- 27 Nov, 2015 40 commits
-
-
Dan Carpenter authored
[ Upstream commit 50010c20 ] This is decrementing the pointer, instead of the value stored in the pointer. KASan detects it as an out of bounds reference. Reported-by: "Berry Cheng 程君(成淼)" <chengmiao.cj@alibaba-inc.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jann Horn authored
commit fbb18169 upstream. It was possible for an attacking user to trick root (or another user) into writing his coredumps into an attacker-readable, pre-existing file using rename() or link(), causing the disclosure of secret data from the victim process' virtual memory. Depending on the configuration, it was also possible to trick root into overwriting system files with coredumps. Fix that issue by never writing coredumps into existing files. Requirements for the attack: - The attack only applies if the victim's process has a nonzero RLIMIT_CORE and is dumpable. - The attacker can trick the victim into coredumping into an attacker-writable directory D, either because the core_pattern is relative and the victim's cwd is attacker-writable or because an absolute core_pattern pointing to a world-writable directory is used. - The attacker has one of these: A: on a system with protected_hardlinks=0: execute access to a folder containing a victim-owned, attacker-readable file on the same partition as D, and the victim-owned file will be deleted before the main part of the attack takes place. (In practice, there are lots of files that fulfill this condition, e.g. entries in Debian's /var/lib/dpkg/info/.) This does not apply to most Linux systems because most distros set protected_hardlinks=1. B: on a system with protected_hardlinks=1: execute access to a folder containing a victim-owned, attacker-readable and attacker-writable file on the same partition as D, and the victim-owned file will be deleted before the main part of the attack takes place. (This seems to be uncommon.) C: on any system, independent of protected_hardlinks: write access to a non-sticky folder containing a victim-owned, attacker-readable file on the same partition as D (This seems to be uncommon.) The basic idea is that the attacker moves the victim-owned file to where he expects the victim process to dump its core. The victim process dumps its core into the existing file, and the attacker reads the coredump from it. If the attacker can't move the file because he does not have write access to the containing directory, he can instead link the file to a directory he controls, then wait for the original link to the file to be deleted (because the kernel checks that the link count of the corefile is 1). A less reliable variant that requires D to be non-sticky works with link() and does not require deletion of the original link: link() the file into D, but then unlink() it directly before the kernel performs the link count check. On systems with protected_hardlinks=0, this variant allows an attacker to not only gain information from coredumps, but also clobber existing, victim-writable files with coredumps. (This could theoretically lead to a privilege escalation.) Signed-off-by: Jann Horn <jann@thejh.net> Cc: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kees Cook authored
commit 9520628e upstream. When the suid_dumpable sysctl is set to "2", and there is no core dump pipe defined in the core_pattern sysctl, a local user can cause core files to be written to root-writable directories, potentially with user-controlled content. This means an admin can unknowningly reintroduce a variation of CVE-2006-2451, allowing local users to gain root privileges. $ cat /proc/sys/fs/suid_dumpable 2 $ cat /proc/sys/kernel/core_pattern core $ ulimit -c unlimited $ cd / $ ls -l core ls: cannot access core: No such file or directory $ touch core touch: cannot touch `core': Permission denied $ OHAI="evil-string-here" ping localhost >/dev/null 2>&1 & $ pid=$! $ sleep 1 $ kill -SEGV $pid $ ls -l core -rw------- 1 root kees 458752 Jun 21 11:35 core $ sudo strings core | grep evil OHAI=evil-string-here While cron has been fixed to abort reading a file when there is any parse error, there are still other sensitive directories that will read any file present and skip unparsable lines. Instead of introducing a suid_dumpable=3 mode and breaking all users of mode 2, this only disables the unsafe portion of mode 2 (writing to disk via relative path). Most users of mode 2 (e.g. Chrome OS) already use a core dump pipe handler, so this change will not break them. For the situations where a pipe handler is not defined but mode 2 is still active, crash dumps will only be written to fully qualified paths. If a relative path is defined (e.g. the default "core" pattern), dump attempts will trigger a printk yelling about the lack of a fully qualified path. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alan Cox <alan@linux.intel.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: James Morris <james.l.morris@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Reviewed-by: James Morris <james.l.morris@oracle.com>
-
Maciej W. Rozycki authored
commit b582ef5c upstream. Do not clobber the buffer space passed from `search_binary_handler' and originally preloaded by `prepare_binprm' with the executable's file header by overwriting it with its interpreter's file header. Instead keep the buffer space intact and directly use the data structure locally allocated for the interpreter's file header, fixing a bug introduced in 2.1.14 with loadable module support (linux-mips.org commit beb11695 [Import of Linux/MIPS 2.1.14], predating kernel.org repo's history). Adjust the amount of data read from the interpreter's file accordingly. This was not an issue before loadable module support, because back then `load_elf_binary' was executed only once for a given ELF executable, whether the function succeeded or failed. With loadable module support supported and enabled, upon a failure of `load_elf_binary' -- which may for example be caused by architecture code rejecting an executable due to a missing hardware feature requested in the file header -- a module load is attempted and then the function reexecuted by `search_binary_handler'. With the executable's file header replaced with its interpreter's file header the executable can then be erroneously accepted in this subsequent attempt. Signed-off-by: Maciej W. Rozycki <macro@imgtec.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Howells authored
commit 102f4d90 upstream. Handle a write being requested to the page immediately beyond the EOF marker on a cache object. Currently this gets an assertion failure in CacheFiles because the EOF marker is used there to encode information about a partial page at the EOF - which could lead to an unknown blank spot in the file if we extend the file over it. The problem is actually in fscache where we check the index of the page being written against store_limit. store_limit is set to the number of pages that we're allowed to store by fscache_set_store_limit() - which means it's one more than the index of the last page we're allowed to store. The problem is that we permit writing to a page with an index _equal_ to the store limit - when we should reject that case. Whilst we're at it, change the triggered assertion in CacheFiles to just return -ENOBUFS instead. The assertion failure looks something like this: CacheFiles: Assertion failed 1000 < 7b1 is false ------------[ cut here ]------------ kernel BUG at fs/cachefiles/rdwr.c:962! ... RIP: 0010:[<ffffffffa02c9e83>] [<ffffffffa02c9e83>] cachefiles_write_page+0x273/0x2d0 [cachefiles] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [bwh: Backported to 3.2: we don't have __kernel_write() so keep using the open-coded equivalent] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kinglong Mee authored
commit b130ed59 upstream. Only override netfs->primary_index when registering success. Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [bwh: Backported to 3.2: no n_active or flags fields in fscache_cookie] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Kinglong Mee authored
commit 86108c2e upstream. If netfs exist, fscache should not increase the reference of parent's usage and n_children, otherwise, never be decreased. v2: thanks David's suggest, move increasing reference of parent if success use kmem_cache_free() freeing primary_index directly v3: don't move "netfs->primary_index->parent = &fscache_fsdef_index;" Signed-off-by: Kinglong Mee <kinglongmee@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Paolo Bonzini authored
commit cbdb967a upstream. This is needed to avoid the possibility that the guest triggers an infinite stream of #DB exceptions (CVE-2015-8104). VMX is not affected: because it does not save DR6 in the VMCS, it already intercepts #DB unconditionally. Reported-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.2, with thanks to Paolo: - update_db_bp_intercept() was called update_db_intercept() - The remaining call is in svm_guest_debug() rather than through svm_x86_ops] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
commit d69bbf88 upstream. Only cpu seeing dst refcount going to 0 can safely dereference dst->flags. Otherwise an other cpu might already have freed the dst. Fixes: 27b75c95 ("net: avoid RCU for NOCACHE dst") Reported-by: Greg Thelen <gthelen@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit f1cd1f0b upstream. When listing a inode's xattrs we have a time window where we race against a concurrent operation for adding a new hard link for our inode that makes us not return any xattr to user space. In order for this to happen, the first xattr of our inode needs to be at slot 0 of a leaf and the previous leaf must still have room for an inode ref (or extref) item, and this can happen because an inode's listxattrs callback does not lock the inode's i_mutex (nor does the VFS does it for us), but adding a hard link to an inode makes the VFS lock the inode's i_mutex before calling the inode's link callback. If we have the following leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 XATTR_ITEM 12345), ... ] slot N - 2 slot N - 1 slot 0 The race illustrated by the following sequence diagram is possible: CPU 1 CPU 2 btrfs_listxattr() searches for key (257 XATTR_ITEM 0) gets path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() releases the path adds key (257 INODE_REF 666) to the end of leaf X (slot N), and leaf X now has N + 1 items searches for the key (257 INODE_REF 256), with path->keep_locks == 1, because that is the last key it saw in leaf X before releasing the path ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in leaf X, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 666) btrfs_listxattr's loop iteration sees that the type of the key pointed by the path is different from the type BTRFS_XATTR_ITEM_KEY and so it breaks the loop and stops looking for more xattr items --> the application doesn't get any xattr listed for our inode So fix this by breaking the loop only if the key's type is greater than BTRFS_XATTR_ITEM_KEY and skip the current key if its type is smaller. Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: old code used the trivial accessor btrfs_key_type()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Peter Oberparleiter authored
commit 863e02d0 upstream. Writing a number to /sys/bus/scsi/devices/<sdev>/queue_ramp_up_period returns the value of that number instead of the number of bytes written. This behavior can confuse programs expecting POSIX write() semantics. Fix this by returning the number of bytes written instead. Signed-off-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com> Reviewed-by: Ewan D. Milne <emilne@redhat.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Peter Zijlstra authored
commit b71b437e upstream. Arnaldo reported that tracepoint filters seem to misbehave (ie. not apply) on inherited events. The fix is obvious; filters are only set on the actual (parent) event, use the normal pattern of using this parent event for filters. This is safe because each child event has a reference to it. Reported-by: Arnaldo Carvalho de Melo <acme@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/20151102095051.GN17308@twins.programming.kicks-ass.netSigned-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 1d512cb7 upstream. If we are using the NO_HOLES feature, we have a tiny time window when running delalloc for a nodatacow inode where we can race with a concurrent link or xattr add operation leading to a BUG_ON. This happens because at run_delalloc_nocow() we end up casting a leaf item of type BTRFS_INODE_[REF|EXTREF]_KEY or of type BTRFS_XATTR_ITEM_KEY to a file extent item (struct btrfs_file_extent_item) and then analyse its extent type field, which won't match any of the expected extent types (values BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]) and therefore trigger an explicit BUG_ON(1). The following sequence diagram shows how the race happens when running a no-cow dellaloc range [4K, 8K[ for inode 257 and we have the following neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 (Note the implicit hole for inode 257 regarding the [0, 8K[ range) CPU 1 CPU 2 run_dealloc_nocow() btrfs_lookup_file_extent() --> searches for a key with value (257 EXTENT_DATA 4096) in the fs/subvol tree --> returns us a path with path->nodes[0] == leaf X and path->slots[0] == N because path->slots[0] is >= btrfs_header_nritems(leaf X), it calls btrfs_next_leaf() btrfs_next_leaf() --> releases the path hard link added to our inode, with key (257 INODE_REF 500) added to the end of leaf X, so leaf X now has N + 1 keys --> searches for the key (257 INODE_REF 256), because it was the last key in leaf X before it released the path, with path->keep_locks set to 1 --> ends up at leaf X again and it verifies that the key (257 INODE_REF 256) is no longer the last key in the leaf, so it returns with path->nodes[0] == leaf X and path->slots[0] == N, pointing to the new item with key (257 INODE_REF 500) the loop iteration of run_dealloc_nocow() does not break out the loop and continues because the key referenced in the path at path->nodes[0] and path->slots[0] is for inode 257, its type is < BTRFS_EXTENT_DATA_KEY and its offset (500) is less then our delalloc range's end (8192) the item pointed by the path, an inode reference item, is (incorrectly) interpreted as a file extent item and we get an invalid extent type, leading to the BUG_ON(1): if (extent_type == BTRFS_FILE_EXTENT_REG || extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) } else { BUG_ON(1) } The same can happen if a xattr is added concurrently and ends up having a key with an offset smaller then the delalloc's range end. So fix this by skipping keys with a type smaller than BTRFS_EXTENT_DATA_KEY. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit aeafbf84 upstream. While running a stress test I got the following warning triggered: [191627.672810] ------------[ cut here ]------------ [191627.673949] WARNING: CPU: 8 PID: 8447 at fs/btrfs/file.c:779 __btrfs_drop_extents+0x391/0xa50 [btrfs]() (...) [191627.701485] Call Trace: [191627.702037] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [191627.702992] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2 [191627.704091] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [191627.705380] [<ffffffffa0664499>] ? __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.706637] [<ffffffff8104b46d>] warn_slowpath_null+0x1a/0x1c [191627.707789] [<ffffffffa0664499>] __btrfs_drop_extents+0x391/0xa50 [btrfs] [191627.709155] [<ffffffff8115663c>] ? cache_alloc_debugcheck_after.isra.32+0x171/0x1d0 [191627.712444] [<ffffffff81155007>] ? kmemleak_alloc_recursive.constprop.40+0x16/0x18 [191627.714162] [<ffffffffa06570c9>] insert_reserved_file_extent.constprop.40+0x83/0x24e [btrfs] [191627.715887] [<ffffffffa065422b>] ? start_transaction+0x3bb/0x610 [btrfs] [191627.717287] [<ffffffffa065b604>] btrfs_finish_ordered_io+0x273/0x4e2 [btrfs] [191627.728865] [<ffffffffa065b888>] finish_ordered_fn+0x15/0x17 [btrfs] [191627.730045] [<ffffffffa067d688>] normal_work_helper+0x14c/0x32c [btrfs] [191627.731256] [<ffffffffa067d96a>] btrfs_endio_write_helper+0x12/0x14 [btrfs] [191627.732661] [<ffffffff81061119>] process_one_work+0x24c/0x4ae [191627.733822] [<ffffffff810615b0>] worker_thread+0x206/0x2c2 [191627.734857] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.736052] [<ffffffff810613aa>] ? process_scheduled_works+0x2f/0x2f [191627.737349] [<ffffffff810669a6>] kthread+0xef/0xf7 [191627.738267] [<ffffffff810f3b3a>] ? time_hardirqs_on+0x15/0x28 [191627.739330] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.741976] [<ffffffff81465592>] ret_from_fork+0x42/0x70 [191627.743080] [<ffffffff810668b7>] ? __kthread_parkme+0xad/0xad [191627.744206] ---[ end trace bbfddacb7aaada8d ]--- $ cat -n fs/btrfs/file.c 691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, (...) 758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 759 if (key.objectid > ino || 760 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end) 761 break; 762 763 fi = btrfs_item_ptr(leaf, path->slots[0], 764 struct btrfs_file_extent_item); 765 extent_type = btrfs_file_extent_type(leaf, fi); 766 767 if (extent_type == BTRFS_FILE_EXTENT_REG || 768 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { (...) 774 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { (...) 778 } else { 779 WARN_ON(1); 780 extent_end = search_start; 781 } (...) This happened because the item we were processing did not match a file extent item (its key type != BTRFS_EXTENT_DATA_KEY), and even on this case we cast the item to a struct btrfs_file_extent_item pointer and then find a type field value that does not match any of the expected values (BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]). This scenario happens due to a tiny time window where a race can happen as exemplified below. For example, consider the following scenario where we're using the NO_HOLES feature and we have the following two neighbour leafs: Leaf X (has N items) Leaf Y [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ] [ (257 EXTENT_DATA 8192), ... ] slot N - 2 slot N - 1 slot 0 Our inode 257 has an implicit hole in the range [0, 8K[ (implicit rather than explicit because NO_HOLES is enabled). Now if our inode has an ordered extent for the range [4K, 8K[ that is finishing, the following can happen: CPU 1 CPU 2 btrfs_finish_ordered_io() insert_reserved_file_extent() __btrfs_drop_extents() Searches for the key (257 EXTENT_DATA 4096) through btrfs_lookup_file_extent() Key not found and we get a path where path->nodes[0] == leaf X and path->slots[0] == N Because path->slots[0] is >= btrfs_header_nritems(leaf X), we call btrfs_next_leaf() btrfs_next_leaf() releases the path inserts key (257 INODE_REF 4096) at the end of leaf X, leaf X now has N + 1 keys, and the new key is at slot N btrfs_next_leaf() searches for key (257 INODE_REF 256), with path->keep_locks set to 1, because it was the last key it saw in leaf X finds it in leaf X again and notices it's no longer the last key of the leaf, so it returns 0 with path->nodes[0] == leaf X and path->slots[0] == N (which is now < btrfs_header_nritems(leaf X)), pointing to the new key (257 INODE_REF 4096) __btrfs_drop_extents() casts the item at path->nodes[0], slot path->slots[0], to a struct btrfs_file_extent_item - it does not skip keys for the target inode with a type less than BTRFS_EXTENT_DATA_KEY (BTRFS_INODE_REF_KEY < BTRFS_EXTENT_DATA_KEY) sees a bogus value for the type field triggering the WARN_ON in the trace shown above, and sets extent_end = search_start (4096) does the if-then-else logic to fixup 0 length extent items created by a past bug from hole punching: if (extent_end == key.offset && extent_end >= search_start) goto delete_extent_item; that evaluates to true and it ends up deleting the key pointed to by path->slots[0], (257 INODE_REF 4096), from leaf X The same could happen for example for a xattr that ends up having a key with an offset value that matches search_start (very unlikely but not impossible). So fix this by ensuring that keys smaller than BTRFS_EXTENT_DATA_KEY are skipped, never casted to struct btrfs_file_extent_item and never deleted by accident. Also protect against the unexpected case of getting a key for a lower inode number by skipping that key and issuing a warning. Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: drop use of ASSERT()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Borislav Petkov authored
commit 04633df0 upstream. When we get loaded by a 64-bit bootloader, kernel entry point is startup_64 in head_64.S. We don't trust any and all bootloaders because some will fiddle with CPU configuration so we go ahead and massage each CPU into sanity again. For example, some dell BIOSes have this XD disable feature which set IA32_MISC_ENABLE[34] and disable NX. This might be some dumb workaround for other OSes but Linux sure doesn't need it. A similar thing is present in the Surface 3 firmware - see https://bugzilla.kernel.org/show_bug.cgi?id=106051 - which sets this bit only on the BSP: # rdmsr -a 0x1a0 400850089 850089 850089 850089 I know, right?! There's not even an off switch in there. So fix all those cases by sanitizing the 64-bit entry point too. For that, make verify_cpu() callable in 64-bit mode also. Requested-and-debugged-by: "H. Peter Anvin" <hpa@zytor.com> Reported-and-tested-by: Bastien Nocera <bugzilla@hadess.net> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1446739076-21303-1-git-send-email-bp@alien8.deSigned-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Christoph Hellwig authored
commit 40998193 upstream. When dropping a lock while iterating a list we must restart the search as other threads could have manipulated the list under us. Without this we can get stuck in an endless loop. This bug was introduced by commit bc3f02a7 Author: Dan Williams <djbw@fb.com> Date: Tue Aug 28 22:12:10 2012 -0700 [SCSI] scsi_remove_target: fix softlockup regression on hot remove Which was itself trying to fix a reported soft lockup issue http://thread.gmane.org/gmane.linux.kernel/1348679 However, we believe even with this revert of the original patch, the soft lockup problem has been fixed by commit f2495e22 Author: James Bottomley <JBottomley@Parallels.com> Date: Tue Jan 21 07:01:41 2014 -0800 [SCSI] dual scan thread bug fix Thanks go to Dan Williams <dan.j.williams@intel.com> for tracking all this prior history down. Reported-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Fixes: bc3f02a7Signed-off-by: James Bottomley <JBottomley@Odin.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Stefan Richter authored
commit 100ceb66 upstream. Reported by Clifford and Craig for JMicron OHCI-1394 + SDHCI combo controllers: Often or even most of the time, the controller is initialized with the message "added OHCI v1.10 device as card 0, 4 IR + 0 IT contexts, quirks 0x10". With 0 isochronous transmit DMA contexts (IT contexts), applications like audio output are impossible. However, OHCI-1394 demands that at least 4 IT contexts are implemented by the link layer controller, and indeed JMicron JMB38x do implement four of them. Only their IsoXmitIntMask register is unreliable at early access. With my own JMB381 single function controller I found: - I can reproduce the problem with a lower probability than Craig's. - If I put a loop around the section which clears and reads IsoXmitIntMask, then either the first or the second attempt will return the correct initial mask of 0x0000000f. I never encountered a case of needing more than a second attempt. - Consequently, if I put a dummy reg_read(...IsoXmitIntMaskSet) before the first write, the subsequent read will return the correct result. - If I merely ignore a wrong read result and force the known real result, later isochronous transmit DMA usage works just fine. So let's just fix this chip bug up by the latter method. Tested with JMB381 on kernel 3.13 and 4.3. Since OHCI-1394 generally requires 4 IT contexts at a minium, this workaround is simply applied whenever the initial read of IsoXmitIntMask returns 0, regardless whether it's a JMicron chip or not. I never heard of this issue together with any other chip though. I am not 100% sure that this fix works on the OHCI-1394 part of JMB380 and JMB388 combo controllers exactly the same as on the JMB381 single- function controller, but so far I haven't had a chance to let an owner of a combo chip run a patched kernel. Strangely enough, IsoRecvIntMask is always reported correctly, even though it is probed right before IsoXmitIntMask. Reported-by: Clifford Dunn Reported-by: Craig Moore <craig.moore@qenos.com> Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de> [bwh: Backported to 3.2: log with fw_notify() instead of ohci_notice()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit c932b98c upstream. HP ProBook 6550b needs the same pin fixup applied to other HP B-series laptops with docks for making its headphone and dock headphone jacks working properly. We just need to add the codec SSID to the list. Bugzilla: https://bugzilla.kernel.org/attachment.cgi?id=191971Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Michal Kubeček authored
commit ebac62fe upstream. Both tunnel6_protocol and tunnel46_protocol share the same error handler, tunnel6_err(), which traverses through tunnel6_handlers list. For ipip6 tunnels, we need to traverse tunnel46_handlers as we do e.g. in tunnel46_rcv(). Current code can generate an ICMPv6 error message with an IPv4 packet embedded in it. Fixes: 73d605d1 ("[IPSEC]: changing API of xfrm6_tunnel_register") Signed-off-by: Michal Kubecek <mkubecek@suse.cz> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
libin authored
commit c84da8b9 upstream. In nop_mcount, shdr->sh_offset and welp->r_offset should handle endianness properly, otherwise it will trigger Segmentation fault if the recordmcount main and file.o have different endianness. Link: http://lkml.kernel.org/r/563806C7.7070606@huawei.comSigned-off-by: Li Bin <huawei.libin@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 323c4a02 upstream. This is an issue on SMAP enabled CPUs and 32 bit apps running on 64 bit OS. Do not access user memory from kernel code. The SMAP bit restricts accessing user memory from kernel code. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Herbert Xu authored
commit 4afa5f96 upstream. The hash_accept call fails to work on sockets that have not received any data. For some algorithm implementations it may cause crashes. This patch fixes this by ensuring that we only export and import on sockets that have received data. Reported-by: Harsh Jain <harshjain.prof@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Tested-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Brian Norris authored
commit f3c63795 upstream. Commit 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") fixed a race condition but due to poor ordering of the mutex acquisition, introduced a potential deadlock. The deadlock can occur, for example, when rmmod'ing the m25p80 module, which will delete one or more MTDs, along with any corresponding mtdblock devices. This could potentially race with an acquisition of the block device as follows. -> blktrans_open() -> mutex_lock(&dev->lock); -> mutex_lock(&mtd_table_mutex); -> del_mtd_device() -> mutex_lock(&mtd_table_mutex); -> blktrans_notify_remove() -> del_mtd_blktrans_dev() -> mutex_lock(&dev->lock); This is a classic (potential) ABBA deadlock, which can be fixed by making the A->B ordering consistent everywhere. There was no real purpose to the ordering in the original patch, AFAIR, so this shouldn't be a problem. This ordering was actually already present in del_mtd_blktrans_dev(), for one, where the function tried to ensure that its caller already held mtd_table_mutex before it acquired &dev->lock: if (mutex_trylock(&mtd_table_mutex)) { mutex_unlock(&mtd_table_mutex); BUG(); } So, reverse the ordering of acquisition of &dev->lock and &mtd_table_mutex so we always acquire mtd_table_mutex first. Snippets of the lockdep output follow: # modprobe -r m25p80 [ 53.419251] [ 53.420838] ====================================================== [ 53.427300] [ INFO: possible circular locking dependency detected ] [ 53.433865] 4.3.0-rc6 #96 Not tainted [ 53.437686] ------------------------------------------------------- [ 53.444220] modprobe/372 is trying to acquire lock: [ 53.449320] (&new->lock){+.+...}, at: [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.457271] [ 53.457271] but task is already holding lock: [ 53.463372] (mtd_table_mutex){+.+.+.}, at: [<c0439994>] del_mtd_device+0x18/0x100 [ 53.471321] [ 53.471321] which lock already depends on the new lock. [ 53.471321] [ 53.479856] [ 53.479856] the existing dependency chain (in reverse order) is: [ 53.487660] -> #1 (mtd_table_mutex){+.+.+.}: [ 53.492331] [<c043fc5c>] blktrans_open+0x34/0x1a4 [ 53.497879] [<c01afce0>] __blkdev_get+0xc4/0x3b0 [ 53.503364] [<c01b0bb8>] blkdev_get+0x108/0x320 [ 53.508743] [<c01713c0>] do_dentry_open+0x218/0x314 [ 53.514496] [<c0180454>] path_openat+0x4c0/0xf9c [ 53.519959] [<c0182044>] do_filp_open+0x5c/0xc0 [ 53.525336] [<c0172758>] do_sys_open+0xfc/0x1cc [ 53.530716] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.536375] -> #0 (&new->lock){+.+...}: [ 53.540587] [<c063f124>] mutex_lock_nested+0x38/0x3cc [ 53.546504] [<c043fe4c>] del_mtd_blktrans_dev+0x80/0xdc [ 53.552606] [<c043f164>] blktrans_notify_remove+0x7c/0x84 [ 53.558891] [<c04399f0>] del_mtd_device+0x74/0x100 [ 53.564544] [<c043c670>] del_mtd_partitions+0x80/0xc8 [ 53.570451] [<c0439aa0>] mtd_device_unregister+0x24/0x48 [ 53.576637] [<c046ce6c>] spi_drv_remove+0x1c/0x34 [ 53.582207] [<c03de0f0>] __device_release_driver+0x88/0x114 [ 53.588663] [<c03de19c>] device_release_driver+0x20/0x2c [ 53.594843] [<c03dd9e8>] bus_remove_device+0xd8/0x108 [ 53.600748] [<c03dacc0>] device_del+0x10c/0x210 [ 53.606127] [<c03dadd0>] device_unregister+0xc/0x20 [ 53.611849] [<c046d878>] __unregister+0x10/0x20 [ 53.617211] [<c03da868>] device_for_each_child+0x50/0x7c [ 53.623387] [<c046eae8>] spi_unregister_master+0x58/0x8c [ 53.629578] [<c03e12f0>] release_nodes+0x15c/0x1c8 [ 53.635223] [<c03de0f8>] __device_release_driver+0x90/0x114 [ 53.641689] [<c03de900>] driver_detach+0xb4/0xb8 [ 53.647147] [<c03ddc78>] bus_remove_driver+0x4c/0xa0 [ 53.652970] [<c00cab50>] SyS_delete_module+0x11c/0x1e4 [ 53.658976] [<c000f740>] ret_fast_syscall+0x0/0x1c [ 53.664621] [ 53.664621] other info that might help us debug this: [ 53.664621] [ 53.672979] Possible unsafe locking scenario: [ 53.672979] [ 53.679169] CPU0 CPU1 [ 53.683900] ---- ---- [ 53.688633] lock(mtd_table_mutex); [ 53.692383] lock(&new->lock); [ 53.698306] lock(mtd_table_mutex); [ 53.704658] lock(&new->lock); [ 53.707946] [ 53.707946] *** DEADLOCK *** Fixes: 073db4a5 ("mtd: fix: avoid race condition when accessing mtd->usecount") Reported-by: Felipe Balbi <balbi@ti.com> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Marek Vasut authored
commit 562b103a upstream. The sizeof() is invoked on an incorrect variable, likely due to some copy-paste error, and this might result in memory corruption. Fix this. Signed-off-by: Marek Vasut <marex@denx.de> Cc: Wolfgang Grandegger <wg@grandegger.com> Cc: netdev@vger.kernel.org Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> [bwh: Backported to 3.2: - Keep using the old NLA_PUT macro - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
sumit.saxena@avagotech.com authored
commit 357ae967 upstream. Do not use PAGE_SIZE marco to calculate max_sectors per I/O request. Driver code assumes PAGE_SIZE will be always 4096 which can lead to wrongly calculated value if PAGE_SIZE is not 4096. This issue was reported in Ubuntu Bugzilla Bug #1475166. Signed-off-by: Sumit Saxena <sumit.saxena@avagotech.com> Signed-off-by: Kashyap Desai <kashyap.desai@avagotech.com> Reviewed-by: Tomas Henzl <thenzl@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Takashi Iwai authored
commit cadd16ea upstream. We've had many reports that some Creative sound cards with CA0132 don't work well. Some reported that it starts working after reloading the module, while some reported it starts working when a 32bit kernel is used. All these facts seem implying that the chip fails to communicate when the buffer is located in 64bit address. This patch addresses these issues by just adding AZX_DCAPS_NO_64BIT flag to the corresponding PCI entries. I casually had a chance to test an SB Recon3D board, and indeed this seems helping. Although this hasn't been tested on all Creative devices, it's safer to assume that this restriction applies to the rest of them, too. So the flag is applied to all Creative entries. Signed-off-by: Takashi Iwai <tiwai@suse.de> [bwh: Backported to 3.2: drop the change to AZX_DCAPS_PRESET_CTHDA] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Ralf Baechle authored
commit f25319d2 upstream. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Fixes: f24219b4 (cherry picked from commit f0a232cde7be18a207fd057dd79bbac8a0a45dec) Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Chen Yu authored
commit 49e4b843 upstream. Currently when the system is trying to uninstall the ACPI interrupt handler, it uses acpi_gbl_FADT.sci_interrupt as the IRQ number. However, the IRQ number that the ACPI interrupt handled is installed for comes from acpi_gsi_to_irq() and that is the number that should be used for the handler removal. Fix this problem by using the mapped IRQ returned from acpi_gsi_to_irq() as appropriate. Acked-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Larry Finger authored
commit 1e6e6328 upstream. This adds the USB ID for the Sitecom WLA2100. The Windows 10 inf file was checked to verify that the addition is correct. Reported-by: Frans van de Wiel <fvdw@fvdw.eu> Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Cc: Frans van de Wiel <fvdw@fvdw.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dmitry Tunin authored
commit 18e0afab upstream. T: Bus=04 Lev=02 Prnt=02 Port=04 Cnt=01 Dev#= 3 Spd=12 MxCh= 0 D: Ver= 1.10 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=0cf3 ProdID=817b Rev=00.02 C: #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb I: If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb BugLink: https://bugs.launchpad.net/bugs/1506615Signed-off-by: Dmitry Tunin <hanipouspilot@gmail.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dmitry Tunin authored
commit cd355ff0 upstream. This adapter works with the existing linux-firmware. T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=02 Dev#= 3 Spd=12 MxCh= 0 D: Ver= 1.10 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs= 1 P: Vendor=0930 ProdID=021c Rev=00.01 C: #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb I: If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb BugLink: https://bugs.launchpad.net/bugs/1502781Signed-off-by: Dmitry Tunin <hanipouspilot@gmail.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Daeho Jeong authored
commit 4327ba52 upstream. If a EXT4 filesystem utilizes JBD2 journaling and an error occurs, the journaling will be aborted first and the error number will be recorded into JBD2 superblock and, finally, the system will enter into the panic state in "errors=panic" option. But, in the rare case, this sequence is little twisted like the below figure and it will happen that the system enters into panic state, which means the system reset in mobile environment, before completion of recording an error in the journal superblock. In this case, e2fsck cannot recognize that the filesystem failure occurred in the previous run and the corruption wouldn't be fixed. Task A Task B ext4_handle_error() -> jbd2_journal_abort() -> __journal_abort_soft() -> __jbd2_journal_abort_hard() | -> journal->j_flags |= JBD2_ABORT; | | __ext4_abort() | -> jbd2_journal_abort() | | -> __journal_abort_soft() | | -> if (journal->j_flags & JBD2_ABORT) | | return; | -> panic() | -> jbd2_journal_update_sb_errno() Tested-by: Hobin Woo <hobin.woo@samsung.com> Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 0305cd5f upstream. When truncating a file to a smaller size which consists of an inline extent that is compressed, we did not discard (or made unusable) the data between the new file size and the old file size, wasting metadata space and allowing for the truncated data to be leaked and the data corruption/loss mentioned below. We were also not correctly decrementing the number of bytes used by the inode, we were setting it to zero, giving a wrong report for callers of the stat(2) syscall. The fsck tool also reported an error about a mismatch between the nbytes of the file versus the real space used by the file. Now because we weren't discarding the truncated region of the file, it was possible for a caller of the clone ioctl to actually read the data that was truncated, allowing for a security breach without requiring root access to the system, using only standard filesystem operations. The scenario is the following: 1) User A creates a file which consists of an inline and compressed extent with a size of 2000 bytes - the file is not accessible to any other users (no read, write or execution permission for anyone else); 2) The user truncates the file to a size of 1000 bytes; 3) User A makes the file world readable; 4) User B creates a file consisting of an inline extent of 2000 bytes; 5) User B issues a clone operation from user A's file into its own file (using a length argument of 0, clone the whole range); 6) User B now gets to see the 1000 bytes that user A truncated from its file before it made its file world readbale. User B also lost the bytes in the range [1000, 2000[ bytes from its own file, but that might be ok if his/her intention was reading stale data from user A that was never supposed to be public. Note that this contrasts with the case where we truncate a file from 2000 bytes to 1000 bytes and then truncate it back from 1000 to 2000 bytes. In this case reading any byte from the range [1000, 2000[ will return a value of 0x00, instead of the original data. This problem exists since the clone ioctl was added and happens both with and without my recent data loss and file corruption fixes for the clone ioctl (patch "Btrfs: fix file corruption and data loss after cloning inline extents"). So fix this by truncating the compressed inline extents as we do for the non-compressed case, which involves decompressing, if the data isn't already in the page cache, compressing the truncated version of the extent, writing the compressed content into the inline extent and then truncate it. The following test case for fstests reproduces the problem. In order for the test to pass both this fix and my previous fix for the clone ioctl that forbids cloning a smaller inline extent into a larger one, which is titled "Btrfs: fix file corruption and data loss after cloning inline extents", are needed. Without that other fix the test fails in a different way that does not leak the truncated data, instead part of destination file gets replaced with zeroes (because the destination file has a larger inline extent than the source). seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _scratch_mount "-o compress" # Create our test files. File foo is going to be the source of a clone operation # and consists of a single inline extent with an uncompressed size of 512 bytes, # while file bar consists of a single inline extent with an uncompressed size of # 256 bytes. For our test's purpose, it's important that file bar has an inline # extent with a size smaller than foo's inline extent. $XFS_IO_PROG -f -c "pwrite -S 0xa1 0 128" \ -c "pwrite -S 0x2a 128 384" \ $SCRATCH_MNT/foo | _filter_xfs_io $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 256" $SCRATCH_MNT/bar | _filter_xfs_io # Now durably persist all metadata and data. We do this to make sure that we get # on disk an inline extent with a size of 512 bytes for file foo. sync # Now truncate our file foo to a smaller size. Because it consists of a # compressed and inline extent, btrfs did not shrink the inline extent to the # new size (if the extent was not compressed, btrfs would shrink it to 128 # bytes), it only updates the inode's i_size to 128 bytes. $XFS_IO_PROG -c "truncate 128" $SCRATCH_MNT/foo # Now clone foo's inline extent into bar. # This clone operation should fail with errno EOPNOTSUPP because the source # file consists only of an inline extent and the file's size is smaller than # the inline extent of the destination (128 bytes < 256 bytes). However the # clone ioctl was not prepared to deal with a file that has a size smaller # than the size of its inline extent (something that happens only for compressed # inline extents), resulting in copying the full inline extent from the source # file into the destination file. # # Note that btrfs' clone operation for inline extents consists of removing the # inline extent from the destination inode and copy the inline extent from the # source inode into the destination inode, meaning that if the destination # inode's inline extent is larger (N bytes) than the source inode's inline # extent (M bytes), some bytes (N - M bytes) will be lost from the destination # file. Btrfs could copy the source inline extent's data into the destination's # inline extent so that we would not lose any data, but that's currently not # done due to the complexity that would be needed to deal with such cases # (specially when one or both extents are compressed), returning EOPNOTSUPP, as # it's normally not a very common case to clone very small files (only case # where we get inline extents) and copying inline extents does not save any # space (unlike for normal, non-inlined extents). $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar # Now because the above clone operation used to succeed, and due to foo's inline # extent not being shinked by the truncate operation, our file bar got the whole # inline extent copied from foo, making us lose the last 128 bytes from bar # which got replaced by the bytes in range [128, 256[ from foo before foo was # truncated - in other words, data loss from bar and being able to read old and # stale data from foo that should not be possible to read anymore through normal # filesystem operations. Contrast with the case where we truncate a file from a # size N to a smaller size M, truncate it back to size N and then read the range # [M, N[, we should always get the value 0x00 for all the bytes in that range. # We expected the clone operation to fail with errno EOPNOTSUPP and therefore # not modify our file's bar data/metadata. So its content should be 256 bytes # long with all bytes having the value 0xbb. # # Without the btrfs bug fix, the clone operation succeeded and resulted in # leaking truncated data from foo, the bytes that belonged to its range # [128, 256[, and losing data from bar in that same range. So reading the # file gave us the following content: # # 0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 # * # 0000200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a # * # 0000400 echo "File bar's content after the clone operation:" od -t x1 $SCRATCH_MNT/bar # Also because the foo's inline extent was not shrunk by the truncate # operation, btrfs' fsck, which is run by the fstests framework everytime a # test completes, failed reporting the following error: # # root 5 inode 257 errors 400, nbytes wrong status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: - Adjust parameters to btrfs_truncate_page() and btrfs_truncate_item() - Pass transaction pointer into truncate_inline_extent() - Add prototype of btrfs_truncate_page() - s/test_bit(BTRFS_ROOT_REF_COWS, &root->state)/root->ref_cows/ - Keep using BUG_ON() for other error cases, as there is no btrfs_abort_transaction() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Chris Mason authored
commit 514ac8ad upstream. If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect the new size. The fixe uses the size directly from the item header when reading uncompressed inlines, and also fixes truncate to update the size as it goes. Reported-by: Jens Axboe <axboe@fb.com> Signed-off-by: Chris Mason <clm@fb.com> [bwh: Backported to 3.2: - Don't use btrfs_map_token API - There are fewer callers of btrfs_file_extent_inline_len() to change - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Arnd Bergmann authored
commit 54c09889 upstream. The z2 machine calls pxa27x_set_pwrmode() in order to power off the machine, but this function gets discarded early at boot because it is marked __init, as pointed out by kbuild: WARNING: vmlinux.o(.text+0x145c4): Section mismatch in reference from the function z2_power_off() to the function .init.text:pxa27x_set_pwrmode() The function z2_power_off() references the function __init pxa27x_set_pwrmode(). This is often because z2_power_off lacks a __init annotation or the annotation of pxa27x_set_pwrmode is wrong. This removes the __init section modifier to fix rebooting and the build error. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Fixes: ba4a90a6 ("ARM: pxa/z2: fix building error of pxa27x_cpu_suspend() no longer available") Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr> [bwh: Backported to 3.2: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
David Woodhouse authored
commit d14053b3 upstream. The VT-d specification says that "Software must enable ATS on endpoint devices behind a Root Port only if the Root Port is reported as supporting ATS transactions." We walk up the tree to find a Root Port, but for integrated devices we don't find one — we get to the host bridge. In that case we *should* allow ATS. Currently we don't, which means that we are incorrectly failing to use ATS for the integrated graphics. Fix that. We should never break out of this loop "naturally" with bus==NULL, since we'll always find bridge==NULL in that case (and now return 1). So remove the check for (!bridge) after the loop, since it can never happen. If it did, it would be worthy of a BUG_ON(!bridge). But since it'll oops anyway in that case, that'll do just as well. Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> [bwh: Backported to 3.2: - Adjust context - There's no (!bridge) check to remove] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Filipe Manana authored
commit 8039d87d upstream. Currently the clone ioctl allows to clone an inline extent from one file to another that already has other (non-inlined) extents. This is a problem because btrfs is not designed to deal with files having inline and regular extents, if a file has an inline extent then it must be the only extent in the file and must start at file offset 0. Having a file with an inline extent followed by regular extents results in EIO errors when doing reads or writes against the first 4K of the file. Also, the clone ioctl allows one to lose data if the source file consists of a single inline extent, with a size of N bytes, and the destination file consists of a single inline extent with a size of M bytes, where we have M > N. In this case the clone operation removes the inline extent from the destination file and then copies the inline extent from the source file into the destination file - we lose the M - N bytes from the destination file, a read operation will get the value 0x00 for any bytes in the the range [N, M] (the destination inode's i_size remained as M, that's why we can read past N bytes). So fix this by not allowing such destructive operations to happen and return errno EOPNOTSUPP to user space. Currently the fstest btrfs/035 tests the data loss case but it totally ignores this - i.e. expects the operation to succeed and does not check the we got data loss. The following test case for fstests exercises all these cases that result in file corruption and data loss: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_cloner _require_btrfs_fs_feature "no_holes" _require_btrfs_mkfs_feature "no-holes" rm -f $seqres.full test_cloning_inline_extents() { local mkfs_opts=$1 local mount_opts=$2 _scratch_mkfs $mkfs_opts >>$seqres.full 2>&1 _scratch_mount $mount_opts # File bar, the source for all the following clone operations, consists # of a single inline extent (50 bytes). $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \ | _filter_xfs_io # Test cloning into a file with an extent (non-inlined) where the # destination offset overlaps that extent. It should not be possible to # clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo data after clone operation:" # All bytes should have the value 0xaa (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo $XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io # Test cloning the inline extent against a file which has a hole in its # first 4K followed by a non-inlined extent. It should not be possible # as well to clone the inline extent from file bar into this file. $XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "File foo2 data after clone operation:" # All bytes should have the value 0x00 (clone operation failed and did # not modify our file). od -t x1 $SCRATCH_MNT/foo2 $XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io # Test cloning the inline extent against a file which has a size of zero # but has a prealloc extent. It should not be possible as well to clone # the inline extent from file bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3 # Doing IO against any range in the first 4K of the file should work. # Due to a past clone ioctl bug which allowed cloning the inline extent, # these operations resulted in EIO errors. echo "First 50 bytes of foo3 after clone operation:" # Should not be able to read any bytes, file has 0 bytes i_size (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo3 $XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size not greater than the size of # bar's inline extent (40 < 50). # It should be possible to do the extent cloning from bar to this file. $XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4 # Doing IO against any range in the first 4K of the file should work. echo "File foo4 data after clone operation:" # Must match file bar's content. od -t x1 $SCRATCH_MNT/foo4 $XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io # Test cloning the inline extent against a file which consists of a # single inline extent that has a size greater than the size of bar's # inline extent (60 > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \ | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5 # Reading the file should not fail. echo "File foo5 data after clone operation:" # Must have a size of 60 bytes, with all bytes having a value of 0x03 # (the clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo5 # Test cloning the inline extent against a file which has no extents but # has a size greater than bar's inline extent (16K > 50). # It should not be possible to clone the inline extent from file bar # into this file. $XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6 # Reading the file should not fail. echo "File foo6 data after clone operation:" # Must have a size of 16K, with all bytes having a value of 0x00 (the # clone operation failed and did not modify our file). od -t x1 $SCRATCH_MNT/foo6 # Test cloning the inline extent against a file which has no extents but # has a size not greater than bar's inline extent (30 < 50). # It should be possible to clone the inline extent from file bar into # this file. $XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7 # Reading the file should not fail. echo "File foo7 data after clone operation:" # Must have a size of 50 bytes, with all bytes having a value of 0xbb. od -t x1 $SCRATCH_MNT/foo7 # Test cloning the inline extent against a file which has a size not # greater than the size of bar's inline extent (20 < 50) but has # a prealloc extent that goes beyond the file's size. It should not be # possible to clone the inline extent from bar into this file. $XFS_IO_PROG -f -c "falloc -k 0 1M" \ -c "pwrite -S 0x88 0 20" \ $SCRATCH_MNT/foo8 | _filter_xfs_io $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8 echo "File foo8 data after clone operation:" # Must have a size of 20 bytes, with all bytes having a value of 0x88 # (the clone operation did not modify our file). od -t x1 $SCRATCH_MNT/foo8 _scratch_unmount } echo -e "\nTesting without compression and without the no-holes feature...\n" test_cloning_inline_extents echo -e "\nTesting with compression and without the no-holes feature...\n" test_cloning_inline_extents "" "-o compress" echo -e "\nTesting without compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "" echo -e "\nTesting with compression and with the no-holes feature...\n" test_cloning_inline_extents "-O no-holes" "-o compress" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> [bwh: Backported to 3.2: - Adjust parameters to btrfs_drop_extents() - Drop use of ASSERT() - Keep using BUG_ON() for other error cases, as there is no btrfs_abort_transaction() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Jan Schmidt authored
commit c7d22a3c upstream. btrfs_next_item() makes the btrfs path point to the next item, crossing leaf boundaries if needed. Signed-off-by: Arne Jansen <sensille@gmx.net> Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> [bwh: Dependency of the following fix] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Eric Dumazet authored
commit 161642e2 upstream. Recent TCP listener patches exposed a prior af_packet bug : match_fanout_group() blindly assumes it is always safe to cast sk to a packet socket to compare fanout with af_packet_priv But SYNACK packets can be sent while attached to request_sock, which are smaller than a "struct sock". We can read non existent memory and crash. Fixes: c0de08d0 ("af_packet: don't emit packet on orig fanout group") Fixes: ca6fb065 ("tcp: attach SYNACK messages to request sockets instead of listener") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Cc: Eric Leblond <eric@regit.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-
Dan Carpenter authored
commit 1f35d04a upstream. The iomap[] array has PCIM_IOMAP_MAX (6) elements and not DEVICE_COUNT_RESOURCE (16). This bug was found using a static checker. It may be that the "if (!(mask & (1 << i)))" check means we never actually go past the end of the array in real life. Fixes: ec04b075 ('iomap: implement pcim_iounmap_regions()') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
-