- 15 Dec, 2009 40 commits
-
-
KOSAKI Motohiro authored
If reclaim fails to make sufficient progress, the priority is raised. Once the priority is higher, kswapd starts waiting on congestion. However, if the zone is below the min watermark then kswapd needs to continue working without delay as there is a danger of an increased rate of GFP_ATOMIC allocation failure. This patch changes the conditions under which kswapd waits on congestion by only going to sleep if the min watermarks are being met. [mel@csn.ul.ie: add stats to track how relevant the logic is] [mel@csn.ul.ie: make kswapd only check its own zones and rename the relevant counters] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mel Gorman authored
After kswapd balances all zones in a pgdat, it goes to sleep. In the event of no IO congestion, kswapd can go to sleep very shortly after the high watermark was reached. If there are a constant stream of allocations from parallel processes, it can mean that kswapd went to sleep too quickly and the high watermark is not being maintained for sufficient length time. This patch makes kswapd go to sleep as a two-stage process. It first tries to sleep for HZ/10. If it is woken up by another process or the high watermark is no longer met, it's considered a premature sleep and kswapd continues work. Otherwise it goes fully to sleep. This adds more counters to distinguish between fast and slow breaches of watermarks. A "fast" premature sleep is one where the low watermark was hit in a very short time after kswapd going to sleep. A "slow" premature sleep indicates that the high watermark was breached after a very short interval. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Frans Pop <elendil@planet.nl> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Shijie authored
When the code jumps to the `out', `referenced' is still zero. So there is no need to check it. Signed-off-by: Huang Shijie <shijie8@gmail.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Shijie authored
Just simplify the code when `mlocked' is true. Signed-off-by: Huang Shijie <shijie8@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Huang Shijie authored
Fix the comment for try_to_unmap_anon() with the new arguments. Signed-off-by: Huang Shijie <shijie8@gmail.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vincent Li authored
Commit 543ade1f ("Streamline generic_file_* interfaces and filemap cleanups") removed generic_file_write() in filemap. Change the comment in vmscan pageout() to __generic_file_aio_write(). Signed-off-by: Vincent Li <macli@brc.ubc.ca> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Seems that page_io.c doesn't really need to know that page_private(page) is the swp_entry 'val'. Rework map_swap_page() to do what its name says and map a page to a page offset in the swap space. The only other caller of map_swap_page() is internal to mm/swapfile.c and it does want to map a swap entry to the 'sector'. So rename map_swap_page() to map_swap_entry(), make it 'static' and and implement map_swap_page() as a wrapper around that. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Reorder (and comment) the fields of swap_info_struct, to make better use of its cachelines: it's good for swap_duplicate() in particular if unsigned int max and swap_map are near the start. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
While we're fiddling with the swap_map values, let's assign a particular value to shmem/tmpfs swap pages: their swap counts are never incremented, and it helps swapoff's try_to_unuse() a little if it can immediately distinguish those pages from process pages. Since we've no use for SWAP_MAP_BAD | COUNT_CONTINUED, we might as well use that 0xbf value for SWAP_MAP_SHMEM. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Swap is duplicated (reference count incremented by one) whenever the same swap page is inserted into another mm (when forking finds a swap entry in place of a pte, or when reclaim unmaps a pte to insert the swap entry). swap_info_struct's vmalloc'ed swap_map is the array of these reference counts: but what happens when the unsigned short (or unsigned char since the preceding patch) is full? (and its high bit is kept for a cache flag) We then lose track of it, never freeing, leaving it in use until swapoff: at which point we _hope_ that a single pass will have found all instances, assume there are no more, and will lose user data if we're wrong. Swapping of KSM pages has not yet been enabled; but it is implemented, and makes it very easy for a user to overflow the maximum swap count: possible with ordinary process pages, but unlikely, even when pid_max has been raised from PID_MAX_DEFAULT. This patch implements swap count continuations: when the count overflows, a continuation page is allocated and linked to the original vmalloc'ed map page, and this used to hold the continuation counts for that entry and its neighbours. These continuation pages are seldom referenced: the common paths all work on the original swap_map, only referring to a continuation page when the low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Halve the vmalloc'ed swap_map array from unsigned shorts to unsigned chars: it's still very unusual to reach a swap count of 126, and the next patch allows it to be extended indefinitely. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Though swap_count() is useful, I'm finding that swap_has_cache() and encode_swapmap() obscure what happens in the swap_map entry, just at those points where I need to understand it. Remove them, and pass more usable "usage" values to scan_swap_map(), swap_entry_free() and __swap_duplicate(), instead of the SWAP_MAP and SWAP_CACHE enum. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Move CONFIG_HIBERNATION's swapdev_block() into the main CONFIG_HIBERNATION block, remove extraneous whitespace and return, fix typo in a comment. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
Make better use of the space by folding first swap_extent into its swap_info_struct, instead of just the list_head: swap partitions need only that one, and for others it's used as a circular list anyway. [jirislaby@gmail.com: fix crash on double swapon] Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
The swap_info_struct is only 76 or 104 bytes, but it does seem wrong to reserve an array of about 30 of them in bss, when most people will want only one. Change swap_info[] to an array of pointers. That does need a "type" field in the structure: pack it as a char with next type and short prio (aha, char is unsigned by default on PowerPC). Use the (admittedly peculiar) name "type" throughout for this index. /proc/swaps does not take swap_lock: I wouldn't want it to, but do take care with barriers when adding a new item to the array (never removed). Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
The swap_info_struct is mostly private to mm/swapfile.c, with only one other in-tree user: get_swap_bio(). Adjust its interface to map_swap_page(), so that we can then remove get_swap_info_struct(). But there is a popular user out-of-tree, TuxOnIce: so leave the declaration of swap_info_struct in linux/swap.h. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Nigel Cunningham <ncunningham@crca.org.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jan Beulich authored
- avoid wasting more precious resources (DMA or DMA32 pools), when being called through vmalloc_32{,_user}() - explicitly allow using high memory here even if the outer allocation request doesn't allow it Signed-off-by: Jan Beulich <jbeulich@novell.com> Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
Objects passed to NODEMASK_ALLOC() are relatively small in size and are backed by slab caches that are not of large order, traditionally never greater than PAGE_ALLOC_COSTLY_ORDER. Thus, using GFP_KERNEL for these allocations on large machines when CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in the allocation attempt, each time invoking both direct reclaim or the oom killer. This is of particular interest when using NODEMASK_ALLOC() from a mempolicy context (either directly in mm/mempolicy.c or the mempolicy constrained hugetlb allocations) since the oom killer always kills current when allocations are constrained by mempolicies. So for all present use cases in the kernel, current would end up being oom killed when direct reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but current would have sacrificed itself upon returning. This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations. All current use cases either directly from hugetlb code or indirectly via NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom killer when the slab allocator needs to allocate additional pages. The side-effect of this change is that all current use cases of either NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All current use cases were audited and do have appropriate error handling at this time. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Offload the registration and unregistration of per node hstate sysfs attributes to a worker thread rather than attempt the allocation/attachment or detachment/freeing of the attributes in the context of the memory hotplug handler. I don't know that this is absolutely required, but the registration can sleep in allocations and other mem hot plug handlers do it this way. If it turns out this is NOT required, we can drop this patch. N.B., Only tested build, boot, libhugetlbfs regression. i.e., no memory hotplug testing. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Register per node hstate attributes only for nodes with memory. As suggested by David Rientjes. With Memory Hotplug, memory can be added to a memoryless node and a node with memory can become memoryless. Therefore, add a memory on/off-line notifier callback to [un]register a node's attributes on transition to/from memoryless state. N.B., Only tested build, boot, libhugetlbfs regression. i.e., no memory hotplug testing. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Acked-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
When memory is hot-removed, its node must be cleared in N_HIGH_MEMORY if there are no present pages left. In such a situation, kswapd must also be stopped since it has nothing left to do. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Register per node hstate sysfs attributes only for nodes with memory. Global replacement of 'all online nodes" with "all nodes with memory" in mm/hugetlb.c. Suggested by David Rientjes. A subsequent patch will handle adding/removing of per node hstate sysfs attributes when nodes transition to/from memoryless state via memory hotplug. NOTE: this patch has not been tested with memoryless nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Update the kernel huge tlb documentation to describe the numa memory policy based huge page management. Additionaly, the patch includes a fair amount of rework to improve consistency, eliminate duplication and set the context for documenting the memory policy interaction. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Add the per huge page size control/query attributes to the per node sysdevs: /sys/devices/system/node/node<ID>/hugepages/hugepages-<size>/ nr_hugepages - r/w free_huge_pages - r/o surplus_huge_pages - r/o The patch attempts to re-use/share as much of the existing global hstate attribute initialization and handling, and the "nodes_allowed" constraint processing as possible. Calling set_max_huge_pages() with no node indicates a change to global hstate parameters. In this case, any non-default task mempolicy will be used to generate the nodes_allowed mask. A valid node id indicates an update to that node's hstate parameters, and the count argument specifies the target count for the specified node. From this info, we compute the target global count for the hstate and construct a nodes_allowed node mask contain only the specified node. Setting the node specific nr_hugepages via the per node attribute effectively ignores any task mempolicy or cpuset constraints. With this patch: (me):ls /sys/devices/system/node/node0/hugepages/hugepages-2048kB ./ ../ free_hugepages nr_hugepages surplus_hugepages Starting from: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 0 Node 2 HugePages_Free: 0 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 0 Allocate 16 persistent huge pages on node 2: (me):echo 16 >/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages [Note that this is equivalent to: numactl -m 2 hugeadmin --pool-pages-min 2M:+16 ] Yields: Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 16 Node 2 HugePages_Free: 16 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 vm.nr_hugepages = 16 Global controls work as expected--reduce pool to 8 persistent huge pages: (me):echo 8 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages Node 0 HugePages_Total: 0 Node 0 HugePages_Free: 0 Node 0 HugePages_Surp: 0 Node 1 HugePages_Total: 0 Node 1 HugePages_Free: 0 Node 1 HugePages_Surp: 0 Node 2 HugePages_Total: 8 Node 2 HugePages_Free: 8 Node 2 HugePages_Surp: 0 Node 3 HugePages_Total: 0 Node 3 HugePages_Free: 0 Node 3 HugePages_Surp: 0 Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Move definition of NUMA_NO_NODE from ia64 and x86_64 arch specific headers to generic header 'linux/numa.h' for use in generic code. NUMA_NO_NODE replaces bare '-1' where it's used in this series to indicate "no node id specified". Ultimately, it can be used to replace the -1 elsewhere where it is used similarly. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
This patch derives a "nodes_allowed" node mask from the numa mempolicy of the task modifying the number of persistent huge pages to control the allocation, freeing and adjusting of surplus huge pages when the pool page count is modified via the new sysctl or sysfs attribute "nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows: * For "default" [NULL] task mempolicy, a NULL nodemask_t pointer is produced. This will cause the hugetlb subsystem to use node_online_map as the "nodes_allowed". This preserves the behavior before this patch. * For "preferred" mempolicy, including explicit local allocation, a nodemask with the single preferred node will be produced. "local" policy will NOT track any internode migrations of the task adjusting nr_hugepages. * For "bind" and "interleave" policy, the mempolicy's nodemask will be used. * Other than to inform the construction of the nodes_allowed node mask, the actual mempolicy mode is ignored. That is, all modes behave like interleave over the resulting nodes_allowed mask with no "fallback". See the updated documentation [next patch] for more information about the implications of this patch. Examples: Starting with: Node 0 HugePages_Total: 0 Node 1 HugePages_Total: 0 Node 2 HugePages_Total: 0 Node 3 HugePages_Total: 0 Default behavior [with or without this patch] balances persistent hugepage allocation across nodes [with sufficient contiguous memory]: sysctl vm.nr_hugepages[_mempolicy]=32 yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 8 Node 3 HugePages_Total: 8 Of course, we only have nr_hugepages_mempolicy with the patch, but with default mempolicy, nr_hugepages_mempolicy behaves the same as nr_hugepages. Applying mempolicy--e.g., with numactl [using '-m' a.k.a. '--membind' because it allows multiple nodes to be specified and it's easy to type]--we can allocate huge pages on individual nodes or sets of nodes. So, starting from the condition above, with 8 huge pages per node, add 8 more to node 2 using: numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40 This yields: Node 0 HugePages_Total: 8 Node 1 HugePages_Total: 8 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The incremental 8 huge pages were restricted to node 2 by the specified mempolicy. Similarly, we can use mempolicy to free persistent huge pages from specified nodes: numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32 yields: Node 0 HugePages_Total: 4 Node 1 HugePages_Total: 4 Node 2 HugePages_Total: 16 Node 3 HugePages_Total: 8 The 8 huge pages freed were balanced over nodes 0 and 1. [rientjes@google.com: accomodate reworked NODEMASK_ALLOC] Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Factor init_nodemask_of_node() out of the nodemask_of_node() macro. This will be used to populate the huge pages "nodes_allowed" nodemask for a single node when basing nodes_allowed on a preferred/local mempolicy or when a persistent huge page pool page count is modified via a per node sysfs attribute. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
In preparation for constraining huge page allocation and freeing by the controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer to the allocate, free and surplus adjustment functions. For now, pass NULL to indicate default behavior--i.e., use node_online_map. A subsqeuent patch will derive a non-default mask from the controlling task's numa mempolicy. Note that this method of updating the global hstate nr_hugepages under the constraint of a nodemask simplifies keeping the global state consistent--especially the number of persistent and surplus pages relative to reservations and overcommit limits. There are undoubtedly other ways to do this, but this works for both interfaces: mempolicy and per node attributes. [rientjes@google.com: fix HIGHMEM compile error] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Lee Schermerhorn authored
Modify the hstate_next_node* functions to allow them to be called to obtain the "start_nid". Then, whereas prior to this patch we unconditionally called hstate_next_node_to_{alloc|free}(), whether or not we successfully allocated/freed a huge page on the node, now we only call these functions on failure to alloc/free to advance to next allowed node. Factor out the next_node_allowed() function to handle wrap at end of node_online_map. In this version, the allowed nodes include all of the online nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Reviewed-by: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
David Rientjes authored
This is a series of patches to provide control over the location of the allocation and freeing of persistent huge pages on a NUMA platform. Please consider for merging into mmotm. This series uses two mechanisms to constrain the nodes from which persistent huge pages are allocated: 1) the task NUMA mempolicy of the task modifying a new sysctl "nr_hugepages_mempolicy", based on a suggestion by Mel Gorman; and 2) a subset of the hugepages hstate sysfs attributes have been added [in V4] to each node system device under: /sys/devices/node/node[0-9]*/hugepages The per node attibutes allow direct assignment of a huge page count on a specific node, regardless of the task's mempolicy or cpuset constraints. This patch: NODEMASK_ALLOC(x, m) assumes x is a type of struct, which is unnecessary. It's perfectly reasonable to use this macro to allocate a nodemask_t, which is anonymous, either dynamically or on the stack depending on NODES_SHIFT. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Rientjes <rientjes@google.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KOSAKI Motohiro authored
Christoph pointed out inc_zone_page_state(NR_ISOLATED) should be placed in right after isolate_page(). This patch does it. Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
Also rename "len" to "sz". No behavior change. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
Also convert more size_inside_page() users. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
No behaviour change. [akpm@linux-foundation.org: cleanuplets] [akpm@linux-foundation.org: remove unused `ret'] Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
Introduce size_inside_page() to replace duplicate /dev/mem code. Also apply it to /dev/kmem, whose alignment logic was buggy. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wu Fengguang authored
The len test in write_kmem() is always true, so can be reduced. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Avi Kivity <avi@qumranet.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
KOSAKI Motohiro authored
On ia64, the following test program exit abnormally, because glibc thread library called abort(). ======================================================== (gdb) bt #0 0xa000000000010620 in __kernel_syscall_via_break () #1 0x20000000003208e0 in raise () from /lib/libc.so.6.1 #2 0x2000000000324090 in abort () from /lib/libc.so.6.1 #3 0x200000000027c3e0 in __deallocate_stack () from /lib/libpthread.so.0 #4 0x200000000027f7c0 in start_thread () from /lib/libpthread.so.0 #5 0x200000000047ef60 in __clone2 () from /lib/libc.so.6.1 ======================================================== The fact is, glibc call munmap() when thread exitng time for freeing stack, and it assume munlock() never fail. However, munmap() often make vma splitting and it with many mapcount make -ENOMEM. Oh well, that's crazy, because stack unmapping never increase mapcount. The maxcount exceeding is only temporary. internal temporary exceeding shouldn't make ENOMEM. This patch does it. test_max_mapcount.c ================================================================== #include<stdio.h> #include<stdlib.h> #include<string.h> #include<pthread.h> #include<errno.h> #include<unistd.h> #define THREAD_NUM 30000 #define MAL_SIZE (8*1024*1024) void *wait_thread(void *args) { void *addr; addr = malloc(MAL_SIZE); sleep(10); return NULL; } void *wait_thread2(void *args) { sleep(60); return NULL; } int main(int argc, char *argv[]) { int i; pthread_t thread[THREAD_NUM], th; int ret, count = 0; pthread_attr_t attr; ret = pthread_attr_init(&attr); if(ret) { perror("pthread_attr_init"); } ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); if(ret) { perror("pthread_attr_setdetachstate"); } for (i = 0; i < THREAD_NUM; i++) { ret = pthread_create(&th, &attr, wait_thread, NULL); if(ret) { fprintf(stderr, "[%d] ", count); perror("pthread_create"); } else { printf("[%d] create OK.\n", count); } count++; ret = pthread_create(&thread[i], &attr, wait_thread2, NULL); if(ret) { fprintf(stderr, "[%d] ", count); perror("pthread_create"); } else { printf("[%d] create OK.\n", count); } count++; } sleep(3600); return 0; } ================================================================== [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alex Chiang authored
On a system with large amount of memory (256GB), invoking page-types can take quite a long time, which is unreasonable considering the user only wants a description of the flags: # time ./page-types -d 0x10 0x0000000000000010 ____D_____________________________ dirty real 0m34.285s user 0m1.966s sys 0m32.313s This is because we still walk the entire address range. Exiting early seems like a reasonble solution: # time ./page-types -d 0x10 0x0000000000000010 ____D_____________________________ dirty real 0m0.007s user 0m0.001s sys 0m0.005s Signed-off-by: Alex Chiang <achiang@hp.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Haicheng Li <haicheng.li@intel.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alex Chiang authored
Align the output when page-type -h is invoked. Signed-off-by: Alex Chiang <achiang@hp.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-