- 07 Oct, 2020 40 commits
-
-
Filipe Manana authored
During an incremental send, when an inode has multiple new references we might end up emitting rename operations for orphanizations that have a source path that is no longer valid due to a previous orphanization of some directory inode. This causes the receiver to fail since it tries to rename a path that does not exists. Example reproducer: $ cat reproducer.sh #!/bin/bash mkfs.btrfs -f /dev/sdi >/dev/null mount /dev/sdi /mnt/sdi touch /mnt/sdi/f1 touch /mnt/sdi/f2 mkdir /mnt/sdi/d1 mkdir /mnt/sdi/d1/d2 # Filesystem looks like: # # . (ino 256) # |----- f1 (ino 257) # |----- f2 (ino 258) # |----- d1/ (ino 259) # |----- d2/ (ino 260) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1 btrfs send -f /tmp/snap1.send /mnt/sdi/snap1 # Now do a series of changes such that: # # *) inode 258 has one new hardlink and the previous name changed # # *) both names conflict with the old names of two other inodes: # # 1) the new name "d1" conflicts with the old name of inode 259, # under directory inode 256 (root) # # 2) the new name "d2" conflicts with the old name of inode 260 # under directory inode 259 # # *) inodes 259 and 260 now have the old names of inode 258 # # *) inode 257 is now located under inode 260 - an inode with a number # smaller than the inode (258) for which we created a second hard # link and swapped its names with inodes 259 and 260 # ln /mnt/sdi/f2 /mnt/sdi/d1/f2_link mv /mnt/sdi/f1 /mnt/sdi/d1/d2/f1 # Swap d1 and f2. mv /mnt/sdi/d1 /mnt/sdi/tmp mv /mnt/sdi/f2 /mnt/sdi/d1 mv /mnt/sdi/tmp /mnt/sdi/f2 # Swap d2 and f2_link mv /mnt/sdi/f2/d2 /mnt/sdi/tmp mv /mnt/sdi/f2/f2_link /mnt/sdi/f2/d2 mv /mnt/sdi/tmp /mnt/sdi/f2/f2_link # Filesystem now looks like: # # . (ino 256) # |----- d1 (ino 258) # |----- f2/ (ino 259) # |----- f2_link/ (ino 260) # | |----- f1 (ino 257) # | # |----- d2 (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2 btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2 mkfs.btrfs -f /dev/sdj >/dev/null mount /dev/sdj /mnt/sdj btrfs receive -f /tmp/snap1.send /mnt/sdj btrfs receive -f /tmp/snap2.send /mnt/sdj umount /mnt/sdi umount /mnt/sdj When executed the receive of the incremental stream fails: $ ./reproducer.sh Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 At subvol snap1 At snapshot snap2 ERROR: rename d1/d2 -> o260-6-0 failed: No such file or directory This happens because: 1) When processing inode 257 we end up computing the name for inode 259 because it is an ancestor in the send snapshot, and at that point it still has its old name, "d1", from the parent snapshot because inode 259 was not yet processed. We then cache that name, which is valid until we start processing inode 259 (or set the progress to 260 after processing its references); 2) Later we start processing inode 258 and collecting all its new references into the list sctx->new_refs. The first reference in the list happens to be the reference for name "d1" while the reference for name "d2" is next (the last element of the list). We compute the full path "d1/d2" for this second reference and store it in the reference (its ->full_path member). The path used for the new parent directory was "d1" and not "f2" because inode 259, the new parent, was not yet processed; 3) When we start processing the new references at process_recorded_refs() we start with the first reference in the list, for the new name "d1". Because there is a conflicting inode that was not yet processed, which is directory inode 259, we orphanize it, renaming it from "d1" to "o259-6-0"; 4) Then we start processing the new reference for name "d2", and we realize it conflicts with the reference of inode 260 in the parent snapshot. So we issue an orphanization operation for inode 260 by emitting a rename operation with a destination path of "o260-6-0" and a source path of "d1/d2" - this source path is the value we stored in the reference earlier at step 2), corresponding to the ->full_path member of the reference, however that path is no longer valid due to the orphanization of the directory inode 259 in step 3). This makes the receiver fail since the path does not exists, it should have been "o259-6-0/d2". Fix this by recomputing the full path of a reference before emitting an orphanization if we previously orphanized any directory, since that directory could be a parent in the new path. This is a rare scenario so keeping it simple and not checking if that previously orphanized directory is in fact an ancestor of the inode we are trying to orphanize. A test case for fstests follows soon. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When doing an incremental send it is possible that when processing the new references for an inode we end up issuing rename or link operations that have an invalid path, which contains the orphanized name of a directory before we actually orphanized it, causing the receiver to fail. The following reproducer triggers such scenario: $ cat reproducer.sh #!/bin/bash mkfs.btrfs -f /dev/sdi >/dev/null mount /dev/sdi /mnt/sdi touch /mnt/sdi/a touch /mnt/sdi/b mkdir /mnt/sdi/testdir # We want "a" to have a lower inode number then "testdir" (257 vs 259). mv /mnt/sdi/a /mnt/sdi/testdir/a # Filesystem looks like: # # . (ino 256) # |----- testdir/ (ino 259) # | |----- a (ino 257) # | # |----- b (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1 btrfs send -f /tmp/snap1.send /mnt/sdi/snap1 # Now rename 259 to "testdir_2", then change the name of 257 to # "testdir" and make it a direct descendant of the root inode (256). # Also create a new link for inode 257 with the old name of inode 258. # By swapping the names and location of several inodes and create a # nasty dependency chain of rename and link operations. mv /mnt/sdi/testdir/a /mnt/sdi/a2 touch /mnt/sdi/testdir/a mv /mnt/sdi/b /mnt/sdi/b2 ln /mnt/sdi/a2 /mnt/sdi/b mv /mnt/sdi/testdir /mnt/sdi/testdir_2 mv /mnt/sdi/a2 /mnt/sdi/testdir # Filesystem now looks like: # # . (ino 256) # |----- testdir_2/ (ino 259) # | |----- a (ino 260) # | # |----- testdir (ino 257) # |----- b (ino 257) # |----- b2 (ino 258) btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2 btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2 mkfs.btrfs -f /dev/sdj >/dev/null mount /dev/sdj /mnt/sdj btrfs receive -f /tmp/snap1.send /mnt/sdj btrfs receive -f /tmp/snap2.send /mnt/sdj umount /mnt/sdi umount /mnt/sdj When running the reproducer, the receive of the incremental send stream fails: $ ./reproducer.sh Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1' At subvol /mnt/sdi/snap1 Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2' At subvol /mnt/sdi/snap2 At subvol snap1 At snapshot snap2 ERROR: link b -> o259-6-0/a failed: No such file or directory The problem happens because of the following: 1) Before we start iterating the list of new references for inode 257, we generate its current path and store it at @valid_path, done at the very beginning of process_recorded_refs(). The generated path is "o259-6-0/a", containing the orphanized name for inode 259; 2) Then we iterate over the list of new references, which has the references "b" and "testdir" in that specific order; 3) We process reference "b" first, because it is in the list before reference "testdir". We then issue a link operation to create the new reference "b" using a target path corresponding to the content at @valid_path, which corresponds to "o259-6-0/a". However we haven't yet orphanized inode 259, its name is still "testdir", and not "o259-6-0". The orphanization of 259 did not happen yet because we will process the reference named "testdir" for inode 257 only in the next iteration of the loop that goes over the list of new references. Fix the issue by having a preliminar iteration over all the new references at process_recorded_refs(). This iteration is responsible only for doing the orphanization of other inodes that have and old reference that conflicts with one of the new references of the inode we are currently processing. The emission of rename and link operations happen now in the next iteration of the new references. A test case for fstests will follow soon. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Commit 259ee775 ("btrfs: tree-checker: Add ROOT_ITEM check") introduced btrfs root item size check, however btrfs root item has two versions, the legacy one which just ends before generation_v2 member, is smaller than current btrfs root item size. This caused btrfs kernel to reject valid but old tree root leaves. Fix this problem by also allowing legacy root item, since kernel can already handle them pretty well and upgrade to newer root item format when needed. Reported-by: Martin Steigerwald <martin@lichtvoll.de> Fixes: 259ee775 ("btrfs: tree-checker: Add ROOT_ITEM check") CC: stable@vger.kernel.org # 5.4+ Tested-By: Martin Steigerwald <martin@lichtvoll.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
In the definitions generated by BTRFS_SETGET_HEADER_FUNCS there's direct pointer assignment but we should use the helpers for unaligned access for clarity. It hasn't been a problem so far because of the natural alignment. Similarly for BTRFS_SETGET_STACK_FUNCS, that usually get a structure from stack that has an aligned start but some members may not be aligned due to packing. This as well hasn't caused problems so far. Move the put/get_unaligned_le8 stubs to ctree.h so we can use them. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The free space inode stores the tracking data, checksums etc, using the io_ctl structure and moving the pointers. The data are generally aligned to at least 4 bytes (u32 for CRC) so it's not completely unaligned but for clarity we should use the proper helpers whenever a struct is initialized from io_ctl->cur pointer. Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The header is mapped onto the send buffer and thus its members may be potentially unaligned so use the helpers instead of directly assigning the pointers. This has worked so far but let's use the helpers to make that clear. Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Btree inode is special compared to all other inode extent io_trees, although it has a btrfs inode, it doesn't have the track_uptodate bit at all. This means a lot of things like extent locking doesn't even need to be applied to btree io tree. Since it's so special, adds a new owner value for it to make debuging a little easier. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Johannes Thumshirn authored
We have several occurrences of a soft lockup from fstest's generic/175 testcase, which look more or less like this one: watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [xfs_io:10030] Kernel panic - not syncing: softlockup: hung tasks CPU: 0 PID: 10030 Comm: xfs_io Tainted: G L 5.9.0-rc5+ #768 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4-rebuilt.opensuse.org 04/01/2014 Call Trace: <IRQ> dump_stack+0x77/0xa0 panic+0xfa/0x2cb watchdog_timer_fn.cold+0x85/0xa5 ? lockup_detector_update_enable+0x50/0x50 __hrtimer_run_queues+0x99/0x4c0 ? recalibrate_cpu_khz+0x10/0x10 hrtimer_run_queues+0x9f/0xb0 update_process_times+0x28/0x80 tick_handle_periodic+0x1b/0x60 __sysvec_apic_timer_interrupt+0x76/0x210 asm_call_on_stack+0x12/0x20 </IRQ> sysvec_apic_timer_interrupt+0x7f/0x90 asm_sysvec_apic_timer_interrupt+0x12/0x20 RIP: 0010:btrfs_tree_unlock+0x91/0x1a0 [btrfs] RSP: 0018:ffffc90007123a58 EFLAGS: 00000282 RAX: ffff8881cea2fbe0 RBX: ffff8881cea2fbe0 RCX: 0000000000000000 RDX: ffff8881d23fd200 RSI: ffffffff82045220 RDI: ffff8881cea2fba0 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000032 R10: 0000160000000000 R11: 0000000000001000 R12: 0000000000001000 R13: ffff8882357fd5b0 R14: ffff88816fa76e70 R15: ffff8881cea2fad0 ? btrfs_tree_unlock+0x15b/0x1a0 [btrfs] btrfs_release_path+0x67/0x80 [btrfs] btrfs_insert_replace_extent+0x177/0x2c0 [btrfs] btrfs_replace_file_extents+0x472/0x7c0 [btrfs] btrfs_clone+0x9ba/0xbd0 [btrfs] btrfs_clone_files.isra.0+0xeb/0x140 [btrfs] ? file_update_time+0xcd/0x120 btrfs_remap_file_range+0x322/0x3b0 [btrfs] do_clone_file_range+0xb7/0x1e0 vfs_clone_file_range+0x30/0xa0 ioctl_file_clone+0x8a/0xc0 do_vfs_ioctl+0x5b2/0x6f0 __x64_sys_ioctl+0x37/0xa0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f87977fc247 RSP: 002b:00007ffd51a2f6d8 EFLAGS: 00000206 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f87977fc247 RDX: 00007ffd51a2f710 RSI: 000000004020940d RDI: 0000000000000003 RBP: 0000000000000004 R08: 00007ffd51a79080 R09: 0000000000000000 R10: 00005621f11352f2 R11: 0000000000000206 R12: 0000000000000000 R13: 0000000000000000 R14: 00005621f128b958 R15: 0000000080000000 Kernel Offset: disabled ---[ end Kernel panic - not syncing: softlockup: hung tasks ]--- All of these lockup reports have the call chain btrfs_clone_files() -> btrfs_clone() in common. btrfs_clone_files() calls btrfs_clone() with both source and destination extents locked and loops over the source extent to create the clones. Conditionally reschedule in the btrfs_clone() loop, to give some time back to other processes. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Denis Efremov authored
Replace kvzalloc() call with kvcalloc() that also checks the size internally. There's a standalone overflow check in the function so we can return invalid parameter combination. Use array_size() helper to compute the memory size for clone_sources_tmp. Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Denis Efremov <efremov@linux.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Denis Efremov authored
btrfs_ioctl_send() used open-coded kvzalloc implementation earlier. The code was accidentally replaced with kzalloc() call [1]. Restore the original code by using kvzalloc() to allocate sctx->clone_roots. [1] https://patchwork.kernel.org/patch/9757891/#20529627 Fixes: 818e010b ("btrfs: replace opencoded kvzalloc with the helper") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Denis Efremov <efremov@linux.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
The passed in ordered_extent struct is always well-formed and contains the inode making the explicit argument redundant. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's used to reference the csum root which can be done from the trans handle as well. Simplify the signature and while at it also remove the noinline attribute as the function uses only at most 16 bytes of stack space. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This makes reading the code a tad easier by decreasing the level of indirection by one. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's always set to 0 by the 2 callers so move it inside __do_readpage. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's always set to 0 by its sole caller - btrfs_readpage. Simply remove it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's always set to 0 from the sole caller - btrfs_readpage. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Now that btrfs_readpage is the only caller of extent_read_full_page the latter can be open coded in the former. Use the occassion to rename __extent_read_full_page to extent_read_full_page. To facillitate this change submit_one_bio has to be exported as well. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's called only from btrfs_readpage which always passes 0 so just sink the argument into extent_read_full_page. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Now that this function is only responsible for reading data pages it's no longer necessary to pass get_extent_t parameter across several layers of functions. This patch removes this parameter from multiple functions: __get_extent_map/__do_readpage/__extent_read_full_page/ extent_read_full_page and simply calls btrfs_get_extent directly in __get_extent_map. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
The sole purpose of this function was to satisfy the requirements of __do_readpage. Since that function is no longer used to read metadata pages the need to keep btree_get_extent around has also disappeared. Simply remove it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Metadata pages currently use __do_readpage to read metadata pages, unfortunately this function is also used to deal with ordinary data pages. This makes the metadata pages reading code to go through multiple hoops in order to adhere to __do_readpage invariants. Most of these are necessary for data pages which could be compressed. For metadata it's enough to simply build a bio and submit it. To this effect simply call submit_extent_page directly from read_extent_buffer_pages which is the only callpath used to populate extent_buffers with data. This in turn enables further cleanups. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
There is no way for this function to be called as ->readpage() since it's called from generic_file_buffered_read/filemap_fault/do_read_cache_page/readhead code. BTRFS doesn't utilize the first 3 for the btree inode and implements it's owon readhead mechanism. So simply remove the function. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Logging directories with many entries can take a significant amount of time, and in some cases monopolize a cpu/core for a long time if the logging task doesn't happen to block often enough. Johannes and Lu Fengqi reported test case generic/041 triggering a soft lockup when the kernel has CONFIG_SOFTLOCKUP_DETECTOR=y. For this test case we log an inode with 3002 hard links, and because the test removed one hard link before fsyncing the file, the inode logging causes the parent directory do be logged as well, which has 6004 directory items to log (3002 BTRFS_DIR_ITEM_KEY items plus 3002 BTRFS_DIR_INDEX_KEY items), so it can take a significant amount of time and trigger the soft lockup. So just make tree-log.c:log_dir_items() reschedule when necessary, releasing the current search path before doing so and then resume from where it was before the reschedule. The stack trace produced when the soft lockup happens is the following: [10480.277653] watchdog: BUG: soft lockup - CPU#2 stuck for 22s! [xfs_io:28172] [10480.279418] Modules linked in: dm_thin_pool dm_persistent_data (...) [10480.284915] irq event stamp: 29646366 [10480.285987] hardirqs last enabled at (29646365): [<ffffffff85249b66>] __slab_alloc.constprop.0+0x56/0x60 [10480.288482] hardirqs last disabled at (29646366): [<ffffffff8579b00d>] irqentry_enter+0x1d/0x50 [10480.290856] softirqs last enabled at (4612): [<ffffffff85a00323>] __do_softirq+0x323/0x56c [10480.293615] softirqs last disabled at (4483): [<ffffffff85800dbf>] asm_call_on_stack+0xf/0x20 [10480.296428] CPU: 2 PID: 28172 Comm: xfs_io Not tainted 5.9.0-rc4-default+ #1248 [10480.298948] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 [10480.302455] RIP: 0010:__slab_alloc.constprop.0+0x19/0x60 [10480.304151] Code: 86 e8 31 75 21 00 66 66 2e 0f 1f 84 00 00 00 (...) [10480.309558] RSP: 0018:ffffadbe09397a58 EFLAGS: 00000282 [10480.311179] RAX: ffff8a495ab92840 RBX: 0000000000000282 RCX: 0000000000000006 [10480.313242] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff85249b66 [10480.315260] RBP: ffff8a497d04b740 R08: 0000000000000001 R09: 0000000000000001 [10480.317229] R10: ffff8a497d044800 R11: ffff8a495ab93c40 R12: 0000000000000000 [10480.319169] R13: 0000000000000000 R14: 0000000000000c40 R15: ffffffffc01daf70 [10480.321104] FS: 00007fa1dc5c0e40(0000) GS:ffff8a497da00000(0000) knlGS:0000000000000000 [10480.323559] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [10480.325235] CR2: 00007fa1dc5befb8 CR3: 0000000004f8a006 CR4: 0000000000170ea0 [10480.327259] Call Trace: [10480.328286] ? overwrite_item+0x1f0/0x5a0 [btrfs] [10480.329784] __kmalloc+0x831/0xa20 [10480.331009] ? btrfs_get_32+0xb0/0x1d0 [btrfs] [10480.332464] overwrite_item+0x1f0/0x5a0 [btrfs] [10480.333948] log_dir_items+0x2ee/0x570 [btrfs] [10480.335413] log_directory_changes+0x82/0xd0 [btrfs] [10480.336926] btrfs_log_inode+0xc9b/0xda0 [btrfs] [10480.338374] ? init_once+0x20/0x20 [btrfs] [10480.339711] btrfs_log_inode_parent+0x8d3/0xd10 [btrfs] [10480.341257] ? dget_parent+0x97/0x2e0 [10480.342480] btrfs_log_dentry_safe+0x3a/0x50 [btrfs] [10480.343977] btrfs_sync_file+0x24b/0x5e0 [btrfs] [10480.345381] do_fsync+0x38/0x70 [10480.346483] __x64_sys_fsync+0x10/0x20 [10480.347703] do_syscall_64+0x2d/0x70 [10480.348891] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [10480.350444] RIP: 0033:0x7fa1dc80970b [10480.351642] Code: 0f 05 48 3d 00 f0 ff ff 77 45 c3 0f 1f 40 00 48 (...) [10480.356952] RSP: 002b:00007fffb3d081d0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a [10480.359458] RAX: ffffffffffffffda RBX: 0000562d93d45e40 RCX: 00007fa1dc80970b [10480.361426] RDX: 0000562d93d44ab0 RSI: 0000562d93d45e60 RDI: 0000000000000003 [10480.363367] RBP: 0000000000000001 R08: 0000000000000000 R09: 00007fa1dc7b2a40 [10480.365317] R10: 0000562d93d0e366 R11: 0000000000000293 R12: 0000000000000001 [10480.367299] R13: 0000562d93d45290 R14: 0000562d93d45e40 R15: 0000562d93d45e60 Link: https://lore.kernel.org/linux-btrfs/20180713090216.GC575@fnst.localdomain/Reported-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> CC: stable@vger.kernel.org # 4.4+ Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
While running xfstests btrfs/177 I got the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.9.0-rc3+ #5 Not tainted ------------------------------------------------------ kswapd0/100 is trying to acquire lock: ffff97066aa56760 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x3f/0x330 but task is already holding lock: ffffffff9fd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0x65/0x80 slab_pre_alloc_hook.constprop.0+0x20/0x200 kmem_cache_alloc+0x37/0x270 alloc_inode+0x82/0xb0 iget_locked+0x10d/0x2c0 kernfs_get_inode+0x1b/0x130 kernfs_get_tree+0x136/0x240 sysfs_get_tree+0x16/0x40 vfs_get_tree+0x28/0xc0 path_mount+0x434/0xc00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (kernfs_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 kernfs_add_one+0x23/0x150 kernfs_create_dir_ns+0x7a/0xb0 sysfs_create_dir_ns+0x60/0xb0 kobject_add_internal+0xc0/0x2c0 kobject_add+0x6e/0x90 btrfs_sysfs_add_block_group_type+0x102/0x160 btrfs_make_block_group+0x167/0x230 btrfs_alloc_chunk+0x54f/0xb80 btrfs_chunk_alloc+0x18e/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_insert_empty_items+0x64/0xb0 btrfs_new_inode+0x225/0x730 btrfs_create+0xab/0x1f0 lookup_open.isra.0+0x52d/0x690 path_openat+0x2a7/0x9e0 do_filp_open+0x75/0x100 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&fs_info->chunk_mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7e0 btrfs_chunk_alloc+0x125/0x3a0 find_free_extent+0xdf6/0x1210 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb0/0x310 alloc_tree_block_no_bg_flush+0x4a/0x60 __btrfs_cow_block+0x11a/0x530 btrfs_cow_block+0x104/0x220 btrfs_search_slot+0x52e/0x9d0 btrfs_lookup_inode+0x2a/0x8f __btrfs_update_delayed_inode+0x80/0x240 btrfs_commit_inode_delayed_inode+0x119/0x120 btrfs_evict_inode+0x357/0x500 evict+0xcf/0x1f0 do_unlinkat+0x1a9/0x2b0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (&delayed_node->mutex){+.+.}-{3:3}: __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 __mutex_lock+0x7e/0x7e0 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 kthread+0x138/0x160 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: &delayed_node->mutex --> kernfs_mutex --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(kernfs_mutex); lock(fs_reclaim); lock(&delayed_node->mutex); *** DEADLOCK *** 3 locks held by kswapd0/100: #0: ffffffff9fd74700 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30 #1: ffffffff9fd65c50 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x115/0x290 #2: ffff9706629780e0 (&type->s_umount_key#36){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0 stack backtrace: CPU: 1 PID: 100 Comm: kswapd0 Not tainted 5.9.0-rc3+ #5 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb8 check_noncircular+0x12d/0x150 __lock_acquire+0x119c/0x1fc0 lock_acquire+0xa7/0x3d0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 __mutex_lock+0x7e/0x7e0 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? __btrfs_release_delayed_node.part.0+0x3f/0x330 ? lock_acquire+0xa7/0x3d0 ? find_held_lock+0x2b/0x80 __btrfs_release_delayed_node.part.0+0x3f/0x330 btrfs_evict_inode+0x24c/0x500 evict+0xcf/0x1f0 dispose_list+0x48/0x70 prune_icache_sb+0x44/0x50 super_cache_scan+0x161/0x1e0 do_shrink_slab+0x178/0x3c0 shrink_slab+0x17c/0x290 shrink_node+0x2b2/0x6d0 balance_pgdat+0x30a/0x670 kswapd+0x213/0x4c0 ? _raw_spin_unlock_irqrestore+0x41/0x50 ? add_wait_queue_exclusive+0x70/0x70 ? balance_pgdat+0x670/0x670 kthread+0x138/0x160 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 This happens because when we link in a block group with a new raid index type we'll create the corresponding sysfs entries for it. This is problematic because while restriping we're holding the chunk_mutex, and while mounting we're holding the tree locks. Fixing this isn't pretty, we move the call to the sysfs stuff into the btrfs_create_pending_block_groups() work, where we're not holding any locks. This creates a slight race where other threads could see that there's no sysfs kobj for that raid type, and race to create the sysfs dir. Fix this by wrapping the creation in space_info->lock, so we only get one thread calling kobject_add() for the new directory. We don't worry about the lock on cleanup as it only gets deleted on unmount. On mount it's more straightforward, we loop through the space_infos already, just check every raid index in each space_info and added the sysfs entries for the corresponding block groups. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We have this thing wrapped in an RCU lock, but it's really not needed. We create all the space_info's on mount, and we destroy them on unmount. The list never changes and we're protected from messing with it by the normal mount/umount path, so kill the RCU stuff around it. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reword and update formats to match variable types. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update formats ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
That parameter can easily be derived based on the "data_size" and "nr" parameters exploit this fact to simply the function's signature. No functional changes. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
The value of this argument can be derived from the total_data as it's simply the value of the data size + size of btrfs_items being touched. Move the parameter calculation inside the function. This results in a simpler interface and also a minor size reduction: ./scripts/bloat-o-meter ctree.original fs/btrfs/ctree.o add/remove: 0/0 grow/shrink: 0/3 up/down: 0/-34 (-34) Function old new delta btrfs_duplicate_item 260 259 -1 setup_items_for_insert 1200 1190 -10 btrfs_insert_empty_items 177 154 -23 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Rearrange statements calculating the offset of the newly added items so that the calculation has to be done only once. No functional change. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
This reports the latest send stream version supported by the kernel as the feature in /sys/fs/btrfs/features/send_stream_version . Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
send_write_or_clone() basically has an open-coded copy of btrfs_file_extent_end() except that it (incorrectly) aligns to PAGE_SIZE instead of sectorsize. Fix and simplify the code by using btrfs_file_extent_end(). Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
send_write() currently copies from the page cache to sctx->read_buf, and then from sctx->read_buf to sctx->send_buf. Similarly, send_hole() zeroes sctx->read_buf and then copies from sctx->read_buf to sctx->send_buf. However, if we write the TLV header manually, we can copy to sctx->send_buf directly and get rid of sctx->read_buf. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
send_write()/fill_read_buf() have some logic for avoiding reading past i_size. However, everywhere that we call send_write()/send_extent_data(), we've already clamped the length down to i_size. Get rid of the i_size handling, which simplifies the next change. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Now that we use the same mechanism to replace all the extents in a file range with either a hole, an existing extent (when cloning) or a new extent (when using fallocate), the name of btrfs_insert_clone_extent() no longer reflects its genericity. So rename it to btrfs_insert_replace_extent(), since what it does is to either insert an existing extent or a new extent into a file range. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
The function btrfs_punch_hole_range() is now used to replace all the file extents in a given file range with an extent described in the given struct btrfs_replace_extent_info argument. This extent can either be an existing extent that is being cloned or it can be a new extent (namely a prealloc extent). When that argument is NULL it only punches a hole (drops all the existing extents) in the file range. So rename the function to btrfs_replace_file_extents(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Now that we can use btrfs_clone_extent_info to convey information for a new prealloc extent as well, and not just for existing extents that are being cloned, rename it to btrfs_replace_extent_info, which reflects the fact that this is now more generic and it is used to replace all existing extents in a file range with the extent described by the structure. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-