- 06 Dec, 2014 30 commits
-
-
Alexey Khoroshilov authored
commit efbd50d2 upstream. It seems struct esd_usb2 dev is not deallocated on disconnect. The patch adds the missing deallocation. Found by Linux Driver Verification project (linuxtesting.org). Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru> Acked-by: Matthias Fuchs <matthias.fuchs@esd.eu> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mathias Nyman authored
commit c3492dbf upstream. A halted endpoint ring must first be reset, then move the ring dequeue pointer past the problematic TRB. If we start the ring too early after reset, but before moving the dequeue pointer we will end up executing the same problematic TRB again. As we always issue a set transfer dequeue command after a reset endpoint command we can skip starting endpoint rings at reset endpoint command completion. Without this fix we end up trying to handle the same faulty TD for contol endpoints. causing timeout, and failing testusb ctrl_out write tests. Fixes: e9df17eb (USB: xhci: Correct assumptions about number of rings per endpoint.) Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hans de Goede authored
commit 263e80b4 upstream. This wireless mouse receiver needs a reset-resume quirk to properly come out of reset. BugLink: https://bugzilla.redhat.com/show_bug.cgi?id=1165206Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Troy Clark authored
commit 204ec6e0 upstream. Add PIDs for new Matrix Orbital GTT series products. Signed-off-by: Troy Clark <tclark@matrixorbital.ca> [johan: shorten commit message ] Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Preston Fick authored
commit ffcfe30e upstream. Signed-off-by: Preston Fick <pffick@gmail.com> Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johan Hovold authored
commit 5d1678a3 upstream. Fix handling of TTY error flags, which are not bitmasks and must specifically not be ORed together as this prevents the line discipline from recognising them. Also insert null characters when reporting overrun errors as these are not associated with the received character. Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johan Hovold authored
commit 855515a6 upstream. Fix reporting of overrun errors, which are not associated with a character. Instead insert a null character and report only once. Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johan Hovold authored
commit 75bcbf29 upstream. Fix reporting of overrun errors, which should only be reported once using the inserted null character. Fixes: 6b8f1ca5 ("USB: ssu100: set tty_flags in ssu100_process_packet") Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Cristina Ciocan authored
commit ccf54555 upstream. The direction field is set on 7 bits, thus we need to AND it with 0111 111 mask in order to retrieve it, that is 0x7F, not 0xCF as it is now. Fixes: ade7ef7b (staging:iio: Differential channel handling) Signed-off-by: Cristina Ciocan <cristina.ciocan@intel.com> Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Laurent Dufour authored
commit 3b8a3c01 upstream. On pseries system (LPAR) xmon failed to enter when running in LE mode, system is hunging. Inititating xmon will lead to such an output on the console: SysRq : Entering xmon cpu 0x15: Vector: 0 at [c0000003f39ffb10] pc: c00000000007ed7c: sysrq_handle_xmon+0x5c/0x70 lr: c00000000007ed7c: sysrq_handle_xmon+0x5c/0x70 sp: c0000003f39ffc70 msr: 8000000000009033 current = 0xc0000003fafa7180 paca = 0xc000000007d75e80 softe: 0 irq_happened: 0x01 pid = 14617, comm = bash Bad kernel stack pointer fafb4b0 at eca7cc4 cpu 0x15: Vector: 300 (Data Access) at [c000000007f07d40] pc: 000000000eca7cc4 lr: 000000000eca7c44 sp: fafb4b0 msr: 8000000000001000 dar: 10000000 dsisr: 42000000 current = 0xc0000003fafa7180 paca = 0xc000000007d75e80 softe: 0 irq_happened: 0x01 pid = 14617, comm = bash cpu 0x15: Exception 300 (Data Access) in xmon, returning to main loop xmon: WARNING: bad recursive fault on cpu 0x15 The root cause is that xmon is calling RTAS to turn off the surveillance when entering xmon, and RTAS is requiring big endian parameters. This patch is byte swapping the RTAS arguments when running in LE mode. Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Benjamin Herrenschmidt authored
commit 415072a0 upstream. Instead of the arch specific quirk which we are deprecating Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Benjamin Herrenschmidt authored
commit 746c9e9f upstream. We have a historical hack that treats missing ranges properties as the equivalent of an empty one. This is needed for ancient PowerMac "bad" device-trees, and shouldn't be enabled for any other PowerPC platform, otherwise we get some nasty layout of devices in sysfs or even duplication when a set of otherwise identically named devices is created multiple times under a different parent node with no ranges property. This fix is needed for the PowerNV i2c busses to be exposed properly and will fix a number of other embedded cases. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rob Herring <robh@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Charles Keepax authored
commit 9da7a5a9 upstream. We should not free any buffers associated with writing out coefficients to the DSP until all the async writes have completed. This patch updates the out of memory path when allocating a new buffer to include a call to regmap_async_complete. Reported-by: JS Park <aitdark.park@samsung.com> Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Fabio Estevam authored
commit c251ea7b upstream. On a mx28evk with a sgtl5000 codec we notice a loud 'click' sound to happen 5 seconds after the end of a playback. The SMALL_POP bit should fix this, but its definition is incorrect: according to the sgtl5000 manual it is bit 0 of CHIP_REF_CTRL register, not bit 1. Fix the definition accordingly and enable the bit as intended per the code comment. After applying this change, no loud 'click' sound is heard after playback Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Benjamin Herrenschmidt authored
commit f144d149 upstream. This can be set by quirks/drivers to be used by the architecture code that assigns the MSI addresses. We additionally add verification in the core MSI code that the values assigned by the architecture do satisfy the limitation in order to fail gracefully if they don't (ie. the arch hasn't been updated to deal with that quirk yet). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Jiri Bohac authored
[ Upstream commit 01462405 ] This fixes an old regression introduced by commit b0d0d915 (ipx: remove the BKL). When a recvmsg syscall blocks waiting for new data, no data can be sent on the same socket with sendmsg because ipx_recvmsg() sleeps with the socket locked. This breaks mars-nwe (NetWare emulator): - the ncpserv process reads the request using recvmsg - ncpserv forks and spawns nwconn - ncpserv calls a (blocking) recvmsg and waits for new requests - nwconn deadlocks in sendmsg on the same socket Commit b0d0d915 has simply replaced BKL locking with lock_sock/release_sock. Unlike now, BKL got unlocked while sleeping, so a blocking recvmsg did not block a concurrent sendmsg. Only keep the socket locked while actually working with the socket data and release it prior to calling skb_recv_datagram(). Signed-off-by: Jiri Bohac <jbohac@suse.cz> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mathias Krause authored
[ Upstream commit a5f6fc28 ] pptp_getname() only partially initializes the stack variable sa, particularly only fills the pptp part of the sa_addr union. The code thereby discloses 16 bytes of kernel stack memory via getsockname(). Fix this by memset(0)'ing the union before. Cc: Dmitry Kozlov <xeb@mail.ru> Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Martin Hauke authored
[ Upstream commit bb2bdeb8 ] Added the USB VID/PID for the HP lt4112 LTE/HSPA+ Gobi 4G Modem (Huawei me906e) Signed-off-by: Martin Hauke <mardnh@gmx.de> Acked-by: Bjørn Mork <bjorn@mork.no> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexey Khoroshilov authored
[ Upstream commit 8c2dd544 ] In case of any failure ieee802154fake_probe() just calls unregister_netdev(). But it does not look safe to unregister netdevice before it was registered. The patch implements straightforward resource deallocation in case of failure in ieee802154fake_probe(). Found by Linux Driver Verification project (linuxtesting.org). Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Panu Matilainen authored
[ Upstream commit 49dd18ba ] Trying to add an unreachable route incorrectly returns -ESRCH if if custom FIB rules are present: [root@localhost ~]# ip route add 74.125.31.199 dev eth0 via 1.2.3.4 RTNETLINK answers: Network is unreachable [root@localhost ~]# ip rule add to 55.66.77.88 table 200 [root@localhost ~]# ip route add 74.125.31.199 dev eth0 via 1.2.3.4 RTNETLINK answers: No such process [root@localhost ~]# Commit 83886b6b ("[NET]: Change "not found" return value for rule lookup") changed fib_rules_lookup() to use -ESRCH as a "not found" code internally, but for user space it should be translated into -ENETUNREACH. Handle the translation centrally in ipv4-specific fib_lookup(), leaving the DECnet case alone. On a related note, commit b7a71b51 ("ipv4: removed redundant conditional") removed a similar translation from ip_route_input_slow() prematurely AIUI. Fixes: b7a71b51 ("ipv4: removed redundant conditional") Signed-off-by: Panu Matilainen <pmatilai@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Vincent BENAYOUN authored
[ Upstream commit 84bc8868 ] There could be a signed overflow in the following code. The expression, (32-logmask) is comprised between 0 and 31 included. It may be equal to 31. In such a case the left shift will produce a signed integer overflow. According to the C99 Standard, this is an undefined behavior. A simple fix is to replace the signed int 1 with the unsigned int 1U. Signed-off-by: Vincent BENAYOUN <vincent.benayoun@trust-in-soft.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David S. Miller authored
[ Upstream commit 5a2b59d3 ] We are reading the memory location, so we have to have a memory constraint in there purely for the sake of showing the data flow to the compiler. Reported-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit 82975bc6 upstream. x86 call do_notify_resume on paranoid returns if TIF_UPROBE is set but not on non-paranoid returns. I suspect that this is a mistake and that the code only works because int3 is paranoid. Setting _TIF_NOTIFY_RESUME in the uprobe code was probably a workaround for the x86 bug. With that bug fixed, we can remove _TIF_NOTIFY_RESUME from the uprobes code. Reported-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kees Cook authored
commit 45e2a9d4 upstream. When setting up permissions on kernel memory at boot, the end of the PMD that was split from bss remained executable. It should be NX like the rest. This performs a PMD alignment instead of a PAGE alignment to get the correct span of memory. Before: ---[ High Kernel Mapping ]--- ... 0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte 0xffffffff82200000-0xffffffff82c00000 10M RW PSE GLB NX pmd 0xffffffff82c00000-0xffffffff82df5000 2004K RW GLB NX pte 0xffffffff82df5000-0xffffffff82e00000 44K RW GLB x pte 0xffffffff82e00000-0xffffffffc0000000 978M pmd After: ---[ High Kernel Mapping ]--- ... 0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte 0xffffffff82200000-0xffffffff82e00000 12M RW PSE GLB NX pmd 0xffffffff82e00000-0xffffffffc0000000 978M pmd [ tglx: Changed it to roundup(_brk_end, PMD_SIZE) and added a comment. We really should unmap the reminder along with the holes caused by init,initdata etc. but thats a different issue ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Wang Nan <wangnan0@huawei.com> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/20141114194737.GA3091@www.outflux.netSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Dave Hansen authored
commit 2cd3949f upstream. We have some very similarly named command-line options: arch/x86/kernel/cpu/common.c:__setup("noxsave", x86_xsave_setup); arch/x86/kernel/cpu/common.c:__setup("noxsaveopt", x86_xsaveopt_setup); arch/x86/kernel/cpu/common.c:__setup("noxsaves", x86_xsaves_setup); __setup() is designed to match options that take arguments, like "foo=bar" where you would have: __setup("foo", x86_foo_func...); The problem is that "noxsave" actually _matches_ "noxsaves" in the same way that "foo" matches "foo=bar". If you boot an old kernel that does not know about "noxsaves" with "noxsaves" on the command line, it will interpret the argument as "noxsave", which is not what you want at all. This makes the "noxsave" handler only return success when it finds an *exact* match. [ tglx: We really need to make __setup() more robust. ] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Hansen <dave@sr71.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/20141111220133.FE053984@viggo.jf.intel.comSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit b645af2d upstream. It's possible for iretq to userspace to fail. This can happen because of a bad CS, SS, or RIP. Historically, we've handled it by fixing up an exception from iretq to land at bad_iret, which pretends that the failed iret frame was really the hardware part of #GP(0) from userspace. To make this work, there's an extra fixup to fudge the gs base into a usable state. This is suboptimal because it loses the original exception. It's also buggy because there's no guarantee that we were on the kernel stack to begin with. For example, if the failing iret happened on return from an NMI, then we'll end up executing general_protection on the NMI stack. This is bad for several reasons, the most immediate of which is that general_protection, as a non-paranoid idtentry, will try to deliver signals and/or schedule from the wrong stack. This patch throws out bad_iret entirely. As a replacement, it augments the existing swapgs fudge into a full-blown iret fixup, mostly written in C. It's should be clearer and more correct. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit 6f442be2 upstream. On a 32-bit kernel, this has no effect, since there are no IST stacks. On a 64-bit kernel, #SS can only happen in user code, on a failed iret to user space, a canonical violation on access via RSP or RBP, or a genuine stack segment violation in 32-bit kernel code. The first two cases don't need IST, and the latter two cases are unlikely fatal bugs, and promoting them to double faults would be fine. This fixes a bug in which the espfix64 code mishandles a stack segment violation. This saves 4k of memory per CPU and a tiny bit of code. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andy Lutomirski authored
commit af726f21 upstream. There's nothing special enough about the espfix64 double fault fixup to justify writing it in assembly. Move it to C. This also fixes a bug: if the double fault came from an IST stack, the old asm code would return to a partially uninitialized stack frame. Fixes: 3891a04aSigned-off-by: Andy Lutomirski <luto@amacapital.net> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Aaro Koskinen authored
commit 26927f76 upstream. If SERIAL_8250 is compiled as a module, the platform specific setup for Loongson will be a module too, and it will not work very well. At least on Loongson 3 it will trigger a build failure, since loongson_sysconf is not exported to modules. Fix by making the platform specific serial code always built-in. Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi> Reported-by: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: Huacai Chen <chenhc@lemote.com> Cc: Markos Chandras <Markos.Chandras@imgtec.com> Patchwork: https://patchwork.linux-mips.org/patch/8533/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Aaro Koskinen authored
commit bbaf113a upstream. Fix incorrect cast that always results in wrong address for the new frame on 64-bit kernels. Signed-off-by: Aaro Koskinen <aaro.koskinen@nsn.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/8110/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 21 Nov, 2014 10 commits
-
-
Greg Kroah-Hartman authored
-
Johannes Weiner authored
commit 49426420 upstream. Commit 3812c8c8 ("mm: memcg: do not trap chargers with full callstack on OOM") assumed that only a few places that can trigger a memcg OOM situation do not return VM_FAULT_OOM, like optional page cache readahead. But there are many more and it's impractical to annotate them all. First of all, we don't want to invoke the OOM killer when the failed allocation is gracefully handled, so defer the actual kill to the end of the fault handling as well. This simplifies the code quite a bit for added bonus. Second, since a failed allocation might not be the abrupt end of the fault, the memcg OOM handler needs to be re-entrant until the fault finishes for subsequent allocation attempts. If an allocation is attempted after the task already OOMed, allow it to bypass the limit so that it can quickly finish the fault and invoke the OOM killer. Reported-by: azurIt <azurit@pobox.sk> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 3812c8c8 upstream. The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: mem_cgroup_handle_oom+0x241/0x3b0 mem_cgroup_cache_charge+0xbe/0xe0 add_to_page_cache_locked+0x4c/0x140 add_to_page_cache_lru+0x22/0x50 grab_cache_page_write_begin+0x8b/0xe0 ext3_write_begin+0x88/0x270 generic_file_buffered_write+0x116/0x290 __generic_file_aio_write+0x27c/0x480 generic_file_aio_write+0x76/0xf0 # takes ->i_mutex do_sync_write+0xea/0x130 vfs_write+0xf3/0x1f0 sys_write+0x51/0x90 system_call_fastpath+0x18/0x1d OOM kill victim: do_truncate+0x58/0xa0 # takes i_mutex do_last+0x250/0xa30 path_openat+0xd7/0x440 do_filp_open+0x49/0xa0 do_sys_open+0x106/0x240 sys_open+0x20/0x30 system_call_fastpath+0x18/0x1d The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: azurIt <azurit@pobox.sk> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit fb2a6fc5 upstream. The memcg OOM handler open-codes a sleeping lock for OOM serialization (trylock, wait, repeat) because the required locking is so specific to memcg hierarchies. However, it would be nice if this construct would be clearly recognizable and not be as obfuscated as it is right now. Clean up as follows: 1. Remove the return value of mem_cgroup_oom_unlock() 2. Rename mem_cgroup_oom_lock() to mem_cgroup_oom_trylock(). 3. Pull the prepare_to_wait() out of the memcg_oom_lock scope. This makes it more obvious that the task has to be on the waitqueue before attempting to OOM-trylock the hierarchy, to not miss any wakeups before going to sleep. It just didn't matter until now because it was all lumped together into the global memcg_oom_lock spinlock section. 4. Pull the mem_cgroup_oom_notify() out of the memcg_oom_lock scope. It is proctected by the hierarchical OOM-lock. 5. The memcg_oom_lock spinlock is only required to propagate the OOM lock in any given hierarchy atomically. Restrict its scope to mem_cgroup_oom_(trylock|unlock). 6. Do not wake up the waitqueue unconditionally at the end of the function. Only the lockholder has to wake up the next in line after releasing the lock. Note that the lockholder kicks off the OOM-killer, which in turn leads to wakeups from the uncharges of the exiting task. But a contender is not guaranteed to see them if it enters the OOM path after the OOM kills but before the lockholder releases the lock. Thus there has to be an explicit wakeup after releasing the lock. 7. Put the OOM task on the waitqueue before marking the hierarchy as under OOM as that is the point where we start to receive wakeups. No point in listening before being on the waitqueue. 8. Likewise, unmark the hierarchy before finishing the sleep, for symmetry. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 519e5247 upstream. System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 3a13c4d7 upstream. The x86 fault handler bails in the middle of error handling when the task has a fatal signal pending. For a subsequent patch this is a problem in OOM situations because it relies on pagefault_out_of_memory() being called even when the task has been killed, to perform proper per-task OOM state unwinding. Shortcutting the fault like this is a rather minor optimization that saves a few instructions in rare cases. Just remove it for user-triggered faults. Use the opportunity to split the fault retry handling from actual fault errors and add locking documentation that reads suprisingly similar to ARM's. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 759496ba upstream. Unlike global OOM handling, memory cgroup code will invoke the OOM killer in any OOM situation because it has no way of telling faults occuring in kernel context - which could be handled more gracefully - from user-triggered faults. Pass a flag that identifies faults originating in user space from the architecture-specific fault handlers to generic code so that memcg OOM handling can be improved. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 87134102 upstream. Kernel faults are expected to handle OOM conditions gracefully (gup, uaccess etc.), so they should never invoke the OOM killer. Reserve this for faults triggered in user context when it is the only option. Most architectures already do this, fix up the remaining few. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 94bce453 upstream. The memcg code can trap tasks in the context of the failing allocation until an OOM situation is resolved. They can hold all kinds of locks (fs, mm) at this point, which makes it prone to deadlocking. This series converts memcg OOM handling into a two step process that is started in the charge context, but any waiting is done after the fault stack is fully unwound. Patches 1-4 prepare architecture handlers to support the new memcg requirements, but in doing so they also remove old cruft and unify out-of-memory behavior across architectures. Patch 5 disables the memcg OOM handling for syscalls, readahead, kernel faults, because they can gracefully unwind the stack with -ENOMEM. OOM handling is restricted to user triggered faults that have no other option. Patch 6 reworks memcg's hierarchical OOM locking to make it a little more obvious wth is going on in there: reduce locked regions, rename locking functions, reorder and document. Patch 7 implements the two-part OOM handling such that tasks are never trapped with the full charge stack in an OOM situation. This patch: Back before smart OOM killing, when faulting tasks were killed directly on allocation failures, the arch-specific fault handlers needed special protection for the init process. Now that all fault handlers call into the generic OOM killer (see commit 609838cf: "mm: invoke oom-killer from remaining unconverted page fault handlers"), which already provides init protection, the arch-specific leftovers can be removed. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc bits] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johannes Weiner authored
commit 609838cf upstream. A few remaining architectures directly kill the page faulting task in an out of memory situation. This is usually not a good idea since that task might not even use a significant amount of memory and so may not be the optimal victim to resolve the situation. Since 2.6.29's 1c0fe6e3 ("mm: invoke oom-killer from page fault") there is a hook that architecture page fault handlers are supposed to call to invoke the OOM killer and let it pick the right task to kill. Convert the remaining architectures over to this hook. To have the previous behavior of simply taking out the faulting task the vm.oom_kill_allocating_task sysctl can be set to 1. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc bits] Cc: James Hogan <james.hogan@imgtec.com> Cc: David Howells <dhowells@redhat.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Chen Liqin <liqin.chen@sunplusct.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-