- 05 Jul, 2017 4 commits
-
-
Mintz, Yuval authored
[ Upstream commit 0eed9cf5 ] Some of the structure's fields are not initialized by the rtnetlink. If driver doesn't set those in ndo_get_vf_config(), they'd leak memory to user. Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com> CC: Michal Schmidt <mschmidt@redhat.com> Reviewed-by: Greg Rose <gvrose8192@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Mateusz Jurczyk authored
[ Upstream commit dd0da17b ] Verify that the length of the socket buffer is sufficient to cover the nlmsghdr structure before accessing the nlh->nlmsg_len field for further input sanitization. If the client only supplies 1-3 bytes of data in sk_buff, then nlh->nlmsg_len remains partially uninitialized and contains leftover memory from the corresponding kernel allocation. Operating on such data may result in indeterminate evaluation of the nlmsg_len < sizeof(*nlh) expression. The bug was discovered by a runtime instrumentation designed to detect use of uninitialized memory in the kernel. The patch prevents this and other similar tools (e.g. KMSAN) from flagging this behavior in the future. Signed-off-by: Mateusz Jurczyk <mjurczyk@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alexander Potapenko authored
[ Upstream commit c28294b9 ] KMSAN reported a use of uninitialized memory in dev_set_alias(), which was caused by calling strlcpy() (which in turn called strlen()) on the user-supplied non-terminated string. Signed-off-by: Alexander Potapenko <glider@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Willem de Bruijn authored
commit 00ea1cee upstream. If ip6_dst_lookup_tail has acquired a dst and fails the IPv4-mapped check, release the dst before returning an error. Fixes: ec5e3b0a ("ipv6: Inhibit IPv4-mapped src address on the wire.") Signed-off-by: Willem de Bruijn <willemb@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 29 Jun, 2017 27 commits
-
-
Greg Kroah-Hartman authored
-
Guilherme G. Piccoli authored
commit b5a10c5f upstream. Commit 54adc010 ("nvme/quirk: Add a delay before checking for adapter readiness") introduced a quirk to adapters that cannot read the bit NVME_CSTS_RDY right after register NVME_REG_CC is set; these adapters need a delay or else the action of reading the bit NVME_CSTS_RDY could somehow corrupt adapter's registers state and it never recovers. When this quirk was added, we checked ctrl->tagset in order to avoid quirking in probe time, supposing we would never require such delay during probe. Well, it was too optimistic; we in fact need this quirk at probe time in some cases, like after a kexec. In some experiments, after abnormal shutdown of machine (aka power cord unplug), we booted into our bootloader in Power, which is a Linux kernel, and kexec'ed into another distro. If this kexec is too quick, we end up reaching the probe of NVMe adapter in that distro when adapter is in bad state (not fully initialized on our bootloader). What happens next is that nvme_wait_ready() is unable to complete, except if the quirk is enabled. So, this patch removes the original ctrl->tagset verification in order to enable the quirk even on probe time. Fixes: 54adc010 ("nvme/quirk: Add a delay before checking for adapter readiness") Reported-by: Andrew Byrne <byrneadw@ie.ibm.com> Reported-by: Jaime A. H. Gomez <jahgomez@mx1.ibm.com> Reported-by: Zachary D. Myers <zdmyers@us.ibm.com> Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Acked-by: Jeffrey Lien <Jeff.Lien@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> [mauricfo: backport to v4.4.70 without nvme quirk handling & nvme_ctrl] Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com> Tested-by: Narasimhan Vaidyanathan <vnarasimhan@in.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Guilherme G. Piccoli authored
commit 54adc010 upstream. When disabling the controller, the specification says the register NVME_REG_CC should be written and then driver needs to wait the adapter to be ready, which is checked by reading another register bit (NVME_CSTS_RDY). There's a timeout validation in this checking, so in case this timeout is reached the driver gives up and removes the adapter from the system. After a firmware activation procedure, the PCI_DEVICE(0x1c58, 0x0003) (HGST adapter) end up being removed if we issue a reset_controller, because driver keeps verifying the NVME_REG_CSTS until the timeout is reached. This patch adds a necessary quirk for this adapter, by introducing a delay before nvme_wait_ready(), so the reset procedure is able to be completed. This quirk is needed because just increasing the timeout is not enough in case of this adapter - the driver must wait before start reading NVME_REG_CSTS register on this specific device. Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com> [mauricfo: backport to v4.4.70 without nvme quirk handling & nvme_ctrl] Signed-off-by: Mauricio Faria de Oliveira <mauricfo@linux.vnet.ibm.com> Tested-by: Narasimhan Vaidyanathan <vnarasimhan@in.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Russell King authored
commit 898805e0 upstream. The Marvell driver incorrectly provides phydev->lp_advertising as the logical and of the link partner's advert and our advert. This is incorrect - this field is supposed to store the link parter's unmodified advertisment. This allows ethtool to report the correct link partner auto-negotiation status. Fixes: be937f1f ("Marvell PHY m88e1111 driver fix") Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Amit Pundir <amit.pundir@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Yendapally Reddy Dhananjaya Reddy authored
commit bb1a6197 upstream. USB PHYs need the MDIO clock divisor enabled earlier to work. Initialize mdio clock divisor in probe function. The ext bus bit available in the same register will be used by mdio mux to enable external mdio. Signed-off-by: Yendapally Reddy Dhananjaya Reddy <yendapally.reddy@broadcom.com> Fixes: ddc24ae1 ("net: phy: Broadcom iProc MDIO bus driver") Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jon Mason <jon.mason@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Amit Pundir <amit.pundir@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
William Wu authored
commit b7f73850 upstream. Companion descriptor is only used for SuperSpeed endpoints, if the endpoints are HighSpeed or FullSpeed, the Companion descriptor will not allocated, so we can only access it if gadget is SuperSpeed. I can reproduce this issue on Rockchip platform rk3368 SoC which supports USB 2.0, and use functionfs for ADB. Kernel build with CONFIG_KASAN=y and CONFIG_SLUB_DEBUG=y report the following BUG: ================================================================== BUG: KASAN: slab-out-of-bounds in ffs_func_set_alt+0x224/0x3a0 at addr ffffffc0601f6509 Read of size 1 by task swapper/0/0 ============================================================================ BUG kmalloc-256 (Not tainted): kasan: bad access detected ---------------------------------------------------------------------------- Disabling lock debugging due to kernel taint INFO: Allocated in ffs_func_bind+0x52c/0x99c age=1275 cpu=0 pid=1 alloc_debug_processing+0x128/0x17c ___slab_alloc.constprop.58+0x50c/0x610 __slab_alloc.isra.55.constprop.57+0x24/0x34 __kmalloc+0xe0/0x250 ffs_func_bind+0x52c/0x99c usb_add_function+0xd8/0x1d4 configfs_composite_bind+0x48c/0x570 udc_bind_to_driver+0x6c/0x170 usb_udc_attach_driver+0xa4/0xd0 gadget_dev_desc_UDC_store+0xcc/0x118 configfs_write_file+0x1a0/0x1f8 __vfs_write+0x64/0x174 vfs_write+0xe4/0x200 SyS_write+0x68/0xc8 el0_svc_naked+0x24/0x28 INFO: Freed in inode_doinit_with_dentry+0x3f0/0x7c4 age=1275 cpu=7 pid=247 ... Call trace: [<ffffff900808aab4>] dump_backtrace+0x0/0x230 [<ffffff900808acf8>] show_stack+0x14/0x1c [<ffffff90084ad420>] dump_stack+0xa0/0xc8 [<ffffff90082157cc>] print_trailer+0x188/0x198 [<ffffff9008215948>] object_err+0x3c/0x4c [<ffffff900821b5ac>] kasan_report+0x324/0x4dc [<ffffff900821aa38>] __asan_load1+0x24/0x50 [<ffffff90089eb750>] ffs_func_set_alt+0x224/0x3a0 [<ffffff90089d3760>] composite_setup+0xdcc/0x1ac8 [<ffffff90089d7394>] android_setup+0x124/0x1a0 [<ffffff90089acd18>] _setup+0x54/0x74 [<ffffff90089b6b98>] handle_ep0+0x3288/0x4390 [<ffffff90089b9b44>] dwc_otg_pcd_handle_out_ep_intr+0x14dc/0x2ae4 [<ffffff90089be85c>] dwc_otg_pcd_handle_intr+0x1ec/0x298 [<ffffff90089ad680>] dwc_otg_pcd_irq+0x10/0x20 [<ffffff9008116328>] handle_irq_event_percpu+0x124/0x3ac [<ffffff9008116610>] handle_irq_event+0x60/0xa0 [<ffffff900811af30>] handle_fasteoi_irq+0x10c/0x1d4 [<ffffff9008115568>] generic_handle_irq+0x30/0x40 [<ffffff90081159b4>] __handle_domain_irq+0xac/0xdc [<ffffff9008080e9c>] gic_handle_irq+0x64/0xa4 ... Memory state around the buggy address: ffffffc0601f6400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffffc0601f6480: 00 00 00 00 00 00 00 00 00 00 06 fc fc fc fc fc >ffffffc0601f6500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffffffc0601f6580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffffffc0601f6600: fc fc fc fc fc fc fc fc 00 00 00 00 00 00 00 00 ================================================================== Signed-off-by: William Wu <william.wu@rock-chips.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Cc: Jerry Zhang <zhangjerry@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Michael Ellerman authored
[Note this patch is not upstream. The bug fix was fixed differently in upstream prior to the bug being identified.] The SLB miss handler calls slb_allocate_realmode() in order to create an SLB entry for the faulting address. At the very start of that function we check that the faulting Effective Address (EA) is less than PGTABLE_RANGE (ignoring the region), ie. is it an address which could possibly fit in the virtual address space. For an EA which fails that test, we branch out of line (to label 8), but we still go on to create an SLB entry for the address. The SLB entry we create has a VSID of 0, which means it will never match anything in the hash table and so can't actually translate to a physical address. However that SLB entry will be inserted in the SLB, and so needs to be managed properly like any other SLB entry. In particular we need to insert the SLB entry in the SLB cache, so that it will be flushed when the process is descheduled. And that is where the bugs begin. The first bug is that slb_finish_load() uses cr7 to decide if it should insert the SLB entry into the SLB cache. When we come from the invalid EA case we don't set cr7, it just has some junk value from userspace. So we may or may not insert the SLB entry in the SLB cache. If we fail to insert it, we may then incorrectly leave it in the SLB when the process is descheduled. The second bug is that even if we do happen to add the entry to the SLB cache, we do not have enough bits in the SLB cache to remember the full ESID value for very large EAs. For example if a process branches to 0x788c545a18000000, that results in a 256MB SLB entry with an ESID of 0x788c545a1. But each entry in the SLB cache is only 32-bits, meaning we truncate the ESID to 0x88c545a1. This has the same effect as the first bug, we incorrectly leave the SLB entry in the SLB when the process is descheduled. When a process accesses an invalid EA it results in a SEGV signal being sent to the process, which typically results in the process being killed. Process death isn't instantaneous however, the process may catch the SEGV signal and continue somehow, or the kernel may start writing a core dump for the process, either of which means it's possible for the process to be preempted while its processing the SEGV but before it's been killed. If that happens, when the process is scheduled back onto the CPU we will allocate a new SLB entry for the NIP, which will insert a second entry into the SLB for the bad EA. Because we never flushed the original entry, due to either bug one or two, we now have two SLB entries that match the same EA. If another access is made to that EA, either by the process continuing after catching the SEGV, or by a second process accessing the same bad EA on the same CPU, we will trigger an SLB multi-hit machine check exception. This has been observed happening in the wild. The fix is when we hit the invalid EA case, we mark the SLB cache as being full. This causes us to not insert the truncated ESID into the SLB cache, and means when the process is switched out we will flush the entire SLB. Note that this works both for the original fault and for a subsequent call to slb_allocate_realmode() from switch_slb(). Because we mark the SLB cache as full, it doesn't really matter what value is in cr7, but rather than leaving it as something random we set it to indicate the address was a kernel address. That also skips the attempt to insert it in the SLB cache which is a nice side effect. Another way to fix the bug would be to make the entries in the SLB cache wider, so that we don't truncate the ESID. However this would be a more intrusive change as it alters the size and layout of the paca. This bug was fixed in upstream by commit f0f558b1 ("powerpc/mm: Preserve CFAR value on SLB miss caused by access to bogus address"), which changed the way we handle a bad EA entirely removing this bug in the process. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Joël Esponde authored
commit 807c1625 upstream. With the S25FL127S nor flash part, each writing to the configuration register takes hundreds of ms. During that time, no more accesses to the flash should be done (even reads). This commit adds a wait loop after the register writing until the flash finishes its work. This issue could make rootfs mounting fail when the latter was done too much closely to this quad enable bit setting step. And in this case, a driver as UBIFS may try to recover the filesystem and may broke it completely. Signed-off-by: Joël Esponde <joel.esponde@honeywell.com> Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Signed-off-by: Amit Pundir <amit.pundir@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Tobias Wolf authored
commit 3ec75441 upstream. An empty __dtb_start to __dtb_end section might result in initial_boot_params being null for arch/mips/ralink. This showed that the boot process hangs indefinitely in of_scan_flat_dt(). Signed-off-by: Tobias Wolf <dev-NTEO@vplace.de> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/14605/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Amit Pundir <amit.pundir@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
David Howells authored
commit 5f2f9765 upstream. This fixes CVE-2017-7482. When a kerberos 5 ticket is being decoded so that it can be loaded into an rxrpc-type key, there are several places in which the length of a variable-length field is checked to make sure that it's not going to overrun the available data - but the data is padded to the nearest four-byte boundary and the code doesn't check for this extra. This could lead to the size-remaining variable wrapping and the data pointer going over the end of the buffer. Fix this by making the various variable-length data checks use the padded length. Reported-by: 石磊 <shilei-c@360.cn> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marc Dionne <marc.c.dionne@auristor.com> Reviewed-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Johan Hovold authored
commit ec963b41 upstream. Fix up the root-hub descriptor to accommodate the variable-length DeviceRemovable and PortPwrCtrlMask fields, while marking all ports as removable (and leaving the reserved bit zero unset). Also add a build-time constraint on VHCI_HC_PORTS which must never be greater than USB_MAXCHILDREN (but this was only enforced through a KConfig constant). This specifically fixes the descriptor layout whenever VHCI_HC_PORTS is greater than seven (default is 8). Fixes: 04679b34 ("Staging: USB/IP: add client driver") Cc: Takahiro Hirofuchi <hirofuchi@users.sourceforge.net> Cc: Valentina Manea <valentina.manea.m@gmail.com> Signed-off-by: Johan Hovold <johan@kernel.org> Acked-by: Shuah Khan <shuahkh@osg.samsung.com> [ johan: backport to v4.4, which uses VHCI_NPORTS ] Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alex Deucher authored
commit 52b482b0 upstream. Increase the default display clock on newer asics to accomodate some high res modes with really high refresh rates. bug: https://bugs.freedesktop.org/show_bug.cgi?id=93826Acked-by: Chunming Zhou <david1.zhou@amd.com> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alex Deucher authored
commit 05b4017b upstream. We were using the wrong structure which lead to an overflow on some boards. bug: https://bugs.freedesktop.org/show_bug.cgi?id=101387Acked-by: Chunming Zhou <david1.zhou@amd.com> Acked-by: Christian König <christian.koenig@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alex Deucher authored
commit acfd6ee4 upstream. Fixes resume from suspend. bug: https://bugzilla.kernel.org/show_bug.cgi?id=196121Reported-by: Przemek <soprwa@gmail.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Alex Deucher authored
commit 4eb59793 upstream. Disable PX on these systems. bug: https://bugs.freedesktop.org/show_bug.cgi?id=101491Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nicholas Bellinger authored
commit abb85a9b upstream. When iscsi WRITE underflow occurs there are two different scenarios that can happen. Normally in practice, when an EDTL vs. SCSI CDB TRANSFER LENGTH underflow is detected, the iscsi immediate data payload is the smaller SCSI CDB TRANSFER LENGTH. That is, when a host fabric LLD is using a fixed size EDTL for a specific control CDB, the SCSI CDB TRANSFER LENGTH and actual SCSI payload ends up being smaller than EDTL. In iscsi, this means the received iscsi immediate data payload matches the smaller SCSI CDB TRANSFER LENGTH, because there is no more SCSI payload to accept beyond SCSI CDB TRANSFER LENGTH. However, it's possible for a malicous host to send a WRITE underflow where EDTL is larger than SCSI CDB TRANSFER LENGTH, but incoming iscsi immediate data actually matches EDTL. In the wild, we've never had a iscsi host environment actually try to do this. For this special case, it's wrong to truncate part of the control CDB payload and continue to process the command during underflow when immediate data payload received was larger than SCSI CDB TRANSFER LENGTH, so go ahead and reject and drop the bogus payload as a defensive action. Note this potential bug was originally relaxed by the following for allowing WRITE underflow in MSFT FCP host environments: commit c72c5250 Author: Roland Dreier <roland@purestorage.com> Date: Wed Jul 22 15:08:18 2015 -0700 target: allow underflow/overflow for PR OUT etc. commands Cc: Roland Dreier <roland@purestorage.com> Cc: Mike Christie <mchristi@redhat.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Nicholas Bellinger authored
commit 73d4e580 upstream. This patch fixes a se_cmd->cmd_kref underflow during CMD_T_ABORTED when a fabric driver drops it's second reference from below the target_core_tmr.c based callers of transport_cmd_finish_abort(). Recently with the conversion of kref to refcount_t, this bug was manifesting itself as: [705519.601034] refcount_t: underflow; use-after-free. [705519.604034] INFO: NMI handler (kgdb_nmi_handler) took too long to run: 20116.512 msecs [705539.719111] ------------[ cut here ]------------ [705539.719117] WARNING: CPU: 3 PID: 26510 at lib/refcount.c:184 refcount_sub_and_test+0x33/0x51 Since the original kref atomic_t based kref_put() didn't check for underflow and only invoked the final callback when zero was reached, this bug did not manifest in practice since all se_cmd memory is using preallocated tags. To address this, go ahead and propigate the existing return from transport_put_cmd() up via transport_cmd_finish_abort(), and change transport_cmd_finish_abort() + core_tmr_handle_tas_abort() callers to only do their local target_put_sess_cmd() if necessary. Reported-by: Bart Van Assche <bart.vanassche@sandisk.com> Tested-by: Bart Van Assche <bart.vanassche@sandisk.com> Cc: Mike Christie <mchristi@redhat.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Himanshu Madhani <himanshu.madhani@qlogic.com> Cc: Sagi Grimberg <sagig@mellanox.com> Tested-by: Gary Guo <ghg@datera.io> Tested-by: Chu Yuan Lin <cyl@datera.io> Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
John Stultz authored
commit ceea5e37 upstream. In tests, which excercise switching of clocksources, a NULL pointer dereference can be observed on AMR64 platforms in the clocksource read() function: u64 clocksource_mmio_readl_down(struct clocksource *c) { return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask; } This is called from the core timekeeping code via: cycle_now = tkr->read(tkr->clock); tkr->read is the cached tkr->clock->read() function pointer. When the clocksource is changed then tkr->clock and tkr->read are updated sequentially. The code above results in a sequential load operation of tkr->read and tkr->clock as well. If the store to tkr->clock hits between the loads of tkr->read and tkr->clock, then the old read() function is called with the new clock pointer. As a consequence the read() function dereferences a different data structure and the resulting 'reg' pointer can point anywhere including NULL. This problem was introduced when the timekeeping code was switched over to use struct tk_read_base. Before that, it was theoretically possible as well when the compiler decided to reload clock in the code sequence: now = tk->clock->read(tk->clock); Add a helper function which avoids the issue by reading tk_read_base->clock once into a local variable clk and then issue the read function via clk->read(clk). This guarantees that the read() function always gets the proper clocksource pointer handed in. Since there is now no use for the tkr.read pointer, this patch also removes it, and to address stopping the fast timekeeper during suspend/resume, it introduces a dummy clocksource to use rather then just a dummy read function. Signed-off-by: John Stultz <john.stultz@linaro.org> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Daniel Mentz <danielmentz@google.com> Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.orgSigned-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Daniel Drake authored
commit 817ae460 upstream. Without this quirk, the touchpad is not responsive on this product, with the following message repeated in the logs: psmouse serio1: bad data from KBC - timeout Add it to the notimeout list alongside other similar Fujitsu laptops. Signed-off-by: Daniel Drake <drake@endlessm.com> Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Naveen N. Rao authored
commit a9f8553e upstream. This fixes a crash when function_graph and jprobes are used together. This is essentially commit 237d28db ("ftrace/jprobes/x86: Fix conflict between jprobes and function graph tracing"), but for powerpc. Jprobes breaks function_graph tracing since the jprobe hook needs to use jprobe_return(), which never returns back to the hook, but instead to the original jprobe'd function. The solution is to momentarily pause function_graph tracing before invoking the jprobe hook and re-enable it when returning back to the original jprobe'd function. Fixes: 6794c782 ("powerpc64: port of the function graph tracer") Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Eric W. Biederman authored
commit 57db7e4a upstream. Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad ("signal: allow to send any siginfo to itself") Reference: 1669ce53 ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Sebastian Parschauer authored
commit 3db28271 upstream. This mouse is also known under other IDs. It needs the quirk ALWAYS_POLL or will disconnect in runlevel 1 or 3. Signed-off-by: Sebastian Parschauer <sparschauer@suse.de> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Pavel Shilovsky authored
commit dcd87838 upstream. Downgrade the loglevel for SMB2 to prevent filling the log with messages if e.g. readdir was interrupted. Also make SMB2 and SMB1 codepaths do the same logging during readdir. Signed-off-by: Pavel Shilovsky <pshilov@microsoft.com> Signed-off-by: Steve French <smfrench@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paul Mackerras authored
commit 46a704f8 upstream. If userspace attempts to call the KVM_RUN ioctl when it has hardware transactional memory (HTM) enabled, the values that it has put in the HTM-related SPRs TFHAR, TFIAR and TEXASR will get overwritten by guest values. To fix this, we detect this condition and save those SPR values in the thread struct, and disable HTM for the task. If userspace goes to access those SPRs or the HTM facility in future, a TM-unavailable interrupt will occur and the handler will reload those SPRs and re-enable HTM. If userspace has started a transaction and suspended it, we would currently lose the transactional state in the guest entry path and would almost certainly get a "TM Bad Thing" interrupt, which would cause the host to crash. To avoid this, we detect this case and return from the KVM_RUN ioctl with an EINVAL error, with the KVM exit reason set to KVM_EXIT_FAIL_ENTRY. Fixes: b005255e ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08) Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Ilya Matveychikov authored
commit a91e0f68 upstream. When using get_options() it's possible to specify a range of numbers, like 1-100500. The problem is that it doesn't track array size while calling internally to get_range() which iterates over the range and fills the memory with numbers. Link: http://lkml.kernel.org/r/2613C75C-B04D-4BFF-82A6-12F97BA0F620@gmail.comSigned-off-by: Ilya V. Matveychikov <matvejchikov@gmail.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
NeilBrown authored
commit 9fa4eb8e upstream. If a positive status is passed with the AUTOFS_DEV_IOCTL_FAIL ioctl, autofs4_d_automount() will return ERR_PTR(status) with that status to follow_automount(), which will then dereference an invalid pointer. So treat a positive status the same as zero, and map to ENOENT. See comment in systemd src/core/automount.c::automount_send_ready(). Link: http://lkml.kernel.org/r/871sqwczx5.fsf@notabene.neil.brown.nameSigned-off-by: NeilBrown <neilb@suse.com> Cc: Ian Kent <raven@themaw.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Kees Cook authored
commit 98da7d08 upstream. When limiting the argv/envp strings during exec to 1/4 of the stack limit, the storage of the pointers to the strings was not included. This means that an exec with huge numbers of tiny strings could eat 1/4 of the stack limit in strings and then additional space would be later used by the pointers to the strings. For example, on 32-bit with a 8MB stack rlimit, an exec with 1677721 single-byte strings would consume less than 2MB of stack, the max (8MB / 4) amount allowed, but the pointers to the strings would consume the remaining additional stack space (1677721 * 4 == 6710884). The result (1677721 + 6710884 == 8388605) would exhaust stack space entirely. Controlling this stack exhaustion could result in pathological behavior in setuid binaries (CVE-2017-1000365). [akpm@linux-foundation.org: additional commenting from Kees] Fixes: b6a2fea3 ("mm: variable length argument support") Link: http://lkml.kernel.org/r/20170622001720.GA32173@beastSigned-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Qualys Security Advisory <qsa@qualys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 26 Jun, 2017 9 commits
-
-
Greg Kroah-Hartman authored
-
Hugh Dickins authored
commit f4cb767d upstream. Trinity gets kernel BUG at mm/mmap.c:1963! in about 3 minutes of mmap testing. That's the VM_BUG_ON(gap_end < gap_start) at the end of unmapped_area_topdown(). Linus points out how MAP_FIXED (which does not have to respect our stack guard gap intentions) could result in gap_end below gap_start there. Fix that, and the similar case in its alternative, unmapped_area(). Fixes: 1be7107f ("mm: larger stack guard gap, between vmas") Reported-by: Dave Jones <davej@codemonkey.org.uk> Debugged-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Helge Deller authored
commit bd726c90 upstream. Fix expand_upwards() on architectures with an upward-growing stack (parisc, metag and partly IA-64) to allow the stack to reliably grow exactly up to the address space limit given by TASK_SIZE. Signed-off-by: Helge Deller <deller@gmx.de> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Hugh Dickins authored
commit 1be7107f upstream. Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [wt: backport to 4.11: adjust context] [wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide] [wt: backport to 4.4: adjust context ; drop ppc hugetlb_radix changes] Signed-off-by: Willy Tarreau <w@1wt.eu> [gkh: minor build fixes for 4.4] Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit ff86bf0c upstream. The alarmtimer code has another source of potentially rearming itself too fast. Interval timers with a very samll interval have a similar CPU hog effect as the previously fixed overflow issue. The reason is that alarmtimers do not implement the normal protection against this kind of problem which the other posix timer use: timer expires -> queue signal -> deliver signal -> rearm timer This scheme brings the rearming under scheduler control and prevents permanently firing timers which hog the CPU. Bringing this scheme to the alarm timer code is a major overhaul because it lacks all the necessary mechanisms completely. So for a quick fix limit the interval to one jiffie. This is not problematic in practice as alarmtimers are usually backed by an RTC for suspend which have 1 second resolution. It could be therefor argued that the resolution of this clock should be set to 1 second in general, but that's outside the scope of this fix. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kostya Serebryany <kcc@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Dmitry Vyukov <dvyukov@google.com> Link: http://lkml.kernel.org/r/20170530211655.896767100@linutronix.deSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Paul Burton authored
commit 1a73d931 upstream. The code handling the pop76 opcode (ie. bnezc & jialc instructions) in __compute_return_epc_for_insn() needs to set the value of $31 in the jialc case, which is encoded with rs = 0. However its check to differentiate bnezc (rs != 0) from jialc (rs = 0) was unfortunately backwards, meaning that if we emulate a bnezc instruction we clobber $31 & if we emulate a jialc instruction it actually behaves like a jic instruction. Fix this by inverting the check of rs to match the way the instructions are actually encoded. Signed-off-by: Paul Burton <paul.burton@imgtec.com> Fixes: 28d6f93d ("MIPS: Emulate the new MIPS R6 BNEZC and JIALC instructions") Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/16178/Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Shuah Khan authored
commit 8ae584d1 upstream. Axius clock error path returns without disabling clock and suspend clock. Fix it to disable them before returning error. Reviewed-by: Javier Martinez Canillas <javier@osg.samsung.com> Signed-off-by: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Thomas Gleixner authored
commit f4781e76 upstream. Andrey reported a alartimer related RCU stall while fuzzing the kernel with syzkaller. The reason for this is an overflow in ktime_add() which brings the resulting time into negative space and causes immediate expiry of the timer. The following rearm with a small interval does not bring the timer back into positive space due to the same issue. This results in a permanent firing alarmtimer which hogs the CPU. Use ktime_add_safe() instead which detects the overflow and clamps the result to KTIME_SEC_MAX. Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kostya Serebryany <kcc@google.com> Cc: syzkaller <syzkaller@googlegroups.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Dmitry Vyukov <dvyukov@google.com> Link: http://lkml.kernel.org/r/20170530211655.802921648@linutronix.deSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-
Heiner Kallweit authored
commit fa07ab72 upstream. In case __irq_set_trigger() fails the resources requested via irq_request_resources() are not released. Add the missing release call into the error handling path. Fixes: c1bacbae ("genirq: Provide irq_request/release_resources chip callbacks") Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/655538f5-cb20-a892-ff15-fbd2dd1fa4ec@gmail.comSigned-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-