0x40 [<ffffffff8131781a>] queue_unplugged+0x2a/0x90 [<ffffffff8131ceb4>] blk_flush_plug_list+0x1b4/0x210 [<ffffffff8131d274>] blk_finish_plug+0x14/0x50 [<ffffffff8117eaa8>] __do_page_cache_readahead+0x198/0x1f0 [<ffffffff8117ee21>] force_page_cache_readahead+0x31/0x50 [<ffffffff8117ee7e>] page_cache_sync_readahead+0x3e/0x50 [<ffffffff81172ac6>] generic_file_read_iter+0x496/0x5a0 [<ffffffff81219897>] blkdev_read_iter+0x37/0x40 [<ffffffff811e307e>] new_sync_read+0x7e/0xb0 [<ffffffff811e3734>] vfs_read+0x94/0x170 [<ffffffff811e43c6>] SyS_read+0x46/0xb0 [<ffffffff811e33d1>] ? SyS_lseek+0x91/0xb0 [<ffffffff8171ee29>] system_call_fastpath+0x16/0x1b Code: 00 00 00 88 50 29 83 7f 08 01 19 d2 83 e2 f0 83 ea 50 88 50 34 c6 81 1d 02 00 00 40 c6 81 17 02 00 00 00 5d c3 66 0f 1f 44 00 00 <89> 14 25 58 00 00 00 Fix it by introducing ata_host->n_tags which is initialized to ATA_MAX_QUEUE - 1 in ata_host_init() for SAS controllers and set to scsi_host_template->can_queue in ata_host_register() for !SAS ones. As SAS hosts are never registered, this will give them the same ATA_MAX_QUEUE - 1 as before. Note that we can't use scsi_host->can_queue directly for SAS hosts anyway as they can go higher than the libata maximum. Signed-off-by:
Tejun Heo <tj@kernel.org> Reported-by:
Mike Qiu <qiudayu@linux.vnet.ibm.com> Reported-by:
Jesse Brandeburg <jesse.brandeburg@gmail.com> Reported-by:
Peter Hurley <peter@hurleysoftware.com> Reported-by:
Peter Zijlstra <peterz@infradead.org> Tested-by:
Alexey Kardashevskiy <aik@ozlabs.ru> Fixes: 1871ee13 ("libata: support the ata host which implements a queue depth less than 32") Cc: Kevin Hao <haokexin@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: stable@vger.kernel.org ahci: add support for the Promise FastTrak TX8660 SATA HBA (ahci mode) Add support of the Promise FastTrak TX8660 SATA HBA in ahci mode by registering the board in the ahci_pci_tbl[]. Note: this HBA also provide a hardware RAID mode when activated in BIOS but specific drivers from the manufacturer are required in this case. Signed-off-by:
Romain Degez <romain.degez@gmail.com> Tested-by:
Romain Degez <romain.degez@gmail.com> Signed-off-by:
Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org drivers/ata/pata_ep93xx.c: use signed int type for result of platform_get_irq() [linux-3.16-rc5/drivers/ata/pata_ep93xx.c:929]: (style) Checking if unsigned variable 'irq' is less than zero. Source code is irq = platform_get_irq(pdev, 0); if (irq < 0) { but unsigned int irq; $ fgrep platform_get_irq `find . -name \*.h -print` ./include/linux/platform_device.h:extern int platform_get_irq(struct platform_device *, unsigned int); Now using "int" type instead of "unsigned int" for "irq" variable. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=80401Reported-by:
David Binderman <dcb314@hotmail.com> Signed-off-by:
Andrey Utkin <andrey.krieger.utkin@gmail.com> Signed-off-by:
Tejun Heo <tj@kernel.org> libata: EH should handle AMNF error condition as a media error libata-eh.c should handle AMNF error condition (error byte bit 0, usually code 0x01) in libata-eh.c along with UNC as a media error so SCSI stack can handle it properly (translation code 0x01 is already present in libata-scsi.c) but was never passed down due to lack of handling in EH. While using linux-based machine (AMD 6550M-based notebook, PCI IDs for the controller are 1022:7801 subsys 1025:059d) and ddrescue to salvage data from failing hard drive (WD7500BPVT 2.5" 750G SATA2), I've found that pure AMNF 0x01 error code generates generic "device error" that is retried several times by SCSI stack instead of "media error" that is passed up to software. So we may assume deprecated AMNF error code is surely not dead yet, and it's better for it to be handled properly. As we may see it is used by modern enough devices, and used properly: drive returned AMNF only when IDs for track cannot be read completely due to dying head or positioning, otherwise it returned UNC(orrectables). Not handling it causes wrong generic error code ("device error") reporting down the stack, can damage failing drives further because of excessive retries, and slows salvaging down a lot. Also, there is handling code in libata-scsi.c for 0x01 AMNF error already. https://bugzilla.kernel.org/show_bug.cgi?id=80031 tj: Shortened $SUBJ and moved its content to the first paragraph. Signed-off-by:
Alexey Asemov <alex@alex-at.ru> Signed-off-by:
Tejun Heo <tj@kernel.org> libata: support the ata host which implements a queue depth less than 32 The sata on fsl mpc8315e is broken after the commit 8a4aeec8 ("libata/ahci: accommodate tag ordered controllers"). The reason is that the ata controller on this SoC only implement a queue depth of 16. When issuing the commands in tag order, all the commands in tag 16 ~ 31 are mapped to tag 0 unconditionally and then causes the sata malfunction. It makes no senses to use a 32 queue in software while the hardware has less queue depth. So consider the queue depth implemented by the hardware when requesting a command tag. Fixes: 8a4aeec8 ("libata/ahci: accommodate tag ordered controllers") Cc: stable@vger.kernel.org Signed-off-by:
Kevin Hao <haokexin@gmail.com> Acked-by:
Dan Williams <dan.j.williams@intel.com> Signed-off-by:
Tejun Heo <tj@kernel.org> (cherry picked from commit 1a112d10 1871ee13) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
Christoph Hellwig authored
There is no inherent reason why the last put of a tag structure must be the one for the Scsi_Host, as device model objects can be held for arbitrary periods. Merge blk_free_tags and __blk_free_tags into a single funtion that just release a references and get rid of the BUG() when the host reference wasn't the last. Signed-off-by:
Christoph Hellwig <hch@lst.de> Cc: stable@kernel.org Signed-off-by:
Jens Axboe <axboe@fb.com> (cherry picked from commit d45b3279) Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-
- 12 Aug, 2014 1 commit
-
-
Sasha Levin authored
Signed-off-by:
Sasha Levin <sasha.levin@oracle.com>
-