- 06 May, 2015 40 commits
-
-
Marek Vasut authored
commit 9374e7d2 upstream. Add new ID for ASUS N10 WiFi dongle. Signed-off-by: Marek Vasut <marex@denx.de> Tested-by: Marek Vasut <marex@denx.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: John W. Linville <linville@tuxdriver.com> Acked-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Larry Finger authored
commit 2f92b314 upstream. USB ID 2001:330d is used for a D-Link DWA-131. Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Oleg Nesterov authored
commit b72c1869 upstream. ptrace_resume() is called when the tracee is still __TASK_TRACED. We set tracee->exit_code and then wake_up_state() changes tracee->state. If the tracer's sub-thread does wait() in between, task_stopped_code(ptrace => T) wrongly looks like another report from tracee. This confuses debugger, and since wait_task_stopped() clears ->exit_code the tracee can miss a signal. Test-case: #include <stdio.h> #include <unistd.h> #include <sys/wait.h> #include <sys/ptrace.h> #include <pthread.h> #include <assert.h> int pid; void *waiter(void *arg) { int stat; for (;;) { assert(pid == wait(&stat)); assert(WIFSTOPPED(stat)); if (WSTOPSIG(stat) == SIGHUP) continue; assert(WSTOPSIG(stat) == SIGCONT); printf("ERR! extra/wrong report:%x\n", stat); } } int main(void) { pthread_t thread; pid = fork(); if (!pid) { assert(ptrace(PTRACE_TRACEME, 0,0,0) == 0); for (;;) kill(getpid(), SIGHUP); } assert(pthread_create(&thread, NULL, waiter, NULL) == 0); for (;;) ptrace(PTRACE_CONT, pid, 0, SIGCONT); return 0; } Note for stable: the bug is very old, but without 9899d11f "ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL" the fix should use lock_task_sighand(child). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Pavel Labath <labath@google.com> Tested-by: Pavel Labath <labath@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michael Davidson authored
commit a87938b2 upstream. With CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, and a normal top-down address allocation strategy, load_elf_binary() will attempt to map a PIE binary into an address range immediately below mm->mmap_base. Unfortunately, load_elf_ binary() does not take account of the need to allocate sufficient space for the entire binary which means that, while the first PT_LOAD segment is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) end up being mapped above mm->mmap_base into the are that is supposed to be the "gap" between the stack and the binary. Since the size of the "gap" on x86_64 is only guaranteed to be 128MB this means that binaries with large data segments > 128MB can end up mapping part of their data segment over their stack resulting in corruption of the stack (and the data segment once the binary starts to run). Any PIE binary with a data segment > 128MB is vulnerable to this although address randomization means that the actual gap between the stack and the end of the binary is normally greater than 128MB. The larger the data segment of the binary the higher the probability of failure. Fix this by calculating the total size of the binary in the same way as load_elf_interp(). Signed-off-by: Michael Davidson <md@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ulrik De Bie authored
commit bd884149 upstream. On ASUS TP500LN and X750JN, the touchpad absolute mode is reset each time set_rate is done. In order to fix this, we will verify the firmware version, and if it matches the one in those laptops, the set_rate function is overloaded with a function elantech_set_rate_restore_reg_07 that performs the set_rate with the original function, followed by a restore of reg_07 (the register that sets the absolute mode on elantech v4 hardware). Also the ASUS TP500LN and X750JN firmware version, capabilities, and button constellation is added to elantech.c Reported-and-tested-by: George Moutsopoulos <gmoutso@yahoo.co.uk> Signed-off-by: Ulrik De Bie <ulrik.debie-os@e2big.org> Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michael Gernoth authored
commit 91bf0c2d upstream. The functions snd_emu10k1_proc_spdif_read and snd_emu1010_fpga_read acquire the emu_lock before accessing the FPGA. The function used to access the FPGA (snd_emu1010_fpga_read) also tries to take the emu_lock which causes a deadlock. Remove the outer locking in the proc-functions (guarding only the already safe fpga read) to prevent this deadlock. [removed superfluous flags variables too -- tiwai] Signed-off-by: Michael Gernoth <michael@gernoth.net> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit bbc78c07 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 74bd7b69 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 08debfb1 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit b9e45188 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 8c0ae657 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 7a606ac2 upstream. While this driver was already using a 50ms resume timeout, let's make sure everybody uses the same macro so it's easy to fix later should anything go wrong. It also gives a more "stable" expectation to Linux users. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 7e136bb7 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit b8fb6f79 upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 595227db upstream. Make sure we're using the new macro, so our resume signaling will always pass certification. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit 62f0342d upstream. Every USB Host controller should use this new macro to define for how long resume signalling should be driven on the bus. Currently, almost every single USB controller is using a 20ms timeout for resume signalling. That's problematic for two reasons: a) sometimes that 20ms timer expires a little before 20ms, which makes us fail certification b) some (many) devices actually need more than 20ms resume signalling. Sure, in case of (b) we can state that the device is against the USB spec, but the fact is that we have no control over which device the certification lab will use. We also have no control over which host they will use. Most likely they'll be using a Windows PC which, again, we have no control over how that USB stack is written and how long resume signalling they are using. At the end of the day, we must make sure Linux passes electrical compliance when working as Host or as Device and currently we don't pass compliance as host because we're driving resume signallig for exactly 20ms and that confuses certification test setup resulting in Certification failure. Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Peter Chen <peter.chen@freescale.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Axel Lin authored
commit 869aee0f upstream. The res parameter passed to devm_usb_phy_match() is the location where the pointer to the usb_phy is stored, hence it needs to be dereferenced before comparing to the match data in order to find the correct match. Fixes: 410219dc ("usb: otg: utils: devres: Add API's to associate a device with the phy") Signed-off-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sebastian Hesselbarth authored
commit a74cd13b upstream. Fix Dove's register addresses of uart2 and uart3 nodes that seem to be broken since ages due to a copy-and-paste error. Signed-off-by: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com> Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Charles Keepax authored
commit 4e330ae4 upstream. There are two PMICs on Cragganmore, currently one dynamically assign its IRQ base and the other uses a fixed base. It is possible for the statically assigned PMIC to fail if its IRQ is taken by the dynamically assigned one. Fix this by statically assigning both the IRQ bases. Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Kukjin Kim <kgene@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andrey Ryabinin authored
commit 8defb336 upstream. Usually ELF_ET_DYN_BASE is 2/3 of TASK_SIZE. With 3G/1G user/kernel split this is not so, because 2*TASK_SIZE overflows 32 bits, so the actual value of ELF_ET_DYN_BASE is: (2 * TASK_SIZE / 3) = 0x2a000000 When ASLR is disabled PIE binaries will load at ELF_ET_DYN_BASE address. On 32bit platforms AddressSanitzer uses addresses [0x20000000 - 0x40000000] for shadow memory [1]. So ASan doesn't work for PIE binaries when ASLR disabled as it fails to map shadow memory. Also after Kees's 'split ET_DYN ASLR from mmap ASLR' patchset PIE binaries has a high chance of loading somewhere in between [0x2a000000 - 0x40000000] even if ASLR enabled. This makes ASan with PIE absolutely incompatible. Fix overflow by dividing TASK_SIZE prior to multiplying. After this patch ELF_ET_DYN_BASE equals to (for CONFIG_VMSPLIT_3G=y): (TASK_SIZE / 3 * 2) = 0x7f555554 [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm#MappingSigned-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Reported-by: Maria Guseva <m.guseva@samsung.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Andrew Elble authored
commit c1b8940b upstream. We have observed a BUG() crash in fs/attr.c:notify_change(). The crash occurs during an rsync into a filesystem that is exported via NFS. 1.) fs/attr.c:notify_change() modifies the caller's version of attr. 2.) 6de0ec00 ("VFS: make notify_change pass ATTR_KILL_S*ID to setattr operations") introduced a BUG() restriction such that "no function will ever call notify_change() with both ATTR_MODE and ATTR_KILL_S*ID set". Under some circumstances though, it will have assisted in setting the caller's version of attr to this very combination. 3.) 27ac0ffe ("locks: break delegations on any attribute modification") introduced code to handle breaking delegations. This can result in notify_change() being re-called. attr _must_ be explicitly reset to avoid triggering the BUG() established in #2. 4.) The path that that triggers this is via fs/open.c:chmod_common(). The combination of attr flags set here and in the first call to notify_change() along with a later failed break_deleg_wait() results in notify_change() being called again via retry_deleg without resetting attr. Solution is to move retry_deleg in chmod_common() a bit further up to ensure attr is completely reset. There are other places where this seemingly could occur, such as fs/utimes.c:utimes_common(), but the attr flags are not initially set in such a way to trigger this. Fixes: 27ac0ffe ("locks: break delegations on any attribute modification") Reported-by: Eric Meddaugh <etmsys@rit.edu> Tested-by: Eric Meddaugh <etmsys@rit.edu> Signed-off-by: Andrew Elble <aweits@rit.edu> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Krzysztof Kozlowski authored
commit a7117f81 upstream. Driver forgot to unregister charger power supply if registering of battery supply failed in probe(). In such case the memory associated with power supply leaked. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Fixes: 98a27664 ("power_supply: Add new lp8788 charger driver") Signed-off-by: Sebastian Reichel <sre@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Krzysztof Kozlowski authored
commit 68c3ed6f upstream. The return value of power_supply_register() call was not checked and even on error probe() function returned 0. If registering failed then during unbind the driver tried to unregister power supply which was not actually registered. This could lead to memory corruption because power_supply_unregister() unconditionally cleans up given power supply. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Fixes: da0a00eb ("power: Add twl4030_madc battery driver.") Signed-off-by: Sebastian Reichel <sre@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Steven Rostedt authored
commit 80a9b64e upstream. It has come to my attention that this_cpu_read/write are horrible on architectures other than x86. Worse yet, they actually disable preemption or interrupts! This caused some unexpected tracing results on ARM. 101.356868: preempt_count_add <-ring_buffer_lock_reserve 101.356870: preempt_count_sub <-ring_buffer_lock_reserve The ring_buffer_lock_reserve has recursion protection that requires accessing a per cpu variable. But since preempt_disable() is traced, it too got traced while accessing the variable that is suppose to prevent recursion like this. The generic version of this_cpu_read() and write() are: #define this_cpu_generic_read(pcp) \ ({ typeof(pcp) ret__; \ preempt_disable(); \ ret__ = *this_cpu_ptr(&(pcp)); \ preempt_enable(); \ ret__; \ }) #define this_cpu_generic_to_op(pcp, val, op) \ do { \ unsigned long flags; \ raw_local_irq_save(flags); \ *__this_cpu_ptr(&(pcp)) op val; \ raw_local_irq_restore(flags); \ } while (0) Which is unacceptable for locations that know they are within preempt disabled or interrupt disabled locations. Paul McKenney stated that __this_cpu_() versions produce much better code on other architectures than this_cpu_() does, if we know that the call is done in a preempt disabled location. I also changed the recursive_unlock() to use two local variables instead of accessing the per_cpu variable twice. Link: http://lkml.kernel.org/r/20150317114411.GE3589@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/20150317104038.312e73d1@gandalf.local.homeAcked-by: Christoph Lameter <cl@linux.com> Reported-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de> Tested-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Krzysztof Kozlowski authored
commit 1915a718 upstream. The return value of power_supply_register() call was not checked and even on error probe() function returned 0. If registering failed then during unbind the driver tried to unregister power supply which was not actually registered. This could lead to memory corruption because power_supply_unregister() unconditionally cleans up given power supply. Fix this by checking return status of power_supply_register() call. In case of failure, clean up sysfs entries and fail the probe. Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Fixes: 9be0fcb5 ("compal-laptop: add JHL90, battery & hwmon interface") Signed-off-by: Sebastian Reichel <sre@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ian Abbott authored
commit f20fbaad upstream. `spidev_message()` sums the lengths of the individual SPI transfers to determine the overall SPI message length. It restricts the total length, returning an error if too long, but it does not check for arithmetic overflow. For example, if the SPI message consisted of two transfers and the first has a length of 10 and the second has a length of (__u32)(-1), the total length would be seen as 9, even though the second transfer is actually very long. If the second transfer specifies a null `rx_buf` and a non-null `tx_buf`, the `copy_from_user()` could overrun the spidev's pre-allocated tx buffer before it reaches an invalid user memory address. Fix it by checking that neither the total nor the individual transfer lengths exceed the maximum allowed value. Thanks to Dan Carpenter for reporting the potential integer overflow. Signed-off-by: Ian Abbott <abbotti@mev.co.uk> Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Oliver Neukum authored
commit 323ece54 upstream. Values directly from descriptors given in debug statements must be converted to native endianness. Signed-off-by: Oliver Neukum <oneukum@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
NeilBrown authored
commit 47d68979 upstream. Since commit 20d0189b in v3.14-rc1 RAID0 has performed incorrect calculations when the chunksize is not a power of 2. This happens because "sector_div()" modifies its first argument, but this wasn't taken into account in the patch. So restore that first arg before re-using the variable. Reported-by: Joe Landman <joe.landman@gmail.com> Reported-by: Dave Chinner <david@fromorbit.com> Fixes: 20d0189bSigned-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Huacai Chen authored
commit a843d00d upstream. We found that TLB mismatch not only happens after kernel resume, but also happens during snapshot restore. So move it to the beginning of swsusp_arch_suspend(). Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: Steven J. Hill <Steven.Hill@imgtec.com> Cc: linux-mips@linux-mips.org Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Patchwork: https://patchwork.linux-mips.org/patch/9621/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Radim Krčmář authored
commit ca3f0874 upstream. kvm_write_guest_cached() does not mark all written pages as dirty and code comments in kvm_gfn_to_hva_cache_init() talk about NULL memslot with cross page accesses. Fix all the easy way. The check is '<= 1' to have the same result for 'len = 0' cache anywhere in the page. (nr_pages_needed is 0 on page boundary.) Fixes: 8f964525 ("KVM: Allow cross page reads and writes from cached translations.") Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Message-Id: <20150408121648.GA3519@potion.brq.redhat.com> Reviewed-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Heiko Carstens authored
commit d7441949 upstream. Sebastian reported a crash caused by a jump label mismatch after resume. This happens because we do not save the kernel text section during suspend and therefore also do not restore it during resume, but use the kernel image that restores the old system. This means that after a suspend/resume cycle we lost all modifications done to the kernel text section. The reason for this is the pfn_is_nosave() function, which incorrectly returns that read-only pages don't need to be saved. This is incorrect since we mark the kernel text section read-only. We still need to make sure to not save and restore pages contained within NSS and DCSS segment. To fix this add an extra case for the kernel text section and only save those pages if they are not contained within an NSS segment. Fixes the following crash (and the above bugs as well): Jump label code mismatch at netif_receive_skb_internal+0x28/0xd0 Found: c0 04 00 00 00 00 Expected: c0 f4 00 00 00 11 New: c0 04 00 00 00 00 Kernel panic - not syncing: Corrupted kernel text CPU: 0 PID: 9 Comm: migration/0 Not tainted 3.19.0-01975-gb1b096e70f23 #4 Call Trace: [<0000000000113972>] show_stack+0x72/0xf0 [<000000000081f15e>] dump_stack+0x6e/0x90 [<000000000081c4e8>] panic+0x108/0x2b0 [<000000000081be64>] jump_label_bug.isra.2+0x104/0x108 [<0000000000112176>] __jump_label_transform+0x9e/0xd0 [<00000000001121e6>] __sm_arch_jump_label_transform+0x3e/0x50 [<00000000001d1136>] multi_cpu_stop+0x12e/0x170 [<00000000001d1472>] cpu_stopper_thread+0xb2/0x168 [<000000000015d2ac>] smpboot_thread_fn+0x134/0x1b0 [<0000000000158baa>] kthread+0x10a/0x110 [<0000000000824a86>] kernel_thread_starter+0x6/0xc Reported-and-tested-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ekaterina Tumanova authored
commit b75f4c9a upstream. s390 documentation requires words 0 and 10-15 to be reserved and stored as zeros. As we fill out all other fields, we can memset the full structure. Signed-off-by: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Felipe Balbi authored
commit a6615937 upstream. According to USB 2.0 ECN Errata for Link Power Management (USB2-LPM-Errata-final.pdf), BESL must be enabled if LPM is enabled. This helps with USB30CV TD 9.21 LPM L1 Suspend Resume Test. Signed-off-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Du, Changbin <changbin.du@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Len Brown authored
sched/idle/x86: Restore mwait_idle() to fix boot hangs, to improve power savings and to improve performance commit b253149b upstream. In Linux-3.9 we removed the mwait_idle() loop: 69fb3676 ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param") The reasoning was that modern machines should be sufficiently happy during the boot process using the default_idle() HALT loop, until cpuidle loads and either acpi_idle or intel_idle invoke the newer MWAIT-with-hints idle loop. But two machines reported problems: 1. Certain Core2-era machines support MWAIT-C1 and HALT only. MWAIT-C1 is preferred for optimal power and performance. But if they support just C1, cpuidle never loads and so they use the boot-time default idle loop forever. 2. Some laptops will boot-hang if HALT is used, but will boot successfully if MWAIT is used. This appears to be a hidden assumption in BIOS SMI, that is presumably valid on the proprietary OS where the BIOS was validated. https://bugzilla.kernel.org/show_bug.cgi?id=60770 So here we effectively revert the patch above, restoring the mwait_idle() loop. However, we don't bother restoring the idle=mwait cmdline parameter, since it appears to add no value. Maintainer notes: For 3.9, simply revert 69fb3676 for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in context For 3.11, 3.12, 3.13, this patch applies cleanly Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Len Brown <len.brown@intel.com> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: <stable@vger.kernel.org> # 3.9+ Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com [ Ported to recent kernels. ] [ Mike: 3.10 backport ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit 113e8283 upstream. If we pass a length of 0 to the extent_same ioctl, we end up locking an extent range with a start offset greater then its end offset (if the destination file's offset is greater than zero). This results in a warning from extent_io.c:insert_state through the following call chain: btrfs_extent_same() btrfs_double_lock() lock_extent_range() lock_extent(inode->io_tree, offset, offset + len - 1) lock_extent_bits() __set_extent_bit() insert_state() --> WARN_ON(end < start) This leads to an infinite loop when evicting the inode. This is the same problem that my previous patch titled "Btrfs: fix inode eviction infinite loop after cloning into it" addressed but for the extent_same ioctl instead of the clone ioctl. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit ccccf3d6 upstream. If we attempt to clone a 0 length region into a file we can end up inserting a range in the inode's extent_io tree with a start offset that is greater then the end offset, which triggers immediately the following warning: [ 3914.619057] WARNING: CPU: 17 PID: 4199 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3914.620886] BTRFS: end < start 4095 4096 (...) [ 3914.638093] Call Trace: [ 3914.638636] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3914.639620] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3914.640789] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3914.642041] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3914.643236] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3914.644441] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3914.645711] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3914.646914] [<ffffffff8142b2fb>] ? _raw_spin_unlock+0x28/0x33 [ 3914.648058] [<ffffffffa03cbac4>] ? test_range_bit+0xcc/0xde [btrfs] [ 3914.650105] [<ffffffffa03cb3c3>] lock_extent+0x13/0x15 [btrfs] [ 3914.651361] [<ffffffffa03db39e>] lock_extent_range+0x3d/0xcd [btrfs] [ 3914.652761] [<ffffffffa03de1fe>] btrfs_ioctl_clone+0x278/0x388 [btrfs] [ 3914.654128] [<ffffffff811226dd>] ? might_fault+0x58/0xb5 [ 3914.655320] [<ffffffffa03e0909>] btrfs_ioctl+0xb51/0x2195 [btrfs] (...) [ 3914.669271] ---[ end trace 14843d3e2e622fc1 ]--- This later makes the inode eviction handler enter an infinite loop that keeps dumping the following warning over and over: [ 3915.117629] WARNING: CPU: 22 PID: 4228 at fs/btrfs/extent_io.c:435 insert_state+0x4b/0x10b [btrfs]() [ 3915.119913] BTRFS: end < start 4095 4096 (...) [ 3915.137394] Call Trace: [ 3915.137913] [<ffffffff81425fd9>] dump_stack+0x4c/0x65 [ 3915.139154] [<ffffffff81045390>] warn_slowpath_common+0xa1/0xbb [ 3915.140316] [<ffffffffa03ca44f>] ? insert_state+0x4b/0x10b [btrfs] [ 3915.141505] [<ffffffff810453f0>] warn_slowpath_fmt+0x46/0x48 [ 3915.142709] [<ffffffffa03ca44f>] insert_state+0x4b/0x10b [btrfs] [ 3915.143849] [<ffffffffa03ca729>] __set_extent_bit+0x107/0x3f4 [btrfs] [ 3915.145120] [<ffffffffa038c1e3>] ? btrfs_kill_super+0x17/0x23 [btrfs] [ 3915.146352] [<ffffffff811548f6>] ? deactivate_locked_super+0x3b/0x50 [ 3915.147565] [<ffffffffa03cb256>] lock_extent_bits+0x65/0x1bf [btrfs] [ 3915.148785] [<ffffffff8142b7e2>] ? _raw_write_unlock+0x28/0x33 [ 3915.149931] [<ffffffffa03bc325>] btrfs_evict_inode+0x196/0x482 [btrfs] [ 3915.151154] [<ffffffff81168904>] evict+0xa0/0x148 [ 3915.152094] [<ffffffff811689e5>] dispose_list+0x39/0x43 [ 3915.153081] [<ffffffff81169564>] evict_inodes+0xdc/0xeb [ 3915.154062] [<ffffffff81154418>] generic_shutdown_super+0x49/0xef [ 3915.155193] [<ffffffff811546d1>] kill_anon_super+0x13/0x1e [ 3915.156274] [<ffffffffa038c1e3>] btrfs_kill_super+0x17/0x23 [btrfs] (...) [ 3915.167404] ---[ end trace 14843d3e2e622fc2 ]--- So just bail out of the clone ioctl if the length of the region to clone is zero, without locking any extent range, in order to prevent this issue (same behaviour as a pwrite with a 0 length for example). This is trivial to reproduce. For example, the steps for the test I just made for fstests: mkfs.btrfs -f SCRATCH_DEV mount SCRATCH_DEV $SCRATCH_MNT touch $SCRATCH_MNT/foo touch $SCRATCH_MNT/bar $CLONER_PROG -s 0 -d 4096 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar umount $SCRATCH_MNT A test case for fstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Sterba authored
commit 3c3b04d1 upstream. Due to insufficient check in btrfs_is_valid_xattr, this unexpectedly works: $ touch file $ setfattr -n user. -v 1 file $ getfattr -d file user.="1" ie. the missing attribute name after the namespace. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=94291Reported-by: William Douglas <william.douglas@intel.com> Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Filipe Manana authored
commit dcc82f47 upstream. While committing a transaction we free the log roots before we write the new super block. Freeing the log roots implies marking the disk location of every node/leaf (metadata extent) as pinned before the new super block is written. This is to prevent the disk location of log metadata extents from being reused before the new super block is written, otherwise we would have a corrupted log tree if before the new super block is written a crash/reboot happens and the location of any log tree metadata extent ended up being reused and rewritten. Even though we pinned the log tree's metadata extents, we were issuing a discard against them if the fs was mounted with the -o discard option, resulting in corruption of the log tree if a crash/reboot happened before writing the new super block - the next time the fs was mounted, during the log replay process we would find nodes/leafs of the log btree with a content full of zeroes, causing the process to fail and require the use of the tool btrfs-zero-log to wipeout the log tree (and all data previously fsynced becoming lost forever). Fix this by not doing a discard when pinning an extent. The discard will be done later when it's safe (after the new super block is committed) at extent-tree.c:btrfs_finish_extent_commit(). Fixes: e688b725 (Btrfs: fix extent pinning bugs in the tree log) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 2ea2f62c ] When I added pfmemalloc support in build_skb(), I forgot netlink was using build_skb() with a vmalloc() area. In this patch I introduce __build_skb() for netlink use, and build_skb() is a wrapper handling both skb->head_frag and skb->pfmemalloc This means netlink no longer has to hack skb->head_frag [ 1567.700067] kernel BUG at arch/x86/mm/physaddr.c:26! [ 1567.700067] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [ 1567.700067] Dumping ftrace buffer: [ 1567.700067] (ftrace buffer empty) [ 1567.700067] Modules linked in: [ 1567.700067] CPU: 9 PID: 16186 Comm: trinity-c182 Not tainted 4.0.0-next-20150424-sasha-00037-g4796e21 #2167 [ 1567.700067] task: ffff880127efb000 ti: ffff880246770000 task.ti: ffff880246770000 [ 1567.700067] RIP: __phys_addr (arch/x86/mm/physaddr.c:26 (discriminator 3)) [ 1567.700067] RSP: 0018:ffff8802467779d8 EFLAGS: 00010202 [ 1567.700067] RAX: 000041000ed8e000 RBX: ffffc9008ed8e000 RCX: 000000000000002c [ 1567.700067] RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffffb3fd6049 [ 1567.700067] RBP: ffff8802467779f8 R08: 0000000000000019 R09: ffff8801d0168000 [ 1567.700067] R10: ffff8801d01680c7 R11: ffffed003a02d019 R12: ffffc9000ed8e000 [ 1567.700067] R13: 0000000000000f40 R14: 0000000000001180 R15: ffffc9000ed8e000 [ 1567.700067] FS: 00007f2a7da3f700(0000) GS:ffff8801d1000000(0000) knlGS:0000000000000000 [ 1567.700067] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1567.700067] CR2: 0000000000738308 CR3: 000000022e329000 CR4: 00000000000007e0 [ 1567.700067] Stack: [ 1567.700067] ffffc9000ed8e000 ffff8801d0168000 ffffc9000ed8e000 ffff8801d0168000 [ 1567.700067] ffff880246777a28 ffffffffad7c0a21 0000000000001080 ffff880246777c08 [ 1567.700067] ffff88060d302e68 ffff880246777b58 ffff880246777b88 ffffffffad9a6821 [ 1567.700067] Call Trace: [ 1567.700067] build_skb (include/linux/mm.h:508 net/core/skbuff.c:316) [ 1567.700067] netlink_sendmsg (net/netlink/af_netlink.c:1633 net/netlink/af_netlink.c:2329) [ 1567.774369] ? sched_clock_cpu (kernel/sched/clock.c:311) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] ? netlink_unicast (net/netlink/af_netlink.c:2273) [ 1567.774369] sock_sendmsg (net/socket.c:614 net/socket.c:623) [ 1567.774369] sock_write_iter (net/socket.c:823) [ 1567.774369] ? sock_sendmsg (net/socket.c:806) [ 1567.774369] __vfs_write (fs/read_write.c:479 fs/read_write.c:491) [ 1567.774369] ? get_lock_stats (kernel/locking/lockdep.c:249) [ 1567.774369] ? default_llseek (fs/read_write.c:487) [ 1567.774369] ? vtime_account_user (kernel/sched/cputime.c:701) [ 1567.774369] ? rw_verify_area (fs/read_write.c:406 (discriminator 4)) [ 1567.774369] vfs_write (fs/read_write.c:539) [ 1567.774369] SyS_write (fs/read_write.c:586 fs/read_write.c:577) [ 1567.774369] ? SyS_read (fs/read_write.c:577) [ 1567.774369] ? __this_cpu_preempt_check (lib/smp_processor_id.c:63) [ 1567.774369] ? trace_hardirqs_on_caller (kernel/locking/lockdep.c:2594 kernel/locking/lockdep.c:2636) [ 1567.774369] ? trace_hardirqs_on_thunk (arch/x86/lib/thunk_64.S:42) [ 1567.774369] system_call_fastpath (arch/x86/kernel/entry_64.S:261) Fixes: 79930f58 ("net: do not deplete pfmemalloc reserve") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric Dumazet authored
[ Upstream commit 79930f58 ] build_skb() should look at the page pfmemalloc status. If set, this means page allocator allocated this page in the expectation it would help to free other pages. Networking stack can do that only if skb->pfmemalloc is also set. Also, we must refrain using high order pages from the pfmemalloc reserve, so __page_frag_refill() must also use __GFP_NOMEMALLOC for them. Under memory pressure, using order-0 pages is probably the best strategy. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-