1. 06 May, 2011 7 commits
    • Paul E. McKenney's avatar
      rcu: put per-CPU kthread at non-RT priority during CPU hotplug operations · e3995a25
      Paul E. McKenney authored
      If you are doing CPU hotplug operations, it is best not to have
      CPU-bound realtime tasks running CPU-bound on the outgoing CPU.
      So this commit makes per-CPU kthreads run at non-realtime priority
      during that time.
      Signed-off-by: default avatarPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      e3995a25
    • Paul E. McKenney's avatar
      rcu: Force per-rcu_node kthreads off of the outgoing CPU · 0f962a5e
      Paul E. McKenney authored
      The scheduler has had some heartburn in the past when too many real-time
      kthreads were affinitied to the outgoing CPU.  So, this commit lightens
      the load by forcing the per-rcu_node and the boost kthreads off of the
      outgoing CPU.  Note that RCU's per-CPU kthread remains on the outgoing
      CPU until the bitter end, as it must in order to preserve correctness.
      
      Also avoid disabling hardirqs across calls to set_cpus_allowed_ptr(),
      given that this function can block.
      Signed-off-by: default avatarPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      0f962a5e
    • Paul E. McKenney's avatar
      rcu: priority boosting for TREE_PREEMPT_RCU · 27f4d280
      Paul E. McKenney authored
      Add priority boosting for TREE_PREEMPT_RCU, similar to that for
      TINY_PREEMPT_RCU.  This is enabled by the default-off RCU_BOOST
      kernel parameter.  The priority to which to boost preempted
      RCU readers is controlled by the RCU_BOOST_PRIO kernel parameter
      (defaulting to real-time priority 1) and the time to wait before
      boosting the readers who are blocking a given grace period is
      controlled by the RCU_BOOST_DELAY kernel parameter (defaulting to
      500 milliseconds).
      Signed-off-by: default avatarPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      27f4d280
    • Paul E. McKenney's avatar
      rcu: move TREE_RCU from softirq to kthread · a26ac245
      Paul E. McKenney authored
      If RCU priority boosting is to be meaningful, callback invocation must
      be boosted in addition to preempted RCU readers.  Otherwise, in presence
      of CPU real-time threads, the grace period ends, but the callbacks don't
      get invoked.  If the callbacks don't get invoked, the associated memory
      doesn't get freed, so the system is still subject to OOM.
      
      But it is not reasonable to priority-boost RCU_SOFTIRQ, so this commit
      moves the callback invocations to a kthread, which can be boosted easily.
      
      Also add comments and properly synchronized all accesses to
      rcu_cpu_kthread_task, as suggested by Lai Jiangshan.
      Signed-off-by: default avatarPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      a26ac245
    • Paul E. McKenney's avatar
      rcu: merge TREE_PREEPT_RCU blocked_tasks[] lists · 12f5f524
      Paul E. McKenney authored
      Combine the current TREE_PREEMPT_RCU ->blocked_tasks[] lists in the
      rcu_node structure into a single ->blkd_tasks list with ->gp_tasks
      and ->exp_tasks tail pointers.  This is in preparation for RCU priority
      boosting, which will add a third dimension to the combinatorial explosion
      in the ->blocked_tasks[] case, but simply a third pointer in the new
      ->blkd_tasks case.
      
      Also update documentation to reflect blocked_tasks[] merge
      Signed-off-by: default avatarPaul E. McKenney <paul.mckenney@linaro.org>
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      12f5f524
    • Paul E. McKenney's avatar
      rcu: Decrease memory-barrier usage based on semi-formal proof · e59fb312
      Paul E. McKenney authored
      Commit d09b62df fixed grace-period synchronization, but left some smp_mb()
      invocations in rcu_process_callbacks() that are no longer needed, but
      sheer paranoia prevented them from being removed.  This commit removes
      them and provides a proof of correctness in their absence.  It also adds
      a memory barrier to rcu_report_qs_rsp() immediately before the update to
      rsp->completed in order to handle the theoretical possibility that the
      compiler or CPU might move massive quantities of code into a lock-based
      critical section.  This also proves that the sheer paranoia was not
      entirely unjustified, at least from a theoretical point of view.
      
      In addition, the old dyntick-idle synchronization depended on the fact
      that grace periods were many milliseconds in duration, so that it could
      be assumed that no dyntick-idle CPU could reorder a memory reference
      across an entire grace period.  Unfortunately for this design, the
      addition of expedited grace periods breaks this assumption, which has
      the unfortunate side-effect of requiring atomic operations in the
      functions that track dyntick-idle state for RCU.  (There is some hope
      that the algorithms used in user-level RCU might be applied here, but
      some work is required to handle the NMIs that user-space applications
      can happily ignore.  For the short term, better safe than sorry.)
      
      This proof assumes that neither compiler nor CPU will allow a lock
      acquisition and release to be reordered, as doing so can result in
      deadlock.  The proof is as follows:
      
      1.	A given CPU declares a quiescent state under the protection of
      	its leaf rcu_node's lock.
      
      2.	If there is more than one level of rcu_node hierarchy, the
      	last CPU to declare a quiescent state will also acquire the
      	->lock of the next rcu_node up in the hierarchy,  but only
      	after releasing the lower level's lock.  The acquisition of this
      	lock clearly cannot occur prior to the acquisition of the leaf
      	node's lock.
      
      3.	Step 2 repeats until we reach the root rcu_node structure.
      	Please note again that only one lock is held at a time through
      	this process.  The acquisition of the root rcu_node's ->lock
      	must occur after the release of that of the leaf rcu_node.
      
      4.	At this point, we set the ->completed field in the rcu_state
      	structure in rcu_report_qs_rsp().  However, if the rcu_node
      	hierarchy contains only one rcu_node, then in theory the code
      	preceding the quiescent state could leak into the critical
      	section.  We therefore precede the update of ->completed with a
      	memory barrier.  All CPUs will therefore agree that any updates
      	preceding any report of a quiescent state will have happened
      	before the update of ->completed.
      
      5.	Regardless of whether a new grace period is needed, rcu_start_gp()
      	will propagate the new value of ->completed to all of the leaf
      	rcu_node structures, under the protection of each rcu_node's ->lock.
      	If a new grace period is needed immediately, this propagation
      	will occur in the same critical section that ->completed was
      	set in, but courtesy of the memory barrier in #4 above, is still
      	seen to follow any pre-quiescent-state activity.
      
      6.	When a given CPU invokes __rcu_process_gp_end(), it becomes
      	aware of the end of the old grace period and therefore makes
      	any RCU callbacks that were waiting on that grace period eligible
      	for invocation.
      
      	If this CPU is the same one that detected the end of the grace
      	period, and if there is but a single rcu_node in the hierarchy,
      	we will still be in the single critical section.  In this case,
      	the memory barrier in step #4 guarantees that all callbacks will
      	be seen to execute after each CPU's quiescent state.
      
      	On the other hand, if this is a different CPU, it will acquire
      	the leaf rcu_node's ->lock, and will again be serialized after
      	each CPU's quiescent state for the old grace period.
      
      On the strength of this proof, this commit therefore removes the memory
      barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp().
      The effect is to reduce the number of memory barriers by one and to
      reduce the frequency of execution from about once per scheduling tick
      per CPU to once per grace period.
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      e59fb312
    • Paul E. McKenney's avatar
      rcu: Remove conditional compilation for RCU CPU stall warnings · a00e0d71
      Paul E. McKenney authored
      The RCU CPU stall warnings can now be controlled using the
      rcu_cpu_stall_suppress boot-time parameter or via the same parameter
      from sysfs.  There is therefore no longer any reason to have
      kernel config parameters for this feature.  This commit therefore
      removes the RCU_CPU_STALL_DETECTOR and RCU_CPU_STALL_DETECTOR_RUNNABLE
      kernel config parameters.  The RCU_CPU_STALL_TIMEOUT parameter remains
      to allow the timeout to be tuned and the RCU_CPU_STALL_VERBOSE parameter
      remains to allow task-stall information to be suppressed if desired.
      Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
      Reviewed-by: default avatarJosh Triplett <josh@joshtriplett.org>
      a00e0d71
  2. 04 May, 2011 4 commits
  3. 03 May, 2011 8 commits
  4. 02 May, 2011 21 commits